Answer:
true
Explanation:
An interior beam supports the floor of a classroom in a school building. The beam spans 26 ft. and the tributary width is 16 ft. Dead load is 20 psf. Find:
a. Basic floor live load Lo in psf
b. Reduced floor live load L in psf
c. Uniformly distributed total load to the beam in lb/ft.
d. Compare the loading in part c with the alternate concentrated load requried by the Code. Which loading is more critical for bending, shear, and deflection.?
Answer:
a. [tex]L_o[/tex] = 40 psf
b. L ≈ 30.80 psf
c. The uniformly distributed total load for the beam = 812.8 ft./lb
d. The alternate concentrated load is more critical to bending , shear and deflection
Explanation:
The given parameters of the beam the beam are;
The span of the beam = 26 ft.
The width of the tributary, b = 16 ft.
The dead load, D = 20 psf.
a. The basic floor live load is given as follows;
The uniform floor live load, = 40 psf
The floor area, A = The span × The width = 26 ft. × 16 ft. = 416 ft.²
Therefore, the uniform live load, [tex]L_o[/tex] = 40 psf
b. The reduced floor live load, L in psf. is given as follows;
[tex]L = L_o \times \left ( 0.25 + \dfrac{15}{\sqrt{k_{LL} \cdot A_T} } \right)[/tex]
For the school, [tex]K_{LL}[/tex] = 2
Therefore, we have;
[tex]L = 40 \times \left ( 0.25 + \dfrac{15}{\sqrt{2 \times 416} } \right) = 30.80126 \ psf[/tex]
The reduced floor live load, L ≈ 30.80 psf
c. The uniformly distributed total load for the beam, [tex]W_d[/tex] = b × [tex]W_{D + L}[/tex] =
∴ [tex]W_d[/tex] = = 16 × (20 + 30.80) ≈ 812.8 ft./lb
The uniformly distributed total load for the beam, [tex]W_d[/tex] = 812.8 ft./lb
d. For the uniformly distributed load, we have;
[tex]V_{max}[/tex] = 812.8 × 26/2 = 10566.4 lbs
[tex]M_{max}[/tex] = 812.8 × 26²/8 = 68,681.6 ft-lbs
[tex]v_{max}[/tex] = 5×812.8×26⁴/348/EI = 4,836,329.333/EI
For the alternate concentrated load, we have;
[tex]P_L[/tex] = 1000 lb
[tex]W_{D}[/tex] = 20 × 16 = 320 lb/ft.
[tex]V_{max}[/tex] = 1,000 + 320 × 26/2 = 5,160 lbs
[tex]M_{max}[/tex] = 1,000 × 26/4 + 320 × 26²/8 = 33,540 ft-lbs
[tex]v_{max}[/tex] = 1,000 × 26³/(48·EI) + 5×320×26⁴/348/EI = 2,467,205.74713/EI
Therefore, the loading more critical to bending , shear and deflection, is the alternate concentrated load
I just need help on problem B
A continuous and aligned fiber-reinforced composite is to be produced consisting of 30 vol% aramid fibers and 70 vol% of a polycarbonate matrix; mechanical characteristics of these two materials are as follows:
Modulus of Elasticity [GPa] Tensile Strength [MPa] Aramid fiber 131 3600 Polycarbonate 2.4 65
Also, the stress on the polycarbonate matrix when the aramid fibers fail is 45 MPa. For this composite, compute the following:
(a) the longitudinal tensile strength, and
(b) the longitudinal modulus of elasticity
Answer:
1. 1111.5MPa
2. 56.1GPa
Explanation:
1. Longitudinal tensile stress can be obtained by obtaining the strength and volume of the fiber reinforcement. The derived formula is given by;
σcl = σm (1 - Vf) + σfVf
Substituting the figures, we will have;
45(1 - 0.30) + 3600(0.30)
45(0.70) + 1080
31.5 + 1080
= 1111.5MPa
2. Longitudinal modulus of elasticity or Young's modulus is the ability of an object to resist deformation. The derived formula is given by;
Ecl = EmVm + EfVf
Substituting the formula gives;
= 2.4 (1 - 0.30) + 131 (0.30)
= 2.4(0.70) + 39.3
= 16.8 + 39.3
= 56.1GPa
Using the appropriate relation, the longitudinal tensile stress and the longitudinal modulus are 1111.50 and 56.10 respectively.
Longitudinal tensile stress can be obtained using the relation :
σcl = σm (1 - Vf) + σfVfSubstituting the values into the relation:
45(1 - 0.30) + 3600(0.30)
45 × 0.70 + 1080
31.5 + 1080
= 1111.50 MPa
2.)
Longitudinal modulus of elasticity is obtained using the relation :
Ecl = EmVm + EfVfSubstituting the values thus :
2.4 (1 - 0.30) + 131 (0.30)
= 2.4 × 0.70 + 39.3
= 16.8 + 39.3
= 56.10 GPa
Hence, the longitudinal tensile stress and the longitudinal modulus are 1111.50 and 56.10 respectively.
Learn more : https://brainly.com/question/22664384
if you are running and you fall and everyone↓↓↓↓↓↓↓ passes you how can you still be in first place??
ik the answer but lets see if you know it twooo
Please help me it’s for science I only have a few minutes
Answer:
Rocks
Explanation:
I am not sure tho bc they are made out of coal and I think coal is a kind of rock
Answer:
I'm taking a guess for ya I shall say Metal or and Minerals
Explanation:
Good luck
All of these are true about using adhesive EXCEPT:
Answer:
Except what? I'm confused
All of these are true about using adhesive except Bilateral. A bilateral contract is defined as an agreements between two parties in which each side agrees to fulfill his or her side of the bargain.
What is bilateral contract?A bilateral contract is defined as an agreements between two parties in which each side agrees to fulfill his or her side of the bargain. According to my research on the different terms used when referencing an insurance contract, I can say that all of the answers provided except for Bilateral are considered typical characteristics describing the nature of an insurance contract.
Since an insurance contract is a fund that the insurance company pays in the case of an accident in which the person is injured, there is only one party that agrees to fulfill their side of the bargain and that is the insurance company.
Therefore, All of these are true about using adhesive except Bilateral. A bilateral contract is defined as an agreements between two parties in which each side agrees to fulfill his or her side of the bargain.
Learn more about adhesive on:
https://brainly.com/question/29061431
#SPJ2
What is the tallest building ever made
Answer:
Burj Khalifa
Explanation:
The world's tallest artificial structure is the 829.8-metre-tall (2,722 ft) Burj Khalifa in Dubai (of the United Arab Emirates). The building gained the official title of "tallest building in the world" and the tallest self-supported structure at its opening on January 9, 2010.
a brainliest would be appriciated
Answer:
Burj khalifa
Explanation:
829.8 meters tall
What causes the charging system warning lamp to go out when the engine starts up?
Select one:
a. It turns off when ground is supplied to the lamp.
b. It turns off because voltage is applied to both sides of the lamp.
c. It turns off automatically after about 5 seconds.
d. It turns off because voltage is applied to one side of the bulb and ground to the other side.
Most methods of transportation rely on some sort of infrastructure to drive, steer, navigate, or direct at some point or another in a journey. Which category of transportation system is least reliant on infrastructure?(1 point)
Answer:
Most methods of transportation rely on some sort of infrastructure to drive, steer, navigate, or direct at some point or another in a journey. Which category of transportation system is least reliant on infrastructure?(1 point). road
Explanation:
Calculate the resistance of a lamp if the current through it is 0.4 A and the voltage across it is 8 V.
Answer:
Answer is 3.2 Ω (Ohms)
Explanation:
From Ohms Law I = V/R
R = V(I)
R = 8(0.4)
R = 3.2
The resistance of a lamp if the current through it is 0.4 A and the voltage across it is 8 V is 3.2 ohm.
What is Ohm's Law?According to Ohm's law, when all other physical parameters, including temperature, are held constant, the voltage across a conductor is directly proportional to the current flowing through it.
According to Ohm's Law, the electrical current I flowing through a particular conductor is precisely proportional to the potential difference (voltage) V across its ends (assuming that the conductor's physical properties, such as its temperature and pressure, stay constant). where R is a proportionality constant.
Given:
Current, I= 0.4 A
Voltage, V= 8 V
Using Ohm's Law
V= IR
I = V/R
R = V(I)
R = 8(0.4)
R = 3.2 ohm
Hence, the resistance of a lamp if the current through it is 0.4 A and the voltage across it is 8 V is 3.2 ohm.
Learn more about Ohm's law here:
https://brainly.com/question/1247379
#SPJ5