n=m+4
step-by-step explanation:given formula,
n=3m-2l
and,
l=m+2
here in this question We have to substitute the values of "l" in the formulae
we get,
n=3m-2(m+2)
n=3m-2m+4
n=m+4
so if we complete the process correctly we get n=m+4
About 16.6% of Americans can speak Spanish. We obtain a random sample of seventy-five Americans and determine the proportion in the sample who speak Spanish. Find the probability that 25% or more in the sample speak Spanish.
Answer:
The probability that 25% or more in the sample speak Spanish is 76%.
Step-by-step explanation:
Sample of 75 Americans
If 25% or more in the sample speak Spanish, it can be deduced that 24% do not speak Spanish.
The proportion of those who do not speak Spanish is 18 (24% of 75)
Therefore, the proportion of those who speak Spanish is 57 (75 - 19)
This implies that 57/75 x 100 = 76% of the sample speak Spanish.
This 76% of the sample who speak Spanish is equal to the 25% or more who do speak Spanish in the sample.
Probability is the chance that an event may occur from many other events that could have occurred. It is an educated guess or estimate of something or one event happening when all the events in the set are given an equal chance.
Find the area of the surface correct to four decimal places by expressing the area in terms of a single integral and using your calculator to estimate the integral. The part of the surface that lies above the disk x2 + y2 ≤ 81
Answer:
A(s) = 255.8857
Step-by-step explanation:
Find the area of the surface correct to four decimal places by expressing the area in terms of a single integral and using your calculator to estimate the integral. The part of the surface z = e^-x^2-y^2 that lies above the disk x2 + y2 ≤ 81.
Given that:
[tex]Z = e^{-x^2-y^2}[/tex]
By applying rule; the partial derivatives with respect to x and y
[tex]\dfrac{\partial z }{\partial x}= -2xe^{-x^2-y^2}[/tex]
[tex]\dfrac{\partial z }{\partial y}= -2ye^{-x^2-y^2}[/tex]
The integral over the general region D with respect to x and y is :
[tex]A(s) = \int \int _D \sqrt{1+(\dfrac{\partial z}{\partial x} )^2 +(\dfrac{\partial z}{\partial y} )^2 }\ dA[/tex]
[tex]A(s) = \int \int _D \sqrt{1+(-2xe^{-x^2-y^2})^2 +(-2ye^{-x^2-y^2})^2 } \ dA[/tex]
[tex]A(s) = \int \int _D \sqrt{1+4x^2({e^{-x^2-y^2})^2 +4y^2({e^{-x^2-y^2}})^2 }} \ dA[/tex]
[tex]A(s) = \int \int _D \sqrt{1+(4x^2+4y^2)({e^{-x^2-y^2})^2 }} \ dA[/tex]
[tex]A(s) = \int \int _D \sqrt{1+(4x^2+4y^2)e^{-2}({{x^2+y^2}) }} \ dA[/tex]
By relating the equation to cylindrical coordinates
[tex]A(s) = \int \int_D \sqrt{1+4r^2 e^{-2r^2} }. rdA[/tex]
The bounds for integration for the circle within the cylinder [tex]x^2+y^2 =81[/tex] is r =9
[tex]A(s) = \int \limits ^{2 \pi}_{0} \int \limits^9_0 r \sqrt{1+4r^2 e^{-2r^2} }. dr d\theta[/tex]
[tex]A(s) = {2 \pi} \int \limits^9_0 r \sqrt{1+4r^2 e^{-2r^2} }\ dr[/tex]
Using integral calculator to estimate the integral,we have:
A(s) = 255.8857
18. Which function is the result of translating y = x^2 downward by 3 units and to the left by 4 units?
A) y = (x – 3)^2 + 4
B) y = (x + 3)^2 – 4
C) y = (x + 4)^2 – 3
D) y = (x – 4)^2 + 3
Answer:
C
Step-by-step explanation:
Given f(x) then f(x + k) represents a horizontal translation of f(x)
• If k > 0 then shift left by k units
• If k < 0 then shift right by k units
Here the shift is 4 units to the left, thus
y = (x + 4)²
Given f(x) then f(x) + k represents a vertical translation of f(x)
• If k > 0 then shift up by k units
• If k < 0 then shift down by k units
Here the shift is 3 units down, thus
y = (x + 4)² - 3 → C
y = (x+4)²-3 is the result of translating y = x² downward by 3 units and to the left by 4 units
What is Graph?Graph is a mathematical representation of a network and it describes the relationship between lines and points.
We need to find the function is the result of translating y = x² downward by 3 units and to the left by 4 units
A translation is a movement of the graph either horizontally parallel to the -axis or vertically parallel to the axis.
To translate the graph of y = f(x) three units downward, subtract 3 from f(x) which becomes y = x²-3
To translate the graph four units to the left, replace x by x+4
y = (x+4)²-3
Hence, y = (x+4)²-3 is the result of translating y = x² downward by 3 units and to the left by 4 units
To learn more on Graph click:
https://brainly.com/question/17267403
#SPJ2
Find the surface area of each prism. Round to the nearest tenth if necessary while doing your calculations as well as in your final answer. 360 units2 586 units2 456 units2 552 units2
Answer:
correct answer is 456 sq units.
Step-by-step explanation:
Let us have a look at the formula for Surface Area of a prism:
[tex]A =p \times h+2 \times B[/tex]
Where p is the perimeter of base
h is the height of prism
and B is the base area of prism.
Given that:
h = 7.5 units
Hypotenuse of prism's base = 20 units
One of the Other sides = 12 units
Pythagorean theorem can be used to find the 3rd side of right angled base.
Square of hypotenuse = Sum of squares of other two sides
[tex]20^2=12^2+side^2\\\Rightarrow 400=144+side^2\\\Rightarrow side =\sqrt{256}\\\Rightarrow side =16\ units[/tex]
Area of base = area of right angled triangle:
[tex]B = \dfrac{1}{2} \times \text{Base Length} \times \text{Perpendicular Length}\\\Rightarrow B = \dfrac{1}{2} \times 16\times 12 = 96\ sq\ units[/tex]
Perimeter [tex]\times[/tex] height = (12+20+16) [tex]\times[/tex] 7.5 = (48) [tex]\times[/tex] 7.5 = 360 sq units
Now putting the values in formula:
Surface area, A = 360+96 = 456 sq units
So, correct answer is 456 sq units.
Suppose that E(θˆ1) = E(θˆ2) = θ, V(θˆ 1) = σ2 1 , and V(θˆ2) = σ2 2 . Consider the estimator θˆ 3 = aθˆ 1 + (1 − a)θˆ 2. a Show that θˆ 3 is an unbiased estimator for θ. b If θˆ1 and θˆ2 are independent, how should the constant a be chosen in order to minimize the variance of θˆ3?
Answer:
Step-by-step explanation:
Given that:
[tex]E( \hat \theta _1) = \theta \ \ \ \ E( \hat \theta _2) = \theta \ \ \ \ V( \hat \theta _1) = \sigma_1^2 \ \ \ \ V(\hat \theta_2) = \sigma_2^2[/tex]
If we are to consider the estimator [tex]\hat \theta _3 = a \hat \theta_1 + (1-a) \hat \theta_2[/tex]
a. Then, for [tex]\hat \theta_3[/tex] to be an unbiased estimator ; Then:
[tex]E ( \hat \theta_3) = E ( a \hat \theta_1+ (1-a) \hat \theta_2)[/tex]
[tex]E ( \hat \theta_3) = aE ( \theta_1) + (1-a) E ( \hat \theta_2)[/tex]
[tex]E ( \hat \theta_3) = a \theta + (1-a) \theta = \theta[/tex]
b) If [tex]\hat \theta _1 \ \ and \ \ \hat \theta_2[/tex] are independent
[tex]V(\hat \theta _3) = V (a \hat \theta_1+ (1-a) \hat \theta_2)[/tex]
[tex]V(\hat \theta _3) = a ^2 V ( \hat \theta_1) + (1-a)^2 V ( \hat \theta_2)[/tex]
Thus; in order to minimize the variance of [tex]\hat \theta_3[/tex] ; then constant a can be determined as :
[tex]V( \hat \theta_3) = a^2 \sigma_1^2 + (1-a)^2 \sigma^2_2[/tex]
Using differentiation:
[tex]\dfrac{d}{da}(V \ \hat \theta_3) = 0 \implies 2a \ \sigma_1^2 + 2(1-a)(-1) \sigma_2^2 = 0[/tex]
⇒
[tex]a (\sigma_1^2 + \sigma_2^2) = \sigma^2_2[/tex]
[tex]\hat a = \dfrac{\sigma^2_2}{\sigma^2_1+\sigma^2_2}[/tex]
This implies that
[tex]\dfrac{d}{da}(V \ \hat \theta_3)|_{a = \hat a} = 2 \ \sigma_1^2 + 2 \ \sigma_2^2 > 0[/tex]
So, [tex]V( \hat \theta_3)[/tex] is minimum when [tex]\hat a = \dfrac{\sigma_2^2}{\sigma_1^2+\sigma_2^2}[/tex]
As such; [tex]a = \dfrac{1}{2}[/tex] if [tex]\sigma_1^2 \ \ = \ \ \sigma_2^2[/tex]
There are 12 teams, each representing a different country, in a women’s Olympic basketball tournament. In how many ways is it possible for the gold, silver, and bronze medals to be awarded? Use the formula for permutations to find your answer.
Answer:
1320 ways
Step-by-step explanation:
To solve we need to use permutations and factorials. If we wanted to find where they would all place 1-12, we would do 12!
12! is the same as 12x11x10x9x8... etc
But in this problem, we are only looking for the top 3.
We can set up a formula
[tex]\frac{n!}{(n-r)!}[/tex]
N is the number of options that are available and r represents the amount we are choosing
In this case, we have 12 teams so n=12
We are looking for the top 3 so r=3
[tex]\frac{12!}{(12-3)!}[/tex]
[tex]\frac{12!}{9!}[/tex]
We expand the equation and cancel out
[tex]\frac{12x11x10x9x8x7x6x5x4x3x2}{9x8x7x6x5x4x3x2}[/tex]
Notice how both sides can cancel out every number 9 and below
That leaves us with 12x11x10
1320 ways
The possible ways for the gold, silver, and bronze medals to be awarded is 1320
What is permutation?A permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements.
The word "permutation" also refers to the act or process of changing the linear order of an ordered set.
Given that, there are 12 teams, each representing a different country, in a women’s Olympic basketball tournament.
We need to find that, in how many ways is it possible for the gold, silver, and bronze medals to be awarded,
Using the concept of permutation, to find the number of ways
ⁿPₓ = n!/(n-x)!
= 12! / (12-3)!
= 12! / 9!
= 1320
Hence, the possible ways for the gold, silver, and bronze medals to be awarded is 1320
Learn more about permutation click;
https://brainly.com/question/30649574
#SPJ7
Express $0.\overline{1}+0.\overline{01}+0.\overline{0001}$ as a common fraction.
Answer:
[tex]\dfrac{1213}{9999}[/tex]
Step-by-step explanation:
We are required to express [tex]0.\overline{1}+0.\overline{01}+0.\overline{0001}[/tex] as a common fraction.
The bar on top of the decimal part indicates the decimal number is a repeating decimal.
Therefore:
[tex]0.\overline{1}=\dfrac{1}{10-1}= \dfrac{1}{9}\\\\0.\overline{01}=\dfrac{1}{100-1}= \dfrac{1}{99}\\\\0.\overline{0001}=\dfrac{1}{10000-1}= \dfrac{1}{9999}\\\\\\$Therefore$:\\0.\overline{1}+0.\overline{01}+0.\overline{0001} \\=\dfrac{1}{9}+\dfrac{1}{99}+\dfrac{1}{9999}\\\\=\dfrac{1213}{9999}[/tex]
Eye Color Each of two parents has the genotype brown>blue, which consists of the pair of alleles that determine eye color, and each parent contributes one of those alleles to a child. Assume that if the child has at least one brown allele, that color will dominate and the eyes will be brown. (The actual determination of eye color is more complicated than that.) a. List the different possible outcomes. Assume that these outcomes are equally likely. b. What is the probability that a child of these parents will have the blue>blue genotype? c. What is the probability that the child will have brown eyes?
Answer:
A) Brown-Brown ,Brown-Blue, Blue-Brown, Blue-Blue B) 1/4 =0,25 C)3/4=0,75
Step-by-step explanation:
Lets mother's "BROWN" is "BROWN-M",
mother's "BLUE" is " BLUE-M"
Lets father's "BROWN" is "BROWN-F" and
father's "BLUE " is "BLUE-F"
The kid can have the genotype as follows (list of possible outcomes) :
1. BROWN-M>BROWN-F ( received BROWN as from mother as from father)
2. BROWN-M>BLUE-F ( Received BROWN from mother and BLUE from father)
3. BLUE-M>BROWN-F ( Received BLUE from mother and Brown from father)
4. BLUE-M>BLUE-F ( Received BLUE as from mother as from father)
b) As we can see in a) only 1 outcome from 4 is BLUE-BLUE. So the probability of BLUE-BLUE genotype is
P(BLUE>BLUE)=1/4=0.25
c) As we know that if the child has at least one brown allele, that color will dominate and the eyes will be brown.
It means that outcomes BROWN-BROWN, BROWN-BLUE and BLUE-BROWN determine brown color of eye. So the number of these outcomes is 3. Total amount of outcomes is 4.
So probability that eyes are brown is P(Brown eyes)=3/4 =0.75
The state of Wisconsin would like to understand the fraction of its adult residents that consumed alcohol in the last year, specifically if the rate is different from the national rate of 70%. To help them answer this question, they conduct a random sample of 852 residents and ask them about their alcohol consumption.
Answer:
The answer is below
Step-by-step explanation:
What we should do is the following:
First, from the random sample of 852 researchers, it is necessary to obtain the number of adult residents who consumed alcohol in the past year.
After the above, we must calculate the proportion of adult residents who consumed alcohol in the last year by dividing the number of adult residents who consumed alcohol in the last year by 852.
After this, we must compare if the proportion is exactly 70% or different from it.
We have the following hypotheses:
Null Hypothesis: The proportion of adult residents who consumed alcohol in the last year in the state of Wisconsin is exactly 70%
Alternative hypothesis: The proportion of adult residents who consumed alcohol in the last year in the state of Wisconsin is not equal to 70%
The curvature of a plane parametric curve x = f(t), y = g(t) is $ \kappa = \dfrac{|\dot{x} \ddot{y} - \dot{y} \ddot{x}|}{[\dot{x}^2 + \dot{y}^2]^{3/2}}$ where the dots indicate derivatives with respect to t. Use the above formula to find the curvature. x = 6et cos(t), y = 6et sin(t)
Answer:
The curvature is modelled by [tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex].
Step-by-step explanation:
The equation of the curvature is:
[tex]\kappa = \frac{|\dot {x}\cdot \ddot {y}-\dot{y}\cdot \ddot{x}|}{[\dot{x}^{2}+\dot{y}^{2}]^{\frac{3}{2} }}[/tex]
The parametric componentes of the curve are:
[tex]x = 6\cdot e^{t} \cdot \cos t[/tex] and [tex]y = 6\cdot e^{t}\cdot \sin t[/tex]
The first and second derivative associated to each component are determined by differentiation rules:
First derivative
[tex]\dot{x} = 6\cdot e^{t}\cdot \cos t - 6\cdot e^{t}\cdot \sin t[/tex] and [tex]\dot {y} = 6\cdot e^{t}\cdot \sin t + 6\cdot e^{t} \cdot \cos t[/tex]
[tex]\dot x = 6\cdot e^{t} \cdot (\cos t - \sin t)[/tex] and [tex]\dot {y} = 6\cdot e^{t}\cdot (\sin t + \cos t)[/tex]
Second derivative
[tex]\ddot{x} = 6\cdot e^{t}\cdot (\cos t-\sin t)+6\cdot e^{t} \cdot (-\sin t -\cos t)[/tex]
[tex]\ddot x = -12\cdot e^{t}\cdot \sin t[/tex]
[tex]\ddot {y} = 6\cdot e^{t}\cdot (\sin t + \cos t) + 6\cdot e^{t}\cdot (\cos t - \sin t)[/tex]
[tex]\ddot{y} = 12\cdot e^{t}\cdot \cos t[/tex]
Now, each term is replaced in the the curvature equation:
[tex]\kappa = \frac{|6\cdot e^{t}\cdot (\cos t - \sin t)\cdot 12\cdot e^{t}\cdot \cos t-6\cdot e^{t}\cdot (\sin t + \cos t)\cdot (-12\cdot e^{t}\cdot \sin t)|}{\left\{\left[6\cdot e^{t}\cdot (\cos t - \sin t)\right]^{2}+\right[6\cdot e^{t}\cdot (\sin t + \cos t)\left]^{2}\right\}^{\frac{3}{2}}} }[/tex]
And the resulting expression is simplified by algebraic and trigonometric means:
[tex]\kappa = \frac{72\cdot e^{2\cdot t}\cdot \cos^{2}t-72\cdot e^{2\cdot t}\cdot \sin t\cdot \cos t + 72\cdot e^{2\cdot t}\cdot \sin^{2}t+72\cdot e^{2\cdot t}\cdot \sin t \cdot \cos t}{[36\cdot e^{2\cdot t}\cdot (\cos^{2}t -2\cdot \cos t \cdot \sin t +\sin^{2}t)+36\cdot e^{2\cdot t}\cdot (\sin^{2}t+2\cdot \cos t \cdot \sin t +\cos^{2} t)]^{\frac{3}{2} }}[/tex]
[tex]\kappa = \frac{72\cdot e^{2\cdot t}}{[72\cdot e^{2\cdot t}]^{\frac{3}{2} } }[/tex]
[tex]\kappa = [72\cdot e^{2\cdot t}]^{-\frac{1}{2} }[/tex]
[tex]\kappa = 72^{-\frac{1}{2} }\cdot e^{-t}[/tex]
[tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex]
The curvature is modelled by [tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex].
Please help!!!!! I'm on a timerrrrrrrrrrrrrr!
Step-by-step explanation:
6
[tex]6 \sqrt{6} [/tex]
Answer:
6√6is the exact answer
Solve for x in the equation 3 x squared minus 18 x + 5 = 47.
Answer:
x = -1.796, 7.796
Step-by-step explanation:
3x² - 18x + 5 = 47
3x² - 18x - 42 = 0
use quadratic equation
x = -1.796, 7.796
Answer:
x = 3 +/- √23
Step-by-step explanation:
got it right on edg
John comes across a recent survey and wants to gauge the strength of the results.
Which of the following would best reflect upon the researcher.
O a margin of error of +/- 10%
O a margin of error of +/- 3%
O a margin of error of +/- 98%
O a margin of error of +/-8%
Answer:
A margin of error of +/- 3%
Step-by-step explanation:
Strenght of surveys:
The lesser the margin of error, the more precise, stronger, the confidence interval is.
The margin of error depends of the number of people surveyed. The more people are surveyed, lower the margin of error is, giving a stronger interval.
In this question:
We want the smaller margin of error, which is given by:
A margin of error of +/- 3%
What is PI times 4? HELP ASAP
Answer:
12.566370614359172953850573533118
Step-by-step explanation:
10) BRAINLIEST & 10+ Points!
Answer:
20Solution,
Complement of 70°
=90°-70°
=20°
hope this helps...
Good luck on your assignment..
Answer:
20°
Step-by-step explanation:
Complement of 70° is 90°-70°= 20°
To determine the complement, subtract the given angle from 90.
Find the amount in an account where $500 is invested at 2.5% compounded continuously for period of 10 years
Hi
500 *1.025^10 ≈ 640.04
Please help!!! I'm really confused.
The value of root 10 is between 3 and 3.5
A bus can carry a maximum of 60 passengers. Each row accommodates the same number of passengers. If two rows are added then each row would accommodate one passenger less for the bus to carry maximum number of passengers. Determine number of rows in the bus and no. Of passengers per row
Answer:
10 rows with 6 passengers per row
Step-by-step explanation:
Let x be the number of rows and y the number of passengers per row.
Then we can interpret the story as the following two equations:
xy=60
(x+2)(y-1)=60
Solving these two equations:
y=60/x
(x+2)(60/x-1)=60 (substitute y)
60 - x + 120/x - 2 = 60 (multiply by -x)
x² + 2x - 120 = 0 (factor)
(x-10)(x+12) = 0
x = 10
y = 60/10 = 6
and indeed 10 * 6 = 60 and also 12 * 5 = 60
In the parallelogram below, solve for x and y. (Give your answer as a decimal, when necessary)
Answer: x = 15, y = 12.5
Step-by-step explanation:
The sum of the three angle measures of a triangle equals 180ᴼ
Since these triangles are vertical, the measures are congruent.
45 + 60 = 105
180 - 105 = 75
So now we know that 5x = 75ᴼ and 6y = 75ᴼ.
To find x, divide 75 by 5
75 / 5 = 15
x = 15
To find y, divide 75 by 6
75 / 6 = 12.5
y = 12.5
a bag contains 6 cherry 3 orange and 2 lemon candies. You reach in and take 3 pieces of candy at random. Find the probability of all lemons
Answer:
0.181818
Step-by-step explanation:
There are total 11 candies. The possibility of combinations is 165 which is found by using computation technique 11C3. It is assumed that order does not matter. There are 3 pieces of candy are selected at random. There are 6C2 which is 15 different ways to select cherry and lemon. There are 30 ways to choose 2 cherry and a lemon combination. The probability is [tex]\frac{30}{165}[/tex] = 0.181818
Help me please thank you
Answer:
104 degrees
Step-by-step explanation:
The angle of the whole set of lines is 140 degrees. In addition, the partial angle of it is also given--which is 36 degrees. In order to solve for the remaining part, Subtract 36 degrees from 140 degrees to get 104 degrees.
HELP PLEASE ITS FOR PLATO
Answer:
i think it might be A. 0.2
Step-by-step explanation:
Simplify: 1. (x−1)+(12−7.5x) 2. b−(4−2b)+(3b−1) 3. (2p+1.9)−(7−p)
Answer:
1. -6.5x+11
2. 6b-5
3. 3p-5.1
Step-by-step explanation:
[tex]1. \\(x-1)+(12-7.5x)=\\x-1+12-7.5x=\\x-7.5x-1+12=\\-6.5x-1+12=\\-6.5x+11\\\\2.\\b-(4-2b)+(3b-1)=\\b-4+2b+3b-1=\\b+2b+3b-4-1=\\3b+3b-4-1=\\6b-4-1=\\6b-5\\\\3.\\(2p+1.9)-(7-p)=\\2p+1.9-7+p=\\2p+p+1.9-7=\\3p+1.9-7=\\3p-5.1[/tex]
The vector matrix[ 27 ]is dilated by a factor of 1.5 and then reflected across the X axis if the resulting matrix is a B then a equals an VE
Correct question:
The vector matrix [ [tex] \left[\begin{array}{ccc}2\\7\end{array}\right] [/tex] is dilated by a factor of 1.5 and then reflected across the x axis. If the resulting matrix is [a/b] then a=??? and b=???
Answer:
a = 3
b = 10.5
Step-by-step explanation:
Given:
Vector matrix = [tex] \left[\begin{array}{ccc}2\\7\end{array}\right] [/tex]
Dilation factor = 1.5
Since the vector matrix is dilated by 1.5, we have:
[tex] \left[\begin{array}{ccc}1.5 * 2\\1.5 * 7\end{array}\right] [/tex]
= [tex] \left[\begin{array}{ccc}3\\10.5\end{array}\right] [/tex]
Here, we are told the vector is reflected on the x axis.
Therefore,
a = 3
b = 10.5
Answer:
a = 3
b = -10.5
Step-by-step explanation:
got a 100% on PLATO
Please help I’m struggling:(
Jose's taxi charges $5 plus $0.30 per mile for fare in a city. Kathy's taxi charges $8
plus $0.20 per mile for fare in the city. At what distance would the charges for the
two taxis be the same?
Answer:
30 miles
Step-by-step explanation:
Jose's charges are ...
j = 5 + 0.30m . . . . . for m miles
Kathy's charges are ...
k = 8 +0.20m . . . . . for m miles
The charges are the same when ...
j = k
5 +0.30m = 8 + 0.20m
0.30m = 3 + 0.20m . . . . subtract 5
0.10m = 3 . . . . . . . . . . . . subtract 0.20m
m = 30 . . . . . . . . . . . . . . . multiply by 10
The charges will be the same for a distance of 30 miles.
The region bounded by the given curves is rotated about the specified axis. Find the volume V of the resulting solid by any method. y = −x2 + 23x − 132, y = 0; about the y−axis
Answer:
V = 23π/6
Step-by-step explanation:
V = 2π ∫ [a to b] (r * h) dx
y = −x² + 23x − 132
y = −(x² − 23x + 132)
y = −(x − 11) (x − 12)
Parabola intersects x-axis (line y = 0) at x = 11 and x = 12 ----> a = 11, b = 12
r = x
h = −x² + 23x − 132
V = 2π ∫ [11 to 12] x (−x² + 23x − 132) dx
V = 23π/6
Someone help me please pls pls pls
Answer:
There is 9 on each pace and 3 on a row
Step-by-step explanation:
54/6=9
if there is 9 on each side and the same on each side, then it has to be 3 in each row and column. Also, this is a Rubix cube
Please give me brainliest, it really helps! :)
Have a good day!
to prove triangleABC is isosceles, which of the following statements can be used in the proof?
&
given circleR, how is it known that QS = YT?
(idk the answers i guessed)
Answer:
Step-by-step explanation:
In an isosceles triangle, the base angles are equal. This also means that the length of two sides of the triangle are equal. Looking at triangle ABC, to prove that it is an isosceles triangle, then
Angle CAB = angle CBA
For the second question, to determine how it is known that QS is equivalent to YT, we would recall that the diameter of a circle passes through the center and from one side of the circle to the other side. Assuming R is the center of the circle, then QS and YT are the diameters of the circle and also the diagonals of the rectangle. Thus, the correct option is
The diameters act as diagonals
Example of a 3rd degree polynomial in standard form?
Answer:
4x^3 + 2x^2 +8x -9
Step-by-step explanation:
A third degree polynomial is a is a polynomial whose highest power of x is to the power of three. Standard form is
Ax^3 + Bx^2 + Cx + D where A is non zero
An example would be
4x^3 + 2x^2 +8x -9
I NEED HELP PLEASE, THANKS! :)
Answer:
Step-by-step explanation:
Step1 : Verify Sn is valid for n = 1