Answer:
1) the required horizontal force F is 1095.6 N
2) W = 0 J { work done by rope will be 0 since tension perpendicular }
3) work is done by the worker is 1029.4 J
Explanation:
Given that;
mass of bag m = 125 kg
length of rope [tex]l[/tex] = 3.3 m
displacement of bag d = 2.2 m
1) What horizontal force is necessary to hold the bag in the new position?
from the figure below; ( triangle )
SOH CAH TOA
sin = opp / hyp
sin[tex]\theta[/tex] = d / [tex]l[/tex]
sin[tex]\theta[/tex] = 2.2/ 3.3
sin[tex]\theta[/tex] = 0.6666
[tex]\theta[/tex] = sin⁻¹ ( 0.6666 )
[tex]\theta[/tex] = 41.81°
Now, tension in the string is resolved into components as illustrated in the image below;
Tsin[tex]\theta[/tex] = F
Tcos[tex]\theta[/tex] = mg
so
Tsin[tex]\theta[/tex] / Tcos[tex]\theta[/tex] = F / mg
sin[tex]\theta[/tex] / cos[tex]\theta[/tex] = F / mg
we know that; tangent = sine/cosine
so
tan[tex]\theta[/tex] = F / mg
F = mg tan[tex]\theta[/tex]
we substitute
Horizontal force F = (125kg)( 9.8 m/s²) tan( 41.81° )
F = 1225 × 0.8944
F = 1095.6 N
Therefore, the required horizontal force F is 1095.6 N
2) As the bag is moved to this position, how much work is done by the rope?
Tension in the rope and displacement of mass are perpendicular,
so, work done will be;
W = Tdcos90°
W = Td × 0
W = 0 J { work done by rope will be 0 since tension perpendicular }
3) As the bag is moved to this position, how much work is done by the worker
from the diagram in the image below;
SOH CAH TOA
cos = adj / hyp
cos[tex]\theta[/tex] = ([tex]l[/tex] - h) / [tex]l[/tex]
we substitute
cos[tex]\theta[/tex] = ([tex]l[/tex] - h) / [tex]l[/tex] = 1 - h/[tex]l[/tex]
cos[tex]\theta[/tex] = 1 - h/[tex]l[/tex]
h/[tex]l[/tex] = 1 - cos[tex]\theta[/tex]
h = [tex]l[/tex]( 1 - cos[tex]\theta[/tex] )
now, work done by the worker against gravity will be;
W = mgh = mf[tex]l[/tex]( 1 - cos[tex]\theta[/tex] )
W = mf[tex]l[/tex]( 1 - cos[tex]\theta[/tex] )
we substitute
W = (125 kg)((9.8 m/s²)(3.3 m)( 1 - cos41.81° )
W = 4042.5 × ( 1 - 0.745359 )
W = 4042.5 × 0.254641
W = 1029.4 J
Therefore, work is done by the worker is 1029.4 J
4. Name three examples of "concentrated" forms of energy.
Answer:
Nuclear power plant.
Gas stove.
Dam.
Gas pump.
Geothermal heat pump.
Power lines.
Solar panels.
Windmills.
Explanation:
Hope this helps :))
Answer:
gasoline,solar panels,geothermal heat pump,windmills
Explanation:
Two automobiles, each of mass 1000 kg, are moving at the same speed, 20 m/s, when they collide and stick together. In what direction and at what speed does the wreckage move (a) if one car was driving north and one south (b) if one car was driving north and one east?
A. The wreckage after collision is moving at the speed 18 m/s to the south.
B. The wreckage after collision is moving at the speed 9.0 m/s to the north.
C. The wreckage after collision is moving at the speed 9.0 m/s to the south.
D. The wreckage after collision is moving at the speed 18 m/s to the north.
E. The wreckage after collision is motionless.
Answer:
The reckage after collision is motionless (E)
Explanation:
The first law of thermodynamics states that energy is neither created nor destroyed but is converted from one form to another.
The kind of collision described in the question above is known as a perfectly inelastic collision, and in this type of collision, the maximum kinetic energy is lost because the objects moving in opposite directions have a resultant momentum that is equal, but in opposite directions hence they cancel each other out.
The calculation is as follows:
m₁v₁ + m₂v₂
where:
m₁ = m₂ = 1000kg
v₁ = 20 m/s
v₂ = -20 m/s ( in the opposite vector direction)
∴ resultant momentum = (1000 × 20) + (1000 × -20)
= 20000 - 20000 = 0
∴ The reckage after collision is motionless
Answer:
The wreckage after collision is moving at the speed 18 m/s to the south.
Explanation:
If an object is placed at distance of 16cm from a plane mirror, How far would it be from it's image?
Explanation:
A plane mirror always creates an image with the same distance to the mirror as the object, only in the other direction. So both of them have a distance of 10cm, one is 10cm to the left, one 10cm to the right, thus their mutual distance is 20cm
19. In a turtle race, a 20 kg turtle moves with a velocity of 0.1 m/s. What is the kinetic energy of the turtle?
A. 20 J
B. 0.2 J
C. 0.1 J