Temperature farthest from the
initial temperature (22.5°C)
COMPLETE
RETRY​

Answers

Answer 1

Answer:

The next part is 8.8

Explanation:

You're gonna subtract 31.3 by 22.5 which is 8.8

You're welcome :)

Answer 2

The value of q-cal is 142.8 J in the reaction of magnesium and hydrochloric acid in a different constant pressure calorimeter with a calorimeter constant of 12.75 J/degrees Celsius.

What is calorimeter?

A calorimeter is a device that measures the amount of heat in a chemical or physical process.

To calculate the value of q-cal (heat absorbed or released by the calorimeter), we need to use the following equation:

q = C * ΔT

Where q is the heat absorbed or released by the calorimeter, C is the calorimeter constant, and ΔT is the change in temperature.

In this case, we know that the calorimeter constant is 12.75 J/degrees Celsius, the initial temperature is 22.5 degrees Celsius, and the final temperature is 33.7 degrees Celsius.

Therefore, we can calculate ΔT as:

ΔT = final temperature - initial temperature

ΔT = 33.7°C - 22.5°C

ΔT = 11.2°C

Substituting these values into the equation, we get:

q = C * ΔT

q = 12.75 J/°C * 11.2°C

q = 142.8 J

Therefore, the value of q-cal is 142.8 J.

For more details regarding calorimeter, visit:

https://brainly.com/question/4802333

#SPJ7

Your question seems incomplete, the probable complete question is:

Suppose you perform the reaction of magnesium and hydrochloric acid in a different constant pressure calorimeter with a calorimeter constant of 12.75 J/degrees Celsius. The initial temperature in the calorimeter is 22.5 degrees Celsius and the final temperature after the reaction is 33.7 degrees Celsius. What is the value of q-cal?


Related Questions

What is the specific heat of a metal with a mass of 14.0 g, heat of 3.45 kJ and a change in temperature of 3.2 ℃?

Answers

i think your question is not complete sir. supposely you can use Q=mc0.
(0.014)(4.2)(3.2)

what is the polarity of black pepper

Answers

Answer:

Polarity in chemistry referred to physical properties of compounds related to solubility, melting and boiling properties.

Polarity of black pepper can be seen when black pepper is sprinkled on water. The balck pepper float on water and get displaced if touched.

It means black pepper is non-polar and have no difference in electronegativity between bonded atoms. Black pepper is so light in weight and non-polar, the surface tension of water keep it floating in the water.

Write the following isotope in nuclide notation: oxygen-14

Answers

Answer:

[tex]14\\8[/tex]O

Explanation:

The top number always represents the mass number.

The bottom number always represents the atomic number.

The element always goes after the numbers.

If charge is present, that comes after the element.

The Ka1 value for oxalic acid is 5.9 x10-2 , and the Ka2 value is 4.6 x 10-5 . What are the values of Kb1 and Kb2 of the oxalate ion

Answers

Answer:

2.17x10⁻¹⁰ = Kb1

1.69x10⁻¹³ = Kb2

Explanation:

Oxalic acid, C₂O₄H₂, has two intercambiable protons, its equilibriums are:

C₂O₄H₂ ⇄ C₂O₄H⁻ + H⁺ Ka1 = 5.9x10⁻²

C₂O₄H⁻ ⇄ C₂O₄²⁻ + H⁺ Ka2 = 4.6x10⁻⁵

Oxalate ion, C₂O₄²⁻, has as equilibriums:

C₂O₄²⁻ + H₂O ⇄ C₂O₄H⁻ + OH⁻ Kb1

C₂O₄H⁻ + H₂O ⇄ C₂O₄H₂ + OH⁻ Kb2

Also, you can know: KaₓKb = Kw

Where Kw is 1x10⁻¹⁴

Thus:

Kw = Kb2ₓKa1

1x10⁻¹⁴ =Kb2ₓ4.6x10⁻⁵

2.17x10⁻¹⁰ = Kb1

And:

Kw = Kb1ₓKa2

1x10⁻¹⁴ =Kb1ₓ5.9x10⁻²

1.69x10⁻¹³ = Kb1

That is because the inverse reaction of, for example, Ka1:

C₂O₄H⁻ + H⁺ ⇄ C₂O₄H₂ K = 1 / Ka1

+ H₂O ⇄ H⁺ + OH⁻ K = Kw = 1x10⁻¹⁴

=

C₂O₄H⁻ + H₂O ⇄ C₂O₄H₂ + OH⁻ Kb2 = Kw × 1/Ka1

How many hours does it take to form 15.0 L of O₂ measured at 750 torr and 30°C from water by passing 3.55 A of current through an electrolytic cell?

Answers

Answer:

The correct answer is 17.845 hours.

Explanation:

To solve the question, that is, to determine the hours required there is a need to combine the Faraday's law of electrolysis with the Ideal gas law.  

Based on Faraday's law, m = Mit/nF

Here m is the mass in grams, M is the molecular mass, i is the current in amperes, t is time, n is the number of moles of electron per mole of oxygen formed and F is the Faraday's constant (the value of F is 96487 coulombs/mole).  

From the above mentioned equation,  

t = mnF/Mi ------(i)

Now based on ideal gas law's, PV = nRT or PV = m/M RT, here n = mass/molecular mass.  

So, from the above gas law's equation, m = PVM/RT

Now putting the values of m in the equation (i) we get,  

t = PVMnF/MiRT = PVnF/iRT

Based on the given information, the value of P is 750 torr or 750/760 atm = 0.98 atm, the value of v is 15.0 L, T is 30 degree C or 273 + 30 K = 303 K, i is 3.55 Amperes, and the value of R is 0.0821 atm L/mol K.  

1 mole of oxygen gives 2 moles of electrons, therefore, 2 moles of oxygen will give 4 moles of electrons.  

Now putting the values we get,  

t = PVnF/iRT

= 0.98 atm × 15.0 L × 4 moles of electron × 96487 coulombs per mole / 3.55 coulomb per sec × 0.0821 atm L per mole-K × 303 K

= 64243.81 secs or 64243.81/3600 hr  

= 17.845 hours

Suppose that you add 28.8 g of an unknown molecular compound to 0.250 kg of benzene, which has a K f Kf of 5.12 oC/m. With the added solute, you find that there is a freezing point depression of 3.06 oC compared to pure benzene. What is the molar mass of the unknown compound

Answers

Answer:

THE MOLAR MASS OF THE UNKNOWN COMPOUND IS 242.02 g/mol.

Explanation:

First:

Calculate the change in freezing point:

          Freezing point of pure benzene = 5.5°C

Change in temperature = 5.5 - 3.06 = 2.44 °C

Second:

Using the formula:

Δt = i Kf m

Let's assume i = 1

Kf = 5.12 °C/m

M = x / 0.250 kg of benzene

Then we can calculate x which is the molarity

Re-arranging the formula, we have:

m = Δt / i Kf

x / 0.250 = 2.44 / 1 * 5.12

x = 2.44 * 0.250 / 5.12

x = 0.61 / 5.12

x = 0.119 M

Since it is well known that molarity is the mass of a substance divided by its molar mass. We can then calculate the molar mass.

Molar mass = Mass / molarity

Molar mass = 28.8 g / 0.119 M

Molar mass =242.02 g/mol

Hence, the molar mass of the unknown molecular compound is 242.02 g/mol.

Strontium crystallizes in a face-centered cubic unit cell having an edge length of 77.43 pm. What is the atomic radius of strontium (in picometers) based on this structure

Answers

Answer:

Atomic radius of Strontium is 27.38pm

Explanation:

In a face-centered cubic structure, the edge, a, could be obtained using pythagoras theorem knowing the hypotenuse of the unit cell, b, is equal to 4r:

a² + a² = b² = (4r)²

2a² = 16r²

a = √8 r

As edge length of Strontium is 77.43pm:

77.43pm / √8 = r

27.38pm = r

Atomic radius of Strontium is 27.38pm

3A 2B --> 5C If compound A has a molar mass of 159.7 g/mol and compound C has a molar mass of 57.6 g/mole, how many grams of compound C will be produced from 18.24 grams of compound A and excess compound B

Answers

Answer:

10.96 grams of compound C will be produced from 18.24 grams of compound A and excess compound B.

Explanation:

3A + 2B ⇒ 5C

By stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction) the following amounts of reagent and products participate in the reaction:

A: 3 molesB: 2 molesC: 5 moles

The excess reagent will be that which is not completely depleted during the reaction.

The amount of product obtained from the reaction will always depend on the amount of limiting reagent in the reaction. Then, being B the excess reagent and therefore A the limiting reagent and knowing that compound A has a molar mass of 159.7 g/mole and compound C has a molar mass of 57.6 g/mole, by stoichiometry the following mass amounts of A and C participate in the reaction:

A: 3 moles* 159.7 g/mole=  479.1 gC: 5 moles* 57.6 g/mole=  288 g

Then it is possible to apply the following rule of three: if by stoichiometry of the reaction 479.1 grams of A produce 288 grams of C, 18.24 grams of A, how much mass of C does it produce?

[tex]mass of C=\frac{18.24 grams of A*288 grams of C}{479.1 grams of A}[/tex]

mass of C= 10.96 grams

10.96 grams of compound C will be produced from 18.24 grams of compound A and excess compound B.

7. An element's most stable ion forms an ionic compound with chlorine having the formula XCl2. If the ion of element X has a mass of 89 and 36 electrons, what is the identity of the element, and how many neutrons does it have

Answers

Answer:

The element is strontium and the number of neutrons it have is 51.

Explanation:

Based on the given information, the ionic compound is,  

XCl₂ ⇔ X₂⁺ + 2Cl⁻

X2+ is the ion of the mentioned element

As mentioned in the given question, the number of electrons of the element X is 36 and as seen from the reaction the charge present on the ion is +2. Now the atomic number will be,  

No. of electrons = atomic number - charge

36 = atomic number - 2

Atomic number = 38

Based on the periodic table, the atomic number 38 is for strontium element, and the sign of strontium is Sr. Hence, the element X is Sr.  

Now based on the given information, the mass number of the element is 89. Now the no. of neutrons will be,  

No. of neutrons = mass number - atomic number

= 89 - 38

= 51 neutrons.  

Which of the following functional groups is not present in the HIV protease inhibitor drug below called Saquinavir?
A) alcohol
B) amide
C) aromatic ring
D) amine
E) ketone N. ○ ト Saquinavir Structure

Answers

Answer:

alcohol

Explanation:

Since in its chemical structure it presents an amide, amine and aromatic ring group.

What this drug does is inhibit the protease of the HIV retrovirus, the protease is an enzyme that catalyzes proteins.

Which of the following types of electromagnetic radiation have higher frequencies than visible light and which have shorter frequencies than visible light?
1. Gamma rays
2. Infrared radiation
3. Ultraviolet liht
4. X-rays
5. Microwaves
6. Radio waves

Answers

Answer:

3,4,1 and 6,5,2

Explanation:

In the electromagnetic spectrum the arrangement of the waves in increasing frequencies and decreasing wavelengths are as follows;

Radio waves

Microwaves

Infrared waves

Visible light rays

Ultraviolet rays

X-rays

Gamma rays

(a simple mnemonic is RMIVUXG)

Which one of the following would have the largest dispersion forces?
A) CH3CH2SH
B) CH3NH2
C) CH4
D) CH3CH3

Answers

Answer:

A) CH3CH2SH

Explanation:

Dispersion forces are weak attractions found between non-polar and polar molecules. The attractions here can be attributed to the fact that a  non-polar molecule sometimes become polar because the constant motion of its electrons may lead to an uneven charge distribution at an instant. If this happens, the molecule has a temporary dipole. This dipole can induce the neighbouring molecules to be distorted and form dipoles as well. The attractions between these dipoles constitute the Dispersion Forces.

Therefore; the greater the molar mass of a compound or molecule, the higher the Dispersion Force. This implies that the compound or molecule with the highest molar mass have the largest dispersion forces.

Now; for option (A)

CH3CH2SH

The molar mass is :

= (12 + (1 × 3 ) +12 + (1 ×2) + 32+1)

= (12 + 3+ 12 + 2 + 32 + 1)

= 62 g/mol

For option (B)

CH3NH2

The molar mass is:

= (12 + (1 ×  3 ) +14 + (1 ×  2)

= (12 + 3 + 14 + 2)

= 31 g/mol

For option (C)

CH4

The molar mass is :

= 12 + (1 × 4)

= 12 + 4

= 16 g/mol

For option (D)

CH3CH3

The molar mass is :

= 12 + ( 1 × 3 ) + 12 + ( 1 × 3)

= 12 + 3 + 12 + 3

= 30 g/mol

Thus ; option (A) has the highest molar mass, as such the largest dispersion force is A) CH3CH2SH

What is the new mass/volume percent (m/v) of a KOH solution that is prepared by diluting 110 mL of a 6.0% (m/v) KOH solution to 330 mL

Answers

Answer:

The new mass/volume percent is 2.0% (m/v)

Explanation:

Dilution is a procedure by which the concentration of a solution is decreased, generally with the addition of a diluent. In other words, dilution is a process in which a concentrated solution is always started, to which a greater volume of solvent is added, causing the concentration and volume of the resulting solution to change. But the amount of solute used to prepare the initial solution remains the same.

The calculation of a dilution is made by:

Cinitial. Vinitial = Cfinal. Vfinal

where C indicates concentration and V indicates volume.

In this case:

Cinitial: 6.0% (m/v)Vinitial: 110 mLCfinal: ?Vfinal: 330 mL

Replacing:

6.0% (m/v) * 110 mL= Cfinal* 330 mL

Solving:

[tex]Cfinal=\frac{ 6.0 (m/v)*110 mL}{330 mL}[/tex]

Cfinal=   2.0% (m/v)

The new mass/volume percent is 2.0% (m/v)

A certain radioactive element has a half life of 8694 years. How much of a 8.30 g sample is left after 8323 years

Answers

Answer: The amount of sample left after 8323 years is 4.32g

Explanation:

Expression for rate law for first order kinetics is given by:

[tex]t=\frac{2.303}{k}\log\frac{a}{a-x}[/tex]

where,

k = rate constant

t = age of sample

a = let initial amount of the reactant

a - x = amount left after decay process  

a) for completion of half life:

Half life is the amount of time taken by a radioactive material to decay to half of its original value.

[tex]t_{\frac{1}{2}}=\frac{0.693}{k}[/tex]

[tex]k=\frac{0.693}{8694years}=7.97\times 10^{-5}years^{-1}[/tex]

b) amount left after 8323 years

[tex]t=\frac{2.303}{7.97\times 10^{-5}}\log\frac{8.30g}{a-x}[/tex]

[tex]8323=\frac{2.303}{7.97\times 10^{-5}}\log\frac{8.30g}{a-x}[/tex]

[tex]0.285=\log\frac{8.30}{a-x}[/tex]

[tex]\frac{8.30}{a-x}=1.92[/tex]

[tex](a-x)=4.32g[/tex]

The amount of sample left after 8323 years is 4.32g

What is the systematic name for the given compound? (R)-2-bromobutane (S)-2-bromobutane (R)-2-butyl bromide (S)-2-butyl bromide

Answers

Answer:

See explanation below

Explanation:

IUPAC came up with the idea of an unambiguous system of nomenclature for organic compounds. This unambiguous system relates the structure of a compound with its name. Thus, IUPAC has established a worldwide standard for the unambiguous naming of organic compounds. Scientists all over the world can now have a uniform system of nomenclature for compounds in order to facilitate easy communication of scientific information.

The systematic names of the following compounds listed in the question are shown below;

(R)-2- butyl bromide has the systematic name (R)-2-bromobutane

(S)-2-butyl bromide has the systematic name (S)-2-bromobutane

This unified system of nomenclature avoids the confusion created by the use of different trivial names in deferent localities and by various scientific academies. This is a major advantage of the systematic nomenclature.

Which of the following pairings usually forms molecular compounds?
Select the correct answer below:
metal, nonmetal
nonmetal, nonmetal
metal, metal
none of the above

Answers

A nonmetal and a nonmetal will make molecular compounds like H2O and CO2

Based on the Valence Shell Electron Pair Repulsion Theory (or VSEPR), molecules will arrange to keep the following as far apart as physically possible
a) mobile electrons
b) valence electron pairs
c) inner shell electrons
d) the electrons closest to the nuclei

Answers

Answer:

B. Valence Electron Pairs

Explanation:

Valence-shell electron-pair repulsion, or VSEPR, describes the shape of molecules by determining the repulsion of valence electrons. Therefore, our answer is B.

The monomer of poly(vinyl chloride) has the formula C2H3Cl. If there are 1,565 repeat units in a single chain of the polymer, what is the molecular mass (in amu) of that chain? Enter your answer in scientific notation.

Answers

Answer:

[tex]\large \boxed{9.780 \times 10^{4}\text{ u}}[/tex]

Explanation:

The molecular mass of a monomer unit is:

C₂H₃Cl = 2×12.01 + 3×1.008 + 35.45 = 24.02 + 3.024 + 35.45 = 62.494 u

For 1565 units,

[tex]\text{Molecular mass} = \text{1565 units} \times \dfrac{\text{62.494 u}}{\text{1 unit }} = \mathbf{9.780 \times 10^{4}}\textbf{ u}\\\\\text{The molecular mass of the chain is $\large \boxed{\mathbf{9.780 \times 10^{4}}\textbf{ u}}$}[/tex]

Calcium carbide, CaC2, reacts with water to form calcium hydroxide and the flammable gas ethyne (acetylene) in the reaction: What mass of ethyne can be produced

Answers

Answer:

1 mole of CaC₂ will produce 26g of C₂H₂ or 64.1g of CaC₂ will produce 26g of C₂H₂

Explanation:

Hello,

To solve this question, we'll require a balanced chemical equation of reaction between calcium carbide and water.

Equation of reaction

CaC₂ + 2H₂O → Ca(OH)₂ + C₂H₂

Molar mass of calcium carbide (CaC₂) = 64.1g/mol

Molar mass of water (H₂O) = 18g/mol

Molar mass of calcium hydroxide (Ca(OH)₂) = 74g/mol

Molar mass of ethyne (C₂H₂) = 26g/mol

From the equation of reaction, 1 mole of CaC₂ will produce 1 mole of C₂H₂

1 mole of CaC₂ = mass / molar mass

Mass = 1 × 64.1

Mass = 64.1g

1 mole of C₂H₂ = mass / molar mass

Mass = 1 × 26

Mass = 26g

Therefore, 1 mole of CaC₂ will produce 26g of C₂H₂

Note: this is a hypothetical calculation since we were not given the initial mass of CaC₂ that starts the reaction

help please !!!!!!!!

Answers

Answer:

Option B. 2096.1 K

Explanation:

Data obtained from the question include the following:

Enthalpy (H) = +1287 kJmol¯¹ = +1287000 Jmol¯¹

Entropy (S) = +614 JK¯¹mol¯¹

Temperature (T) =.?

Entropy is related to enthalphy and temperature by the following equation:

Change in entropy (ΔS) = change in enthalphy (ΔH) / Temperature (T)

ΔS = ΔH / T

With the above formula, we can obtain the temperature at which the reaction will be feasible as follow:

ΔS = ΔH / T

614 = 1287000/ T

Cross multiply

614 x T = 1287000

Divide both side by 614

T = 1287000/614

T = 2096.1 K

Therefore, the temperature at which the reaction will be feasible is 2096.1 K

What mass of benzene is cooled from 83.8 °C to 77.1 °C when 167 J of energy is transferred out of the system? (The specific heat of benzene is 1.740 J/g °C).

Answers

Answer:

14.32g

Explanation:

Initial temperature = 83.8°C

Final temperature = 77.1°C

Temperature change, ΔT = 83.8°C - 77.1°C = 6.7

Heat, H = 167J

Specific heat, c = 1.740J/g °C

m = ?

All these parameters are related with the equation below;

H = mcΔT

m = H / cΔT

m = 167 /  (1.740 * 6.7)

m = 167 / 11.658 = 14.32g

If 0.98 g of an unknown was dissolved in 10.30 g of solvent and the resulting solution has a molality of 0.45 m, what is the molar mass of the unknown

Answers

Answer:

211.4g/mol.

Explanation:

Data obtained from the question includes:

Mass of unknown compound = 0.98g

Mass of solvent = 10.30g

Molality = 0.45 M

Next, we shall determine the number of mole of the unknown compound present in the solution.

This can be obtained as follow:

Molality = mole /kg of solvent

Mole of the unknown compound =.?

Mass of solvent = 10.30g = 10.30/1000 = 0.0103Kg

Molality = 0.45 M

Molality = mole /kg of solvent

0.45 = mole /0.0103

Cross multiply

Mole = 0.45 x 0.0103

Mole = 4.635×10¯³ mole

Therefore the mole of the unknown compound that dissolve in solution is 4.635×10¯³ mole

Now, we can obtain the molar mass of the unknown compound as follow:

Mole of the unknown compound = 4.635×10¯³ mole

Mass of unknown compound = 0.98g

Molar mass of the unknown compound =?

Mole = mass /Molar mass

4.635×10¯³ = 0.98 /Molar mass

Cross multiply

4.635×10¯³ x molar mass = 0.98

Divide both side by 4.635×10¯³

Molar mass = 0.98 / 4.635×10¯³

Molar mass = 211.4g/mol.

Therefore, the molar mass of the unknown compound is 211.4g/mol.

The molecular mass of the unknown has been 211.66 g/mol.

Molality can be defined as the moles of the solute per kg of solvent.

Molality can be expressed as:

Molality = [tex]\rm \dfrac{Mass\;of\;solute\;(g)}{molecular\;mass\;of\;solute}\;\times\;\dfrac{1000}{Mass\;of\;solvent\;(g)}[/tex] ......(i)

The given unknown has been the solute.

The mass of solute = 0.98 g.

The mass of solvent = 10.30 g.

The molality of the solution formed has been = 0.45 m.

Substituting the values in equation (i):

0.45 m = [tex]\rm \dfrac{0.98\;g}{molecular\;mass\;of\;solute}\;\times\;\dfrac{1000}{10.30\;g}[/tex]

0.45 m = [tex]\rm \dfrac{0.98\;g}{molecular\;mass\;of\;solute}\;\times\;97.087[/tex]

[tex]\rm \dfrac{0.98\;g}{molecular\;mass\;of\;solute}[/tex]  =  [tex]\rm \dfrac{0.45}{97.087}[/tex]

[tex]\rm \dfrac{0.98\;g}{molecular\;mass\;of\;solute}[/tex]  = 0.00463

Molecular mass of solute = [tex]\rm \dfrac{0.98}{0.00463}[/tex]

Molecular mass of solute = 211.66 g/mol.

The molecular mass of the unknown has been 211.66 g/mol.

For more information about the molality of the solution, refer to the link:

https://brainly.com/question/8103026

g A microwave oven heats by radiating food with microwave radiation, which is absorbed by the food and converted to heat. If the radiation wavelength is 12.5 cm, how many photons of this radiation would be required to heat a container with 0.250 L of water from a temperature of 20.0oC to a temperature of 99oC

Answers

Answer:

The total photons required = 5.19 × 10²⁸ photons

Explanation:

Given that:

the radiation wavelength λ= 12.5 cm = 0.125 m

Volume of the container = 0.250 L = 250 mL

The density of water = 1 g/mL

Density = mass /volume

Mass =  Volume ×  Density

Thus; the mass of the water =  250 mL ×  1 g/mL

the mass of the water = 250 g

the specific heat of water s = 4.18 J/g° C

the initial temperature [tex]T_1[/tex] = 20.0° C

the final temperature [tex]T_2[/tex] = 99° C

Change in temperature [tex]\Delta T[/tex] = (99-20)° C = 79 ° C

The heat q absorbed during the process = ms [tex]\Delta T[/tex]

The heat q absorbed during the process = 250 g × 4.18 J/g° C × 79° C

The heat q absorbed during the process = 82555 J

The energy of a photon can be represented by the equation :

= hc/λ

where;

h = planck's constant = [tex]6.626 \times 10^{-34} \ J.s[/tex]

c = velocity of light = [tex]3.0 \times 10^8 \ m/s[/tex]

=  [tex]\dfrac{6.626 \times 10^{-34} \times 3.0 \times 10^8}{0.125}[/tex]

= [tex]1.59024 \times 10^{-24}[/tex] J

The total photons required = Total heat energy/ Energy of a photon

The total photons required = [tex]\dfrac{82555 J}{1.59024 \times 10^{-24}J}[/tex]

The total photons required = 5.19 × 10²⁸ photons

Why does the excess of base used in these eliminations favor the E2 over the E1 mechanism for elimination

Answers

Answer:

The base is involved in the rate determining step of an E2 reaction mechanism

Explanation:

Let us get back to the basics. Looking at an E1 reaction, the rate determining step is unimolecular, that is;

Rate = k [Carbocation] since the rate determining step is the formation of a carbonation.

For an E2 reaction however, the reaction is bimolecular hence for the rate determining step we can write;

Rate = k[alkyl halide] [base]

The implication of this is that an excess of either the alkyl halide or base will facilitate an E2 reaction.

Hence, when excess base is used, E2 reaction is favoured since the base is involved in its rate determining step. In an E1 reaction, the base is not involved in the rate determining step hence an excess of the base has no effect on an E1 reaction.

A piece of silver with a mass 368 g has a heat capacity of 87.2 J/°C. What is the specific heat of
silver?
A. 0.385 J/g.°C
B. 0.237 J/g.°C
C. 0.184 J/g.°C
D. 1.322 J/g.°C
E. 4.184 J/g.°C

Answers

Answer:

B

Explanation:

Heat capacity = mass x specific heat capacity.

(C = mc)

87.2 = 368 x c

= 0.237 J/g.°C

Consider the following reaction where Kc = 6.50×10-3 at 298 K: 2NOBr(g) 2NO(g) + Br2(g) A reaction mixture was found to contain 9.83×10-2 moles of NOBr(g), 5.44×10-2 moles of NO(g), and 4.13×10-2 moles of Br2(g), in a 1.00 liter container. Is the reaction at equilibrium? If not, what direction must it run in order to reach equilibrium? The reaction quotient, Qc

Answers

Answer:

This reaction isn't yet at an equilibrium. It must shift in the direction of the reactant (namely [tex]\rm NOBr\; (g)[/tex]) in order to reach an equilibrium.

For this mixture, the reaction quotient is [tex]Q_c = 0.0126[/tex].

Explanation:

A reversible reaction is at equilibrium if and only if its reaction quotient [tex]Q_c[/tex] is equal to the equilibrium constant [tex]K_c[/tex].

Start by calculating the equilibrium quotient [tex]Q_c[/tex] of this reaction. Given the reaction:

[tex]\rm 2\; NOBr\; (g) \rightleftharpoons 2\; NO\; (g) + Br_2\; (g)[/tex].

Let [tex][\mathrm{NOBr\; (g)}][/tex], [tex][\mathrm{NO\; (g)}][/tex], and [tex][\mathrm{Br_2\; (g)}][/tex] denote the concentration of the three species. The formula for the reaction quotient of this system will be:

[tex]\displaystyle Q_c = \frac{[\mathrm{NO\; (g)}]^2 \cdot [\mathrm{Br_2\; (g)}]}{[\mathrm{NOBr\; (g)}]^2}[/tex].

(Note, that in this formula, both [tex][\mathrm{NO\; (g)}][/tex] and [tex][\mathrm{NOBr\; (g)}][/tex] are raised to a power of two. That corresponds to the coefficients in the balanced reaction.)

Calculate the reaction quotient given the concentration of each species:

[tex]\displaystyle Q_c = \frac{[\mathrm{NO\; (g)}]^2 \cdot [\mathrm{Br_2\; (g)}]}{[\mathrm{NOBr\; (g)}]^2} \approx 1.26\times 10^{-2} = 0.0126[/tex].

(Note that the unit is ignored.)

Apparently, [tex]Q_c > K_c[/tex]. Since [tex]Q_c[/tex] and [tex]K_c[/tex] are not equal, this reaction is not at an equilibrium. If external factors like temperature stays the same,

Keep in mind that [tex]Q_c[/tex] denotes a quotient. To reduce the value of a quotient, one may:

reduce the value of the numerator, increase the value of the denominator, orboth.

In [tex]Q_c[/tex], that means reducing the concentration of the products while increasing the concentration of the reactants. In other words, the system needs to shift in the direction of the reactants before it could reach an equilibrium.

Recall that when a reaction is at equilibrium, the forward and reverse reactions occur at the same rate. To illustrate this idea, consider the reaction of A (small, red spheres) and B (large, blue spheres) to form AB.

A+B ⇌ AB

Notice that the reaction never stops. Even after several minutes, there is A and B left unreacted, and the forward and reverse reactions continue to occur. Also note that amounts of each species (i.e., their concentrations) stay the same.

Required:
What is the value of the equilibrium constant for this reaction?
Assume each atom or molecule represents a 1 M concentration of that substance.

Answers

Answer:

Equilibrium constant Kc = [x]² / [A - x] [B - x]

Explanation:

The equilibrium constant is defined as the ratio of the concentration of the products to that of the reactants at equilibrium

ie Kc = [products] / [reactants].

The balanced equation of the reaction is given as : A + B ⇄ AB

At the beginning of the reaction,

Initial concentration I = A = 1M

                                       B = 1M

                                      AB = 0M

After a period of time and assuming 'x' to be the concentration of product AB formed, the concentrations become

                                         C = reactant A = [A - x] M

                                                 rectant B =   [B - x] M

                                              Product AB =  [x] [x] M

At equilibrium, the concentrations are,

                                            E  = rectant A = [A - x] M

                                                   reactant B = [B - x] M

                                                   product AB = [x]² M

therefore , the equilibrium constant, Kc  = [products]/[reactants]

                                                                   = [x]² / [A - x] [B - x]

determine the rate of reaction that follows the rate= k[A]^m[B]^n

Answers

rate=0.2*3^1*3^2=0.2*3*9=5.4(mol/L)s so the correct answer is C.

What volume of water is required to dilute 120 cm3 of 10 mol dm–3 sulphuric acid to a concentration of 2 mol dm–3?​

Answers

Answer:

0.48 dm3  (or 480 cm3)

Explanation:

First find the original no. of moles existing in the sulphuric acid:

no. of moles = volume (in dm3) x concentration

                     = 120/1000 x 10

                     = 1.2 mol

Then let the total volume of the diluted acid be v dm3.

Since

Concentration = no. of moles / volume,

so by substituting the given information,

2 = 1.2 / v

v = 0.6 dm3

Hence, the volume of water required

= 0.6 - 120/1000

= 0.48 dm3  (or 480 cm3)

Considering the definition of dilution, 600 cm³ of water is required to dilute 120 cm³ of 10 [tex]\frac{mol}{dm^{3} }[/tex] sulphuric acid to a concentration of 2 [tex]\frac{mol}{dm^{3} }[/tex].

First of all, you have to know that when it is desired to prepare a less concentrated solution from a more concentrated one, it is called dilution.

Dilution is the procedure followed to prepare a less concentrated solution from a more concentrated one and consists of reducing the amount of solute per unit volume of solution. This is accomplished simply by adding more solvent to the solution in the same amount of solute.

In a dilution the amount of solute does not change, but as more solvent is added, the concentration of the solute decreases, as the volume of the solution increases.

A dilution is mathematically expressed as:

Ci×Vi = Cf×Vf

where

Ci: initial concentration Vi: initial volume Cf: final concentration Vf: final volume

In this case, you know:

Ci= 10 [tex]\frac{mol}{dm^{3} }[/tex] Vi= 120 cm³ Cf= 2 [tex]\frac{mol}{dm^{3} }[/tex] Vf= ?

Replacing in the definition of dilution:

10[tex]\frac{mol}{dm^{3} }[/tex]× 120 cm³= 2 [tex]\frac{mol}{dm^{3} }[/tex]× Vf

Solving:

Vf= (10[tex]\frac{mol}{dm^{3} }[/tex]× 120 cm³) ÷2 [tex]\frac{mol}{dm^{3} }[/tex]

Vf= 600 cm³

In summary, 600 cm³ of water is required to dilute 120 cm³ of 10 [tex]\frac{mol}{dm^{3} }[/tex] sulphuric acid to a concentration of 2 [tex]\frac{mol}{dm^{3} }[/tex].

Learn more about dilution:

brainly.com/question/20113402?referrer=searchResults brainly.com/question/22762236?referrer=searchResults

What volume of a 2.25 M sodium chloride solution will contain 4.58 moles of sodium chloride
(NaCl)?
A. 0.252 L
B. 119 L
C. 5.62 L
D. 0.491 L
E. 2.04 L

Answers

Answer:

Option E. 2.04 L

Explanation:

Data obtained from the question include:

Molarity of NaCl = 2.25 M

Mole of NaCl = 4.58 moles

Volume =..?

Molarity is simply defined as the mole of solute per unit litre of the solution. It is represented mathematically as:

Molarity = mole /Volume

With the above formula, we can obtain the volume of the solution as follow:

Molarity = mole /Volume

2.25 = 4.58/volume

Cross multiply

2.25 x volume = 4.58

Divide both side by 2.25

Volume = 4.58/2.25

Volume = 2.04 L

Therefore, the volume of the solution is 2.04 L

Other Questions
Please answer this correctly What is the primary difference between limited liability and unlimited liability?O A. The amount of responsibility an owner has for a business's debtsor damagesO B. The number of people who work for a companyC. The amount of governmental control that exists over thebusiness's profitsO D. The type of product or service a company produces Consumerism is described as activities undertaken by independent individuals, groups, and organizations to protect their rights as consumers.a. Trueb. False Of the proposed methods for responding to an unruly defendant in Illinois v. Allen, which did the Supreme Court state should be used as a last resort for fear of prejudicing the jury against the defendant? Write code that uses the input string stream inSS to read input data from string userInput, and updates variables userMonth, userDate, and userYear. Sample output if the input is "Jan 12 1992": Month: Jan Date: 12 Year: 1992 In the Golden Age of Islam how did people live and work together? Who found Uranus? Name? Please help ASAP thanks in advance Select the correct answer from each drop-down menu. The given equation has been solved in the table. What is the mean of: 3.7, 5, 9.2, 4, 6.1, 5, 2.6, 4, 5.2, 5? In EKL, mK = 90, mE = 25, EK = 3 cm, KH - altitude. Find EH. In 1985, a given Japanese imported automobile sold for 1,476,000 yen, or $8,200. If the car still sold for the same amount of yen today but the current exchange rate is 144 yen per dollar, what would the car be selling for today in U.S. dollars? Yo ____ rubia. A. soy B. eres C. es What happens in double transverse wishbone front suspension when brakes are applied. The cost of raising capital through retained earnings is__________ the cost of raising capital through issuing new common stock. Change each of the following angles in degrees to angles in radians(d) 150^0 (e) 240^0 (f) 300^0 Helppp!!!! please!!! what is an slope? like in general 3. Find the measure of x.a 18b. 54C 126d. 45 convert the following to a rectangular equation x=3t+5y=t^2-1