Suppose that the thickness of one typical page of a book printed by a certain publisher is a random variable with mean 0.1 mm and a standard deviation of 0.002 mm. A new book will be printed on 500 sheets of this paper. Approximate the probability that the

Answers

Answer 1

Answer:

The probability that the thicknesses at the entire book will be between 49.9 mm and 50.1 mm is 0.97.

Step-by-step explanation:

The complete question is:

Suppose that the thickness of one typical page of a book printed by a certain publisher is a random variable with mean 0.1 mm and a standard deviation of 0.002 mm Anew book will be printed on 500 sheets of this paper. Approximate the probability that the thicknesses at the entire book (excluding the cover pages) will be between 49.9 mm and 50.1 mm. Note: total thickness of the book is the sum of the individual thicknesses of the pages Do not round your numbers until rounding up to two. Round your final answer to the nearest hundredth, or two digits after decimal point.

Solution:

According to the Central Limit Theorem if we have a population with mean μ and standard deviation σ and we take appropriately huge random samples (n ≥ 30) from the population with replacement, then the distribution of the sum of values of X, i.e S, will be approximately normally distributed.  

Then, the mean of the distribution of the sum of values of X is given by,  

 [tex]\mu_{S}=n\mu[/tex]

And the standard deviation of the distribution of the sum of values of X is given by,  

[tex]\sigma_{S}=\sqrt{n}\sigma[/tex]

The information provided is:

[tex]n=500\\\mu=0.1\\\sigma=0.002[/tex]

As n = 500 > 30, the central limit theorem can be used to approximate the total thickness of the book.

So, the total thickness of the book (S) will follow N (50, 0.045²).

Compute the probability that the thicknesses at the entire book will be between 49.9 mm and 50.1 mm as follows:

[tex]P(49.9<S<50.1)=P(\frac{49.9-50}{0.045}<\frac{S-E(S)}{SD(S)}<\frac{50.1-50}{0.045})[/tex]

                               [tex]=P(-2.22<Z<2.22)\\\\=P (Z<2.22)-P(Z<-2.22)\\\\=0.98679-0.01321\\\\=0.97358\\\\\approx 0.97[/tex]

Thus, the probability that the thicknesses at the entire book will be between 49.9 mm and 50.1 mm is 0.97.


Related Questions

Consider the set of sequences of seven letters chosen from W and L. We may think of these sequences as representing the outcomes of a match of seven games, where W means the first team wins the game and L means the second team wins the game. The match is won by the first team to win four games (thus, some games may never get played, but we need to include their hypothetical outcomes in the points in order that we have a probability space of equally likely points).A. What is the probability that a team will win the match, given that it has won the first game?B. What is the probability that a team will win the match, given that it has won the first two games? C. What is the probability that a team will win the match, given that it has won two out of the first three games?

Answers

Answer:

a) Probability that a team will win the match given that it has won the first game = 0.66

b) Probability that a team will win the match given that it has won the first two games= 0.81

c) Probability that a team will win the match, given that it has won two out of the first three games = 0.69

Step-by-step explanation:

There are a total of seven games to be played. Therefore, W and L consists of 2⁷ equi-probable sample points

a) Since one game has already been won by the team, there are 2⁶ = 64 sample points left. If the team wins three or more matches, it has won.

Number of ways of winning the three or more matches left = [tex]6C3 + 6C4 + 6C5 + 6C6[/tex]

= 20 + 15 + 6 + 1 = 42

P( a team will win the match given that it has won the first game) = 42/64 = 0.66

b)  Since two games have already been won by the team, there are 2⁵ = 32 sample points left. If the team wins two or more matches, it has won.

Number of ways of winning the three or more matches left = [tex]5C2 + 5C3 + 5C4 + 5C5[/tex] = 10 + 10 + 5 +1 = 26

P( a team will win the match given that it has won the first two games) = 26/32 = 0.81

c) Probability that a team will win the match, given that it has won two out of the first three games

They have played 3 games out of 7, this means that there are 4 more games to play. The sample points remain 2⁴ = 16

They have won 2 games already, it means they have two or more games to win.

Number of ways of winning the three or more matches left = [tex]4C2 + 4C3 + 4C4[/tex] = 6 + 4 + 1 = 11

Probability that a team will win the match, given that it has won two out of the first three games = 11/16

Probability that a team will win the match, given that it has won two out of the first three games = 0.69

Need help ASAP!! thank you sorry if u can’t see it good :(

Answers

Answer/Step-by-step explanation:

==>Given:

=>Rectangular Pyramid:

L = 5mm

W = 3mm

H = 4mm

=>Rectangular prism:

L = 5mm

W = 3mm

H = 4mm

==>Required:

a. Volume of pyramid:

Formula for calculating volume of a rectangular pyramid us given as L*W*H

V = 5*3*4

V = 60 mm³

b. Volume of prism = ⅓*L*W*H

thus,

Volume of rectangular prism given = ⅓*5*3*4

= ⅓*60

= 20mm³

c. Volume of the prism = ⅓ x volume of the pyramid

Thus, 20 = ⅓ × 60

As we can observe from our calculation of the solid shapes given, the equation written above is true for all rectangular prism and rectangular pyramid of the same length, width and height.

Find f(x) - g(x) when f(x) = 2x^2 - 4x g(x) = x^2 + 6x
3x^2

x^2 + 2x


x^2 - 10x


3x^2 + 2x

Answers

the last one 3x^ + 2x

Answer:

x^2 - 10x

Step-by-step explanation:

2x^2 - 4x - x^2 +6x

You subtract x^2 from 2x^2 and you get x^2

Then you add 6x and 4x together and get 10x

So then you have x^2 - 10x

(plus I took the test and this was the correct answer.)

Marie plants 12 packages of vegetable seeds in a community garden. Each package costs $1.97. What is the total cost of the seeds? ​

Answers

Answer:

$23.64

Step-by-step explanation:

12 * $1.97 = $23.64

hey guys please help ​

Answers

Answer:

[tex]7.98 \:m[/tex]

Step-by-step explanation:

Area of a triangle is base times height divided by 2.

[tex]A= \frac{bh}{2}[/tex]

[tex]69.6= \frac{b \times 17.45}{2}[/tex]

[tex]69.6 \times 2= b \times 17.45[/tex]

[tex]139.2=b \times 17.45[/tex]

[tex]\frac{17.45b}{17.45}=\frac{139.2}{17.45}[/tex]

[tex]b=\frac{2784}{349}[/tex]

[tex]b=7.97707[/tex]

The appropriate unit is meters.

Answer:

7.98 m

Step-by-step explanation:

Decide whether the method of undetermined coefficients together with superposition can be applied to find a particular solution of the given equation. Do not solve the equation Can the method of undetermined coefficients together with superposition be applied to find a particular solution of the given equation?
A. No, because the right side of the given equation is not the correct type of function
B, Yes °
C. No, because the differential equation is not linear.
D. No, because the differential equation does not have constant coefficients.

Answers

Answer:

D. No, because the differential equation does not have constant coefficients.

Step-by-step explanation:

The undetermined coefficient method cannot be applied to non homogeneous variables. The differential equation does not have constant variables therefore the method of undetermined superposition can not be applied. To complete a solution of non homogeneous equation the particular solution must be added to the homogeneous equation.

An insurance company examines its pool of auto insurance customers and gathers the following information: (i) All customers insure at least one car. (ii) 70% of the customers insure more than one car. (iii) 20% of the customers insure a sports car. (iv) Of those customers who insure more than one car, 15% insure a sports car. Calculate the probability that a randomly se

Answers

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

An insurance company examines its pool of auto insurance customers and gathers the following information: (i) All customers insure at least one car. (ii) 70% of the customers insure more than one car. (iii) 20% of the customers insure a sports car. (iv) Of those customers who insure more than one car, 15% insure a sports car. Calculate the probability that a randomly selected customer insures exactly one car, and that car is not a sports car?

Answer:

P( X' ∩ Y' ) = 0.205

Step-by-step explanation:

Let X is the event that the customer insures more than one car.

Let X' is the event that the customer insures exactly one car.

Let Y is the event that customer insures a sport car.

Let Y' is the event that customer insures not a sport car.

From the given information we have

70% of customers insure more than one car.

P(X) = 0.70

20% of customers insure a sports car.

P(Y) = 0.20

Of those customers who insure more than one car, 15% insure a sports car.

P(Y | X) = 0.15

We want to find out the probability that a randomly selected customer insures exactly one car, and that car is not a sports car.

P( X' ∩ Y' ) = ?

Which can be found by

P( X' ∩ Y' ) = 1 - P( X ∪ Y )

From the rules of probability we know that,

P( X ∪ Y ) = P(X) + P(Y) - P( X ∩ Y )    (Additive Law)

First, we have to find out P( X ∩ Y )

From the rules of probability we know that,

P( X ∩ Y ) = P(Y | X) × P(X)       (Multiplicative law)

P( X ∩ Y ) = 0.15 × 0.70

P( X ∩ Y ) = 0.105

So,

P( X ∪ Y ) = P(X) + P(Y) - P( X ∩ Y )

P( X ∪ Y ) = 0.70 + 0.20 - 0.105

P( X ∪ Y ) = 0.795

Finally,

P( X' ∩ Y' ) = 1 - P( X ∪ Y )

P( X' ∩ Y' ) = 1 - 0.795

P( X' ∩ Y' ) = 0.205

Therefore, there is 0.205 probability that a randomly selected customer insures exactly one car, and that car is not a sports car.

Can someone please help

Use the In key on your calculator to estimate
the logarithm.
In 44
Round your answer to the nearest thousandth.

Answers

Answer:

3.784

Step-by-step explanation:

State whether the data described below are discrete or​ continuous, and explain why.

The exact lengths (in kilometers) of the ocean coastlines of different countries.

a. The data are continuous because the data can only take on specific values.
b. The data are discrete because the data can only take on specific values.
c. The data are continuous because the data can take on any value in an interval.
d. The data are discrete because the data can take on any value in an interval.

Answers

Answer:

c. The data are continuous because the data can take on any value in an interval.

Step-by-step explanation:

A variable is said to be continuous if it can take on any value in an interval. Examples are lengths, temperature, etc

A discrete variable, on the other hand, can only take on specific values. Examples of discrete variables are the number of students and age.

The exact lengths (in kilometers) of the ocean coastlines of different countries is a continuous variable because it can take on any value in an interval.

A stated earlier, Lengths are in general, continuous variables.

Find the volume of the cone.
Diameter: 20 m, Slant Height: 26 m
Round to the nearest whole number.
Volume
=
[?] m3

Answers

Answer:

2513

the step-by-step explanation for height first :

[tex]h=\sqrt{h^{2} } +r^{2} =26[/tex]

[tex]h=\sqrt{h^{2} } +10^{2} =676[/tex]

[tex]h=\sqrt{h^{2} } + 100 = 676[/tex]

[tex]100-100 = 0[/tex]

[tex]676-100=576[/tex]

[tex]\sqrt{576}[/tex]

[tex]height =[/tex] 24 m

________________

step-by-step explanation for the problem :

FORMULA :  [tex]v = \frac{1}{3}[/tex] · [tex]\pi[/tex] · [tex]r^{2}[/tex] · [tex]h[/tex]

v = [tex]\frac{1}{3}[/tex] · [tex]\pi[/tex] · [tex]10^{2}[/tex] · [tex]24[/tex] = [tex]800\pi[/tex] = [tex]2513.27412[/tex] = 2513

SOMEONE PLEASE HELP ME ASAP PLEASE!!!​

Answers

Answer:

38 units

Step-by-step explanation:

We can find the perimeter of the shaded figure be finding out the number of unit lengths we have along the boundary of the given figure.

Thus, see attachment below for the number of units of each length of the figure that we have counted.

The perimeter of the figure = sum of all the lengths = 7 + 7 + 10 + 2 + 2 + 6 + 2 + 2 = 38

Perimeter of the shaded figure = 38 units

1/5divided by (-5/7)

Answers

Answer:

-0.28

Step-by-step explanation:

(1/5) : (-5/7)=(1*5)/(5*(-5))=-(7/25)=-0.28

Answer:

[tex]-7/25[/tex]

Step-by-step explanation:

[tex]1/5 \div -5/7[/tex]

Do the reciprocal of the second fraction.

[tex]1/5 \times 7/-5[/tex]

Multiply the first fraction by the reciprocal of the second fraction.

[tex]7/-25=-0.28[/tex]

The answer in decimal form is -0.28.


someone pls help me! ❤️❤️❤️

Answers

Answer:

(x-1) ( x -i) (x+i)

Step-by-step explanation:

x^3 -2x^2 +x-2

Factor by grouping

x^3 -2x^2      +x-2

x^2(x-2)      +1(x-2)

Factor out (x-2)

(x-2) (x^2+1)

Rewriting

(x-1) ( x^2 - (-1)^2)

(x-1) ( x -i) (x+i)

Answer:

Should be b

Step-by-step explanation:

Since it's a multiple choice question you know that -2 or 2 has to be a root for the cubic.

You can test both -2 and 2 and see that replacing x for 2 has the expression evaluate to 0.

Then, since you know the imaginary roots have to be conjugates, you get B.


Find the LCM of the set of algebraic expressions.
28x2,49xy, 28y
Answer

Answers

Answer:

196x^2y

Step-by-step explanation: The least common multiple (LCM) of two or more non-zero whole numbers is the smallest whole number that is divisible by each of those numbers. In other words, the LCM is the smallest number that all of the numbers divide into evenly.

A basketball coach is looking over the possessions per game during last season. Assume that the possessions per game follows an unknown distribution with a mean of 56 points and a standard deviation of 12 points. The basketball coach believes it is unusual to score less than 50 points per game. To test this, she randomly selects 36 games. Use a calculator to find the probability that the sample mean is less than 50 points. Round your answer to three decimal places if necessary.

Answers

Answer:

The probability that the sample mean is less than 50 points = 0.002    

Step-by-step explanation:

Step(i):-

Given mean of the normal distribution = 56 points

Given standard deviation of the normal distribution = 12 points

Random sample size 'n' = 36 games

Step(ii):-

Let x⁻ be the random variable of normal distribution

Let x⁻ = 50

[tex]Z = \frac{x^{-}-mean }{\frac{S.D}{\sqrt{n} } }[/tex]

[tex]Z = \frac{50-56 }{\frac{12}{\sqrt{36} } }= -3[/tex]

The probability that the sample mean is less than 50 points

P( x⁻≤ 50) = P( Z≤-3)

                = 0.5 - P(-3 <z<0)

               = 0.5 -P(0<z<3)

               =  0.5 - 0.498

               = 0.002

Final answer:-

The probability that the sample mean is less than 50 points = 0.002

Answer:

56

2

.001

Step-by-step explanation:

The Central Limit Theorem for Means states that the mean of any sampling distribution of the means is equal to the mean of the population distribution. The standard deviation is equal to the standard deviation of the population divided by the square root of the sample size. So, the mean of this sampling distribution of the means with sample size 36 is 56 points and the standard deviation is 1236√=2 points. The z-score for 50 using the formula z=x¯¯¯−μσ is −3.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-3.0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

-2.9 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001

-2.8 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

-2.7 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

-2.6 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

-2.5 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005

Using the Standard Normal Table, the area to the left of −3 is approximately 0.001. Therefore, the probability that the sample mean will be less than 50 points is approximately 0.001.

Find the general solution to 3y′′+12y=0. Give your answer as y=... . In your answer, use c1 and c2 to denote arbitrary constants and x the independent variable. Enter c1 as c1 and c2 as c2.

Answers

Answer:

[tex]y(x)=c_1e^{2ix}+c_2e^{-2ix}[/tex]

Step-by-step explanation:

You have the following differential equation:

[tex]3y''+12y=0[/tex]     (1)

In order to find the solution to the equation, you can use the method of the characteristic polynomial.

The characteristic polynomial of the given differential equation is:

[tex]3m^2+12=0\\\\m^2=-\frac{12}{3}=-4\\\\m_{1,2}=\pm2\sqrt{-1}=\pm2i[/tex]

The solution of the differential equation is:

[tex]y(x)=c_1e^{m_1x}+c_2e^{m_2x}[/tex]   (2)

where m1 and m2 are the roots of the characteristic polynomial.

You replace the values obtained for m1 and m2 in the equation (2). Then, the solution to the differential equation is:

[tex]y(x)=c_1e^{2ix}+c_2e^{-2ix}[/tex]

An economist at Vanderbilt University devised a study to compare different types of online auctions. In one experiment he compared a Dutch auction to a first-place sealed bid auction. In the Dutch auction the item for sale starts at a very high price and is lowered gradually until someone finds the price low enough to buy. In the first-price sealed bid auction each bidder submits a single sealed bid before a particular deadline. After the deadline, the person with the highest bid wins. The researcher auctioned off collectible trading cards from the game Magic: The Gathering. He placed pairs of identical cards up for auction; one would go into Dutch auction and the other to the first-price sealed bid auction. He then looked at the difference in the prices he received on the pair. He repeated this for a total of 88 pairs.
[a] Explained why the data should be analyzed using paired samples as opposed to two independent samples.
[b] What makes a pair?
[c] What is the explanatory variable? Is it categorical or quantitative?
[d] What is the response variable? Is it categorical or quantitative?
[e] State the relevant hypotheses in words:
Null hypothesis:
Alternative hypothesis:
[f] Define the parameter of interest and give the symbol that should be assigned to it.
[g] State the relevant hypotheses in symbols (using a parameter):
Null hypothesis:
Alternative hypothesis:
[h] Assume the p-value is 0.17 (write a conclusion).

Answers

Answer:

Step-by-step explanation:

a. The data should be analyzed using paired samples because the economist made two measurements (samples) drawn from the same pair of identical cards. Each data point in one sample is uniquely paired to a data point in the second sample.

b. A pair is made up of two identical cards where one would go into Dutch auction and the other to the first-price sealed bid auction.

c. The explanatory variables are the types of online auction which are the Dutch auction and the first price sealed bid auction. The explanation variable here is categorical: the Dutch auction and the first price sealed bid auction.

d. The response variable which is also known as the outcome variable is prices for the 2 different auction for each pair of identical cards. This variable is quantitative.

e. Null Hypothesis in words: There is no difference in the prices obtained in the two different online auction.

Alternative hypothesis: There is a difference in the prices obtained in the two different online auction.

f. The parameter of interest in this case is the mean prices of pairs of identical cards for both auction and is assigned p.

g. Null hypothesis: p(dutch) = p(first-price sealed auction)

Alternative hypothesis: p(dutch) =/ p(first-price sealed auction)

h. Assuming the p-value is 0.17 at an assed standard 0.05 significance level, our conclusion would be to fail to reject the null hypothesis as 0.17 is greater than 0.05 or even 0.01 and we can conclude that, there is no statistically significant evidence to prove that there is a difference in the prices obtained in the two different online auction.

What is the slope of a line that is perpendicular to the line 2y – 3x = 8?

Answers

Answer:

[tex] = \frac{3}{2} [/tex]

Step-by-step explanation:

[tex]y = mx + c[/tex]

Here,

m => slopec => intercept

In this equation ,

[tex]2y - 3x = 8[/tex]

to find the value of m or the value of slope we have to solve for y

Let's solve,

[tex]2y - 3x = 8 \\ 2y = 8 + 3x \\ \frac{2y}{2} = \frac{8 + 3x}{2} \\ y = 4 + \frac{3x}{2} \\ y = \frac{3x}{2} + 4[/tex]

So, the slope is,

[tex] = \frac{3}{2}[/tex]

A study conducted at a certain college shows that "53%" of the school's graduates find a job in their chosen field within a year after graduation. Find the probability that among 6 randomly selected graduates, at least one finds a job in his or her chosen field within a year of graduating. 0.989 0.978 0.927 0.167 0.530

Answers

Answer:

0.989

Step-by-step explanation:

For each graduate, there are only two possible outcomes. Either they find a job in their chosen field within a year after graduation, or they do not. The probability of a graduate finding a job is independent of other graduates. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

A study conducted at a certain college shows that "53%" of the school's graduates find a job in their chosen field within a year after graduation.

This means that [tex]p = 0.53[/tex]

6 randomly selected graduates

This means that [tex]n = 6[/tex]

Probability that at least one finds a job in his or her chosen field within a year of graduating:

Either none find a job, or at least one does. The sum of the probabilities of these outcomes is 1. So

[tex]P(X = 0) + P(X \geq 1) = 1[/tex]

We want [tex]P(X \geq 1)[/tex]

So

[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]

In which

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{6,0}.(0.53)^{0}.(0.47)^{6} = 0.011[/tex]

So

[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.011 = 0.989[/tex]

Which of the following is a polynomial with roots: − square root of 3 , square root of 3, and −2? (6 points) Question 7 options: 1) x3 − 2x2 − 3x + 6 2) x3 − 3x2 − 5x + 15 3) x3 + 2x2 − 3x − 6 4) x3 + 3x2 − 5x − 15

Answers

Answer:

The polynomial is [tex]x^{3} - 1.46x^{2} - 3.93x + 6[/tex]

Step-by-step explanation:

A nth order polynomial f(x) has roots [tex]x_{1}, x_{2}, ..., x_{n}[/tex] such that [tex]f(x) = (x - x_{1})*(x - x_{2})*...*(x - x_{n}}[/tex],

Which of the following is a polynomial with roots: − square root of 3 , square root of 3, and −2?

So

[tex]x_{1} = x_{2} = \sqrt{3}[/tex]

[tex]x_{3} = -2[/tex]

Then

[tex](x - \sqrt{3})^{2}*(x - (-2)) = (x - \sqrt{3})^{2}*(x + 2) = (x^{2} -2x\sqrt{3} + 3)*(x + 2) = x^{3} + 2x^{2} - 2x^{2}\sqrt{3} - 4x\sqrt{3} + 3x + 6[/tex]

Since [tex]\sqrt{3} = 1.73[/tex]

[tex]x^{3} + 2x^{2} - 3.46x^{2} - 6.93x + 3x + 6 = x^{3} - 1.46x^{2} - 3.93x + 6[/tex]

The polynomial is [tex]x^{3} - 1.46x^{2} - 3.93x + 6[/tex]

Identify the Type II error if the null hypothesis, H0, is: The capacity of Anna's car gas tank is 10 gallons. And, the alternative hypothesis, Ha, is: Anna believes the capacity of her car's gas tank is not 10 gallons.

Answers

Answer:

20gallons

Step-by-step explanation:

2x^2+8x = x^2-16
Solve for x

Answers

Answer:

x=-4

Step-by-step explanation:

[tex]2x^2+8x=x^2-16[/tex]

Move everything to one side:

[tex]x^2+8x+16=0[/tex]

Factor:

[tex](x+4)^2=0[/tex]

By the zero product rule, x=-4. Hope this helps!

Answer:

x=-4

Step-by-step explanation:

Move everything to one side and combine like-terms

x²+8x+16

Factor

(x+4)²

x=-4

Insurance companies track life expectancy information to assist in determining the cost of life insurance policies. AIB Insurance randomly sampled 100 recently paid policies and determined the average age of clients in this sample to be 77.7 years with a standard deviation of 3.6. The 90% confidence interval for the true mean age of its life insurance policy holders is
A. (76.87, 80.33)
B. (72.5, 82.9)
C. (77.1, 78.3)
D. (74.1, 81.3)
E. (74.5, 80)

Answers

Answer:

[tex]77.7-1.66\frac{3.6}{\sqrt{100}} =77.102[/tex]    

[tex]77.7+1.66\frac{3.6}{\sqrt{100}} =78.30[/tex]    

And the best option would be:

C. (77.1, 78.3)

Step-by-step explanation:

Information given

[tex]\bar X=77.7[/tex] represent the sample mean

[tex]\mu[/tex] population mean (variable of interest)

s=3.6 represent the sample standard deviation

n=100 represent the sample size  

Confidence interval

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

The degrees of freedom are given by:

[tex]df=n-1=100-1=99[/tex]

Since the Confidence is 0.90 or 90%, the significance would be [tex]\alpha=0.1[/tex] and [tex]\alpha/2 =0.05[/tex], and the critical value for this case would be [tex]t_{\alpha/2}=1.66[/tex]

And replacing we got:

[tex]77.7-1.66\frac{3.6}{\sqrt{100}} =77.10[/tex]    

[tex]77.7+1.66\frac{3.6}{\sqrt{100}} =78.30[/tex]    

And the best option would be:

C. (77.1, 78.3)

combine like terms to create an equivalent expression -1/2(-3y+10)

Answers

Answer:

3/2y - 5

Step-by-step explanation:

-1/2(-3y+10)

Expand the brackets.

-1/2(-3y) -1/2(10)

Multiply.

3/2y - 5

Answer:

[tex]= \frac{ 3y}{2} - 5 \\ [/tex]

Step-by-step explanation:

we know that,

[tex]( - ) \times ( - ) = ( + ) \\ ( - ) \times ( + ) = ( - )[/tex]

Let's solve now,

[tex] - \frac{1}{2} ( - 3y + 10) \\ \frac{3y}{2} - \frac{10}{2} \\ = \frac{ 3y}{2} - 5[/tex]

How can you use an equilateral triangle to find the lengths of the sides in a 30-60-90 triangle?

Answers

Answer:

Step-by-step explanation:

1) divide equilateral tri from the middle you will get two 30-60-90 triangles

2) by using pythagorean law & trigimintory, you will get two unknowns (height and side length) and two functions

Let x1 = 12, y1 = 15, and y2 = 3. Let y vary inversely with x. Find x2.

Answers

Answer:

x2 = 60

Step-by-step explanation:

If the variables x and y are inversely proportional, the product x * y is a constant.

So using x1 and y1 we can find the value of this constant:

[tex]x1 * y1 = k[/tex]

[tex]12 * 15 = k[/tex]

[tex]k = 180[/tex]

Now, we can use the same constant to find x2:

[tex]x2 * y2 = k[/tex]

[tex]x2 * 3 = 180[/tex]

[tex]x2 = 180 / 3 = 60[/tex]

So the value of x2 is 60.

Given z = 4x – 6y, solve for y.​

Answers

Answer:

Step-by-step explanation:

-6y+4x=z

-6y=z-4x

y=(z-4x)/-6

Answer:

[tex]y=\frac{z-4x}{-6}[/tex]

Step-by-step explanation:

Determine if the expressions are equivalent.

when w = 11:

2w + 3 + 4     4 + 2w + 3

2(11) + 3 + 4    4 + 2(11) + 3

22 + 3 + 4      4 + 22 + 3

25 + 4      26 + 3

29        29

Complete the statements.

Answers

Answer:

Determine if the expressions are equivalent.

when w = 11:

2w + 3 + 4     4 + 2w + 3

2(11) + 3 + 4    4 + 2(11) + 3

22 + 3 + 4      4 + 22 + 3

25 + 4      26 + 3

29        29

Complete the statements.

Now, check another value for the variable.

When w = 2, the first expression is  

11

.

When w = 2, the second expression is  

11

.

Therefore, the expressions are  

equivalent

.

Step-by-step explanation:

i did the math hope this helps

Answer:

Hii its Nat here to help! :)

Step-by-step explanation: A is 11 and b is 11.

C is Equal

Screenshot included.

The sum of a number and its reciprocal is 41/20. Find the numbers. smaller value larger value

Answers

Answer:

The numbers are 5/4 and 4/5The smaller value is 4/5The larger value is 5/4

Step-by-step explanation:

Let the number be x.

The reciprocal of the number will be 1/x

If the sum of the number and its reciprocal is 41/20, this can be represented as;

[tex]x+\frac{1}{x} = 41/20\\\frac{x^{2}+1}{x} = \frac{41}{20} \\20x^{2} +20 = 41x\\20x^{2} -41x+20 = 0\\[/tex]

Uisng the general formula to get x

x = -b±√b²+4ac/2a

x = 41±√41²-4(20)(20)/2(20)

x = 41±√1681-1600/40

x = 41±√81/40

x = 41±9/40

x = 50/40 or 32/40

x = 5/4 or 4/5

if the value is 5/4, the other value will be 4/5

The numbers are 5/4 and 4/5

The smaller value is 4/5

The larger value is 5/4

Answer:

a=5/4 or 4/5

Therefore, the smaller value = 4/5

The larger value = 5/4

Step-by-step explanation:

Let the number be represented by a

And it's reciprocal be represented by 1/a

So we have

a + 1/a = 41/20

Cross Multiply

20( a +1/a) = 41

20a +20/a =41

Find the LCM which is a

20a² + 20 = 41a

20a² + 20 - 41a =0

20a² - 41a +20 = 0

20a²-25a - 16a + 20 =0

5a(4a - 5) -4( 4a - 5) = 0

(5a - 4)(4a - 5) = 0

5a - 4 = 0

5a = 4

a = 4/5

or

4a - 5 = 0

4a =5

a = 5/4

Therefore, the number which is represented by a is

1) a = 4/5 while it's reciprocal which is 1/a is 5/4

or

2) a = 5/4 which it's reciprocal which is 1/a = 4/5

Therefore, the smaller value = 4/5

The larger value = 5/4

A triangular window has an area of 594 square meters. The base is 54 meters. What is the height?

Answers

Answer:

  22 m

Step-by-step explanation:

Use the formula for the area of a triangle. Fill in the known values and solve for the unknown.

  A = (1/2)bh

  594 m^2 = (1/2)(54 m)h

  h = (594 m^2)/(27 m) = 22 m

The height of the window is 22 meters.

Other Questions
What happens when tectonic plates move away from each other? Molten matter cools and sinks towards the core. Lava travels away from the crust and forms the mantle. Molten matter seeps through the crust and forms new land. Lava seeps into the ground through the cracks in the ground. Why are adjustments made to the accounting records at the end of the period? (You may select more than one answer. Single click the box with the question mark to produce a check mark for a correct answer and double click the box with the question mark to empty the box for a wrong answer. Any boxes left with a question mark will be automatically graded as incorrect.) Hubert: Demand decreased, but it was perfectly inelastic. Kate: Demand decreased, but supply was perfectly inelastic. Manuel: Demand decreased, but supply increased at the same time. Poornima: Supply increased, but demand was perfectly inelastic. Shen: Supply increased, but demand was unit elastic. Who could possibly be right SOMEONE PLEASE HELP ME ASAP PLEASE!!! I WILL MAKE YOU THE BRAINLLESTWhich description matches the graph of the inequality y 2x 1? A.a shaded region below a solid boundary line B.a shaded region above a dashed boundary line C.a shaded region below a dashed boundary line D.a shaded region above a solid boundary line What reason does the newspaper clerk give Major Kovaloff for not being ableto run his ad?OA. It is too long an ad and would not be finished in time.B. It is not something that a government official does.O C. It is illegal to post ads in the paper for missing body parts.D. It would make them look silly and give the newspaper a badreputation The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax 20 POINTS AND BRAINLIEST!!! You are given an nn board, where n is an even integer and 2n30. For how many such boards is it possible to cover the board with T-shaped tiles like the one shown? Each cell of the shape is congruent to one cell on the board. A surveyor is 40m from the edge of a building. The angle of elevation from the surveyor to the top of the building is 55 . What is the height of the building? is 614 divisible by both 2 and 6? Which statement Describes a similarity between source one source two Simplify(y + 1)(y + 1) A package delivery service uses vans and employees to deliver the maximum number of packages given a fixed budget. The last van added 600 packages to total output, while the last employee added 500 packages. If vans cost exist400 per week and employees earn exist300 per firm:________.a. could deliver more packages with the same budget by using more employees and fewer Vans b. could deliver more packages the same budget by using more vans and fewer with employees c. use more vans and fewer employees because the last dollars spent on vans added more to total output than the last dollar spent on employees d. is delivering the maximum number of packages given the fixed budget e. both b and c What type of evidence would support the rebuttal? Check all that apply. Rebuttal: It is true that Bob Dylan has published traditional poetry and prose. However, one book of poetry and one memoir would not qualify him for the prize. The prize was awarded based on his songwriting, which does not qualify as literature. statistics about the number of books written by past recipients of the Nobel Prize in Literature a review that an acclaimed literary professional wrote about Bob Dylans book of poetry a quotation by a literary scholar explaining why Dylans lyrics are not poetry quotations from both Tarantula and Chronicles: Volume One a quotation from a Nobel judge explaining that the prize was award A bird species in danger of extinction has a population that is decreasing exponentially (A = A0e^kt). Five years ago, the population was at 1400 and today only 1000 of the birds are alive. Once the population drops below 100, the situation will be irreversible. When will this happen? Would you rather be exceptionally strong or exceptionally wise? Why? charges can be separated in an isolated system Find the vertex of the given function. f(x) = |x + 1| - 7 The vertex is at (, ) You have a graduated cylinder that you use to measure volume. The cylinderis marked in 1 ml increments. Which measurement made using this cylindercontains the correct number of significant digits?A. 35.5 mlB. 320.01 mlC. 75.333 mlD. 21 ml At a company picnic, 1/2 of the people are employees. 2/5 are employees' spouses. What percent are neither?