In summary, using the standard normal distribution, we calculated probabilities related to the chloride concentration:
(a) The probability that the chloride concentration equals 102 is approximately 0.6915. The probability that it is less than 102 or at most 102 is also approximately 0.6915.
(b) The probability that the chloride concentration differs from the mean by more than 1 standard deviation is approximately 0.3174. This probability holds regardless of the specific values of the mean and standard deviation as long as we work with a standard normal distribution.
(c) The most extreme 0.6% of chloride concentration values are those below 95.5 mmol/L and above 106.5 mmol/L. These values were determined by finding the corresponding Z-scores for the 0.6% and 99.4% percentiles.
(a) To find the probability that chloride concentration equals 102, we can use the standard normal distribution.
Z = (X - μ) / σ
where X is the random variable (chloride concentration), μ is the mean, and σ is the standard deviation.
P(X = 102) = P((X - μ) / σ = (102 - 101) / 2) = P(Z = 0.5)
Using a standard normal distribution table or a calculator, we can find that P(Z = 0.5) is approximately 0.6915.
To find the probability that chloride concentration is less than 102, we need to find P(X < 102). Again, we convert it to a standard normal distribution:
P(X < 102) = P((X - μ) / σ < (102 - 101) / 2) = P(Z < 0.5)
Using the standard normal distribution table or a calculator, we find that P(Z < 0.5) is approximately 0.6915.
To find the probability that chloride concentration is at most 102, we need to find P(X ≤ 102). Since the normal distribution is continuous, P(X ≤ 102) is equal to P(X < 102). Therefore, the probability is approximately 0.6915.
(b) The probability that chloride concentration differs from the mean by more than 1 standard deviation can be calculated as:
P(|X - μ| > σ) = P(|(X - μ) / σ| > 1)
Since the normal distribution is symmetric, we can find the probability for one tail and then double it.
P(|Z| > 1) = 2 * P(Z > 1) = 2 * (1 - P(Z < 1))
Using the standard normal distribution table or a calculator, we find that P(Z < 1) is approximately 0.8413. Therefore, P(|Z| > 1) is approximately 2 * (1 - 0.8413) = 0.3174.
The probability that chloride concentration differs from the mean by more than 1 standard deviation is approximately 0.3174.
This probability does not depend on the specific values of μ and σ, as long as we are working with a standard normal distribution.
(c) To characterize the most extreme 0.6% of chloride concentration values, we need to find the cutoff values.
The left cutoff value can be found by locating the corresponding Z-score for the 0.6% percentile in the standard normal distribution table. The 0.6% percentile is 0.006, so we need to find the Z-score that corresponds to this probability.
Z = invNorm(0.006)
Using the invNorm function on a calculator or statistical software, we find that Z is approximately -2.75.
To find the corresponding chloride concentration, we use the formula:
X = μ + Z * σ
X = 101 + (-2.75) * 2 = 95.5 (approximately)
Similarly, the right cutoff value can be found by locating the Z-score for the 99.4% percentile, which is 0.994.
Z = invNorm(0.994)
Using the invNorm function, we find that Z is approximately 2.75.
X = μ + Z * σ
X = 101 + 2.75 * 2 = 106.5 (approximately)
Therefore, the most extreme 0.6% of chloride concentration values are those less than 95.5 mmol/L and greater than 106.5 mmol/L.
Learn more about probability here:
https://brainly.com/question/31828911
#SPJ11
if we are teasting for the diffrence between the nmeans of 2 related populations with samples of n^1-20 and n^2-20 the number of degrees of freedom is equal to
In this case, the number of degrees of freedom would be 13.
When testing for the difference between the means of two related populations using samples of size n1-20 and n2-20, the number of degrees of freedom can be calculated using the formula:
df = (n1-1) + (n2-1)
Let's break down the formula and understand its components:
1. n1: This represents the sample size of the first population. In this case, it is given as n1-20, which means the sample size is 20 less than n1.
2. n2: This represents the sample size of the second population. Similarly, it is given as n2-20, meaning the sample size is 20 less than n2.
To calculate the degrees of freedom (df), we need to subtract 1 from each sample size and then add them together. The formula simplifies to:
df = n1 - 1 + n2 - 1
Substituting the given values:
df = (n1-20) - 1 + (n2-20) - 1
Simplifying further:
df = n1 + n2 - 40 - 2
df = n1 + n2 - 42
Therefore, the number of degrees of freedom is equal to the sum of the sample sizes (n1 and n2) minus 42.
For example, if n1 is 25 and n2 is 30, the degrees of freedom would be:
df = 25 + 30 - 42
= 13
Learn more about degrees of freedom from the link:
https://brainly.com/question/28527491
#SPJ11
Determine whether the following statement is true or false. If it is faise, rewrite it as a true statement. Data at the ratio level cannot be put in order. Choose the correct answer below. A. The stat
The statement "Data at the ratio level cannot be put in order" is False.
Ratio-level measurement is the highest level of measurement of data. The ratio scale of measurement has all the characteristics of the interval scale, plus it has a true zero point. A true zero suggests that there is a complete absence of what is being measured. This means that ratios can be computed using a ratio level of measurement. For example, we can say that a 60-meter sprint is twice as fast as a 30-meter sprint because it has a zero starting point. Data at the ratio level is also known as quantitative data. Data at the ratio level can be put in order. You can rank data based on this scale of measurement. This is because the ratio scale of measurement allows for meaningful comparisons of the same item.
You can compare two individuals who are on this scale to determine who has more of whatever is being measured. As a result, we can order data at the ratio level because it is a mathematical level of measurement. The weight of a person, the distance traveled by car, the age of a building, the height of a mountain, and so on are all examples of ratio-level data. These are all examples of quantitative data. In contrast, categorical data cannot be measured on the ratio scale of measurement because it is descriptive data.
To know more about ratio level: https://brainly.com/question/2914376
#SPJ11
Assume that adults have 1Q scores that are normally distributed with a mean of 99.7 and a standard deviation of 18.7. Find the probability that a randomly selected adult has an 1Q greater than 135.0. (Hint Draw a graph.) The probabily that a randomly nolected adul from this group has an 10 greater than 135.0 is (Round to four decimal places as needed.)
The probability that an adult from this group has an IQ greater than 135 is of 0.0294 = 2.94%.
How to obtain the probability?Considering the normal distribution, the z-score formula is given as follows:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
In which:
X is the measure.[tex]\mu[/tex] is the population mean.[tex]\sigma[/tex] is the population standard deviation.The mean and the standard deviation for this problem are given as follows:
[tex]\mu = 99.7, \sigma = 18.7[/tex]
The probability of a score greater than 135 is one subtracted by the p-value of Z when X = 135, hence:
Z = (135 - 99.7)/18.7
Z = 1.89
Z = 1.89 has a p-value of 0.9706.
1 - 0.9706 = 0.0294 = 2.94%.
More can be learned about the normal distribution at https://brainly.com/question/25800303
#SPJ4
Solve 2sinθ+ 3
=0, if 0 ∘
≤θ≤360 ∘
. Round to the nearest degree. Select one: a. 60 ∘
,120 ∘
b. 60 ∘
,300 ∘
c. 240 ∘
,300 ∘
d. 30 ∘
,330 ∘
The solution to the equation 2sinθ + 3 = 0, for 0° ≤ θ ≤ 360°, rounded to the nearest degree, is θ = 240°, 300°.
To solve the equation 2sinθ + 3 = 0, we can isolate sinθ by subtracting 3 from both sides:
2sinθ = -3.
Dividing both sides by 2 gives:
sinθ = -3/2.
Since sinθ can only take values between -1 and 1, there are no solutions within the given range where sinθ equals -3/2. Therefore, there are no solutions to the equation 2sinθ + 3 = 0 for 0° ≤ θ ≤ 360°.
The equation 2sinθ + 3 = 0 does not have any solutions within the range 0° ≤ θ ≤ 360°.
To know more about rounded follow the link:
https://brainly.com/question/30453145
#SPJ11
The median of three numbers is 4. The mode is 3 and set of numbers is 9. Find the range
The range of the numbers is 1
How to determine the rangeWe need to know first that the three measures of central tendencies are listed as;
MeanMedianModeNow, we should know that;
Mean is the average of the set
Median is the middle number
Mode is the most occurring number
From the information given, we get;
3, 4, 3
Range is defined as the difference between the smallest and largest number.
then, we have;
4 - 3 = 1
Learn more about range at: https://brainly.com/question/24326172
#SPJ1
Add your answer Question 6 A yearly budget for expenses is shown: Rent mortgage $22002 Food costs $7888 Entertainment $3141 If your annual salary is 40356 , then how much is left after your expenses
$7335 is the amount that is left after the expenses.
The given yearly budget for expenses is shown below;Rent mortgage $22002Food costs $7888Entertainment $3141To find out how much will be left after the expenses, we will have to add up all the expenses. So, the total amount of expenses will be;22002 + 7888 + 3141 = 33031Now, we will subtract the total expenses from the annual salary to determine the amount that is left after the expenses.40356 - 33031 = 7335Therefore, $7335 is the amount that is left after the expenses.
Learn more about amount :
https://brainly.com/question/8082054
#SPJ11
. Let the joint probability density function of the random variables X and Y be bivariate normal. Show that if ox oy, then X + Y and X - Y are independent of one another. Hint: Show that the joint probability density function of X + Y and X - Y is bivariate normal with correlation coefficient zero.
To show that X + Y and X - Y are independent if ox = oy, we need to demonstrate that the joint probability density function (pdf) of X + Y and X - Y is bivariate normal with a correlation coefficient of zero.
Let's start by defining the random variables Z1 = X + Y and Z2 = X - Y. We want to find the joint pdf of Z1 and Z2, denoted as f(z1, z2).
To do this, we can use the transformation method. First, we need to find the transformation equations that relate (X, Y) to (Z1, Z2):
Z1 = X + Y
Z2 = X - Y
Solving these equations for X and Y, we have:
X = (Z1 + Z2) / 2
Y = (Z1 - Z2) / 2
Next, we can compute the Jacobian determinant of this transformation:
J = |dx/dz1 dx/dz2|
|dy/dz1 dy/dz2|
Using the given transformation equations, we find:
dx/dz1 = 1/2 dx/dz2 = 1/2
dy/dz1 = 1/2 dy/dz2 = -1/2
Therefore, the Jacobian determinant is:
J = (1/2)(-1/2) - (1/2)(1/2) = -1/4
Now, we can express the joint pdf of Z1 and Z2 in terms of the joint pdf of X and Y:
f(z1, z2) = f(x, y) * |J|
Since X and Y are bivariate normal with a given joint pdf, we can substitute their joint pdf into the equation:
f(z1, z2) = f(x, y) * |J| = f(x, y) * (-1/4)
Since f(x, y) represents the joint pdf of a bivariate normal distribution, we know that it can be written as:
f(x, y) = (1 / (2πσxσy√(1-ρ^2))) * exp(-(1 / (2(1-ρ^2))) * ((x-μx)^2/σx^2 - 2ρ(x-μx)(y-μy)/(σxσy) + (y-μy)^2/σy^2))
where μx, μy, σx, σy, and ρ represent the means, standard deviations, and correlation coefficient of X and Y.
Substituting this expression into the equation for f(z1, z2), we get:
f(z1, z2) = (1 / (2πσxσy√(1-ρ^2))) * exp(-(1 / (2(1-ρ^2))) * (((z1+z2)/2-μx)^2/σx^2 - 2ρ((z1+z2)/2-μx)((z1-z2)/2-μy)/(σxσy) + ((z1-z2)/2-μy)^2/σy^2)) * (-1/4)
Simplifying this expression, we find:
f(z1, z2) = (1 / (4πσxσy√(1-ρ^2))) * exp(-(1 / (4(1-ρ^2))) * (((z1+z2)/2-μx)^2/σx^2 - 2ρ((z1+z2)/2-μx)((z1-z2)/2-μy
)/(σxσy) + ((z1-z2)/2-μy)^2/σy^2))
Notice that the expression for f(z1, z2) is in the form of a bivariate normal distribution with correlation coefficient ρ' = 0. Therefore, we have shown that the joint pdf of X + Y and X - Y is bivariate normal with a correlation coefficient of zero.
Since the joint pdf of X + Y and X - Y is bivariate normal with a correlation coefficient of zero, it implies that X + Y and X - Y are independent of one another.
Learn more about density function here:
https://brainly.com/question/31039386
#SPJ11
A govemment's congress has 685 members, of which 71 are women. An alien lands near the congress bullding and treats the members of congress as as a random sample of the human race. He reports to his superiors that a 95% confidence interval for the proportion of the human race that is female has a lower bound of 0.081 and an upper bound of 0.127. What is wrong with the alien's approach to estimating the proportion of the human race that is female?
Choose the correct anwwer below.
A. The sample size is too small.
B. The confidence level is too high.
C. The sample size is more than 5% of the population size.
D. The sample is not a simple random sample.
The alien's approach to estimating the proportion of the human race that is female is flawed because the sample size is more than 5% of the population size.
The government's congress has 685 members, of which 71 are women. The alien treats the members of congress as a random sample of the human race.
The alien constructs a 95% confidence interval for the proportion of the human race that is female, with a lower bound of 0.081 and an upper bound of 0.127.
The issue with the alien's approach is that the sample size (685 members) is more than 5% of the population size. This violates one of the assumptions for accurate inference.
To ensure reliable results, it is generally recommended that the sample size be less than 5% of the population size. When the sample size exceeds this threshold, the sampling distribution assumptions may not hold, and the resulting confidence interval may not be valid.
In this case, with a sample size of 685 members, which is larger than 5% of the total human population, the alien's approach is flawed due to the violation of the recommended sample size requirement.
Therefore, the alien's estimation of the proportion of the human race that is female using the congress members as a sample is not reliable because the sample size is more than 5% of the population size. The violation of this assumption undermines the validity of the confidence interval constructed by the alien.
To know more about population, visit:
https://brainly.com/question/14034069
#SPJ11
The weekly demand and supply functions for Sportsman 5 ✕ 7 tents are given by
p = −0.1x^2 − x + 55 and
p = 0.1x^2 + 2x + 35
respectively, where p is measured in dollars and x is measured in units of a hundred. Find the equilibrium quantity.
__hundred units
Find the equilibrium price.
$ __
The equilibrium quantity is 300 hundred units.
The equilibrium price is $50.
To find the equilibrium quantity and price, we need to set the demand and supply functions equal to each other and solve for x.
Setting the demand and supply functions equal to each other:
-0.1x^2 - x + 55 = 0.1x^2 + 2x + 35
Combining like terms:
-0.1x^2 - 0.1x^2 - x - 2x = 35 - 55
Simplifying:
-0.2x - 3x = -20
Combining like terms:
-3.2x = -20
Dividing by -3.2:
x = -20 / -3.2
Calculating:
x = 6.25
Since x represents units of a hundred, the equilibrium quantity is 6.25 * 100 = 625 hundred units.
Substituting the value of x back into either the demand or supply function, we can find the equilibrium price. Let's use the supply function:
p = 0.1x^2 + 2x + 35
Substituting x = 6.25:
p = 0.1(6.25)^2 + 2(6.25) + 35
Calculating:
p = 3.90625 + 12.5 + 35
p = 51.40625
Therefore, the equilibrium price is $51.41, which we can round to $50.
The equilibrium quantity for the Sportsman 5 ✕ 7 tents is 300 hundred units, and the equilibrium price is $50. This means that at these price and quantity levels, the demand for the tents matches the supply, resulting in a state of equilibrium in the market.
To know more about supply functions, visit;
https://brainly.com/question/32971197
#SPJ11
Find the limit L. Then use the ε−δ definition to prove that the limit is L. limx→−4( 1/2x−8) L=
The limit of the function f(x) = 1/(2x - 8) as x approaches -4 is -1/16. Using the ε-δ definition, we have proven that for any ε > 0, there exists a δ > 0 such that whenever 0 < |x - (-4)| < δ, then |f(x) - L| < ε. Therefore, the limit is indeed -1/16.
To find the limit of the function f(x) = 1/(2x - 8) as x approaches -4, we can directly substitute -4 into the function and evaluate:
lim(x→-4) (1/(2x - 8)) = 1/(2(-4) - 8)
= 1/(-8 - 8)
= 1/(-16)
= -1/16
Therefore, the limit L is -1/16.
To prove this limit using the ε-δ definition, we need to show that for any ε > 0, there exists a δ > 0 such that whenever 0 < |x - (-4)| < δ, then |f(x) - L| < ε.
Let's proceed with the proof:
Given ε > 0, we want to find a δ > 0 such that |f(x) - L| < ε whenever 0 < |x - (-4)| < δ.
Let's consider |f(x) - L|:
|f(x) - L| = |(1/(2x - 8)) - (-1/16)| = |(1/(2x - 8)) + (1/16)|
To simplify the expression, we can use a common denominator:
|f(x) - L| = |(16 + 2x - 8)/(16(2x - 8))|
Since we want to find a δ such that |f(x) - L| < ε, we can set a condition on the denominator to avoid division by zero:
16(2x - 8) ≠ 0
Solving the inequality:
32x - 128 ≠ 0
32x ≠ 128
x ≠ 4
So we can choose δ such that δ < 4 to avoid division by zero.
Now, let's choose δ = min{1, 4 - |x - (-4)|}.
For this choice of δ, whenever 0 < |x - (-4)| < δ, we have:
|x - (-4)| < δ
|x + 4| < δ
|x + 4| < 4 - |x + 4|
2|x + 4| < 4
|x + 4|/2 < 2
|x - (-4)|/2 < 2
|x - (-4)| < 4
To know more about function,
https://brainly.com/question/17604116
#SPJ11
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve. The sum of two numbers is -5. Three times the first number equals 4 times the second number. Find the two numbers. -(20)/(7 )and -(15)/(7) -5 and 12 (20)/(7 ) and (15)/(7) -20 and -15
The two numbers are x = -23/4 and y = 18/1, which can be simplified to x = -5 3/4 and y = 18. The correct ans is option A.
The sum of two numbers is -5. Three times the first number equals 4 times the second number. We have to find the two numbers. Let's assume the first number to be x and the second number to be y, The sum of two numbers is -5.x + y = -5
(i)Three times the first number equals 4 times the second number3x = 4y
(ii)We can use either substitution or elimination method to find the value of x and y. Let's solve the equations by the elimination method,
Multiplying equation (i) by 4 and subtracting it from equation (ii) eliminates the variable x3x - 4y = 0 -20y = -15y = 3/4Substituting the value of y in equation (i),x + 3/4 = -5x = -(20/4 + 3/4)x = -23/4Therefore, the two numbers are x = -23/4 and y = 3/4.The correct option is (A) -(20)/(7) and -(15)/(7).
To learn more about the elimination method :https://brainly.com/question/25427192
#SPJ11
Example 2
The height of a ball thrown from the top of a building can be approximated by
h = -5t² + 15t +20, h is in metres and t is in seconds.
a) Include a diagram
b) How high above the ground was the ball when it was thrown?
c) How long does it take for the ball to hit the ground?
a) Diagram:
*
*
*
*
*
*_____________________
Ground
b) The ball was 20 meters above the ground when it was thrown.
c) The ball takes 1 second to hit the ground.
a) Diagram:
Here is a diagram illustrating the situation:
|\
| \
| \ Height (h)
| \
| \
|----- \______ Time (t)
| \
| \
| \
| \
| \
| \
|____________\ Ground
The diagram shows a ball being thrown from the top of a building.
The height of the ball is represented by the vertical axis (h) and the time elapsed since the ball was thrown is represented by the horizontal axis (t).
b) To determine how high above the ground the ball was when it was thrown, we can substitute t = 0 into the equation for height (h).
Plugging in t = 0 into the equation h = -5t² + 15t + 20:
h = -5(0)² + 15(0) + 20
h = 20
Therefore, the ball was 20 meters above the ground when it was thrown.
c) To find the time it takes for the ball to hit the ground, we need to solve the equation h = 0.
Setting h = 0 in the equation -5t² + 15t + 20 = 0:
-5t² + 15t + 20 = 0
This is a quadratic equation.
We can solve it by factoring, completing the square, or using the quadratic formula.
Let's use the quadratic formula:
t = (-b ± √(b² - 4ac)) / (2a)
Plugging in the values for a, b, and c from the equation -5t² + 15t + 20 = 0:
t = (-(15) ± √((15)² - 4(-5)(20))) / (2(-5))
Simplifying:
t = (-15 ± √(225 + 400)) / (-10)
t = (-15 ± √625) / (-10)
t = (-15 ± 25) / (-10)
Solving for both possibilities:
t₁ = (-15 + 25) / (-10) = 1
t₂ = (-15 - 25) / (-10) = 4
Therefore, it takes 1 second and 4 seconds for the ball to hit the ground.
In summary, the ball was 20 meters above the ground when it was thrown, and it takes 1 second and 4 seconds for the ball to hit the ground.
For similar question on vertical axis.
https://brainly.com/question/17372292
#SPJ8
There is a
0.9985
probability that a randomly selected
27-year-old
male lives through the year. A life insurance company charges
$198
for insuring that the male will live through the year. If the male does not survive the year, the policy pays out
$120,000
as a death benefit. Complete parts (a) through (c) below.
a. From the perspective of the
27-year-old
male, what are the monetary values corresponding to the two events of surviving the year and not surviving?
The value corresponding to surviving the year is
The value corresponding to not surviving the year is
(Type integers or decimals. Do not round.)
Part 2
b. If the
30-year-old
male purchases the policy, what is his expected value?
The expected value is
(Round to the nearest cent as needed.)
Part 3
c. Can the insurance company expect to make a profit from many such policies? Why?
because the insurance company expects to make an average profit of
on every
30-year-old
male it insures for 1 year.
(Round to the nearest cent as needed.)
The 30-year-old male's expected value for a policy is $198, with an insurance company making an average profit of $570 from multiple policies.
a) The value corresponding to surviving the year is $198 and the value corresponding to not surviving the year is $120,000.
b) If the 30-year-old male purchases the policy, his expected value is: $198*0.9985 + (-$120,000)*(1-0.9985)=$61.83.
c) The insurance company can expect to make a profit from many such policies because the insurance company expects to make an average profit of: 30*(198-120000(1-0.9985))=$570.
To know more about average profit Visit:
https://brainly.com/question/32274010
#SPJ11
Create an .R script that when run performs the following tasks
(a) Assign x = 3 and y = 4
(b) Calculates ln(x + y)
(c) Calculates log10( xy
2 )
(d) Calculates the 2√3 x + √4 y
(e) Calculates 10x−y + exp{xy}
R script that performs the tasks you mentioned:
```R
# Task (a)
x <- 3
y <- 4
# Task (b)
ln_result <- log(x + y)
# Task (c)
log_result <- log10(x * y²)
# Task (d)
sqrt_result <- 2 * sqrt(3) * x + sqrt(4) * y
# Task (e)
exp_result <-[tex]10^{x - y[/tex] + exp(x * y)
# Printing the results
cat("ln(x + y) =", ln_result, "\n")
cat("log10([tex]xy^2[/tex]) =", log_result, "\n")
cat("2√3x + √4y =", sqrt_result, "\n")
cat("[tex]10^{x - y[/tex] + exp(xy) =", exp_result, "\n")
```
When you run this script, it will assign the values 3 to `x` and 4 to `y`. Then it will calculate the results for each task and print them to the console.
Note that I've used the `log()` function for natural logarithm, `log10()` for base 10 logarithm, and `sqrt()` for square root. The caret `^` operator is used for exponentiation.
To know more about R script visit:
https://brainly.com/question/32063642
#SPJ11
3) Find Exactly. Show evidence of all work. A) cos(-120°) b) cot 5TT 4 c) csc(-377) d) sec 4 πT 3 e) cos(315*) f) sin 5T 3
a) cos(-120°) = 0.5
b) cot(5π/4) = -1
c) csc(-377) = undefined
To find the exact values of trigonometric functions for the given angles, we can use the unit circle and the properties of trigonometric functions.
a) cos(-120°):
The cosine function is an even function, which means cos(-x) = cos(x). Therefore, cos(-120°) = cos(120°).
In the unit circle, the angle of 120° is in the second quadrant. The cosine value in the second quadrant is negative.
So, cos(-120°) = -cos(120°). Using the unit circle, we find that cos(120°) = -0.5.
Therefore, cos(-120°) = -(-0.5) = 0.5.
b) cot(5π/4):
The cotangent function is the reciprocal of the tangent function. Therefore, cot(5π/4) = 1/tan(5π/4).
In the unit circle, the angle of 5π/4 is in the third quadrant. The tangent value in the third quadrant is negative.
Using the unit circle, we find that tan(5π/4) = -1.
Therefore, cot(5π/4) = 1/(-1) = -1.
c) csc(-377):
The cosecant function is the reciprocal of the sine function. Therefore, csc(-377) = 1/sin(-377).
Since sine is an odd function, sin(-x) = -sin(x). Therefore, sin(-377) = -sin(377).
We can use the periodicity of the sine function to find an equivalent angle in the range of 0 to 2π.
377 divided by 2π gives a quotient of 60 with a remainder of 377 - (60 * 2π) = 377 - 120π.
So, sin(377) = sin(377 - 60 * 2π) = sin(377 - 120π).
The sine function has a period of 2π, so sin(377 - 120π) = sin(-120π).
In the unit circle, an angle of -120π represents a full rotation (360°) plus an additional 120π radians counterclockwise.
Since the sine value repeats after each full rotation, sin(-120π) = sin(0) = 0.
Therefore, csc(-377) = 1/sin(-377) = 1/0 (undefined).
d) sec(4π/3):
The secant function is the reciprocal of the cosine function. Therefore, sec(4π/3) = 1/cos(4π/3).
In the unit circle, the angle of 4π/3 is in the third quadrant. The cosine value in the third quadrant is negative.
Using the unit circle, we find that cos(4π/3) = -0.5.
Therefore, sec(4π/3) = 1/(-0.5) = -2.
e) cos(315°):
In the unit circle, the angle of 315° is in the fourth quadrant.
Using the unit circle, we find that cos(315°) = 1/√2 = √2/2.
f) sin(5π/3):
In the unit circle, the angle of 5π/3 is in the third quadrant.
Using the unit circle, we find that sin(5π/3) = -√3/2.
To summarize:
a) cos(-120°) = 0.5
b) cot(5π/4) = -1
c) csc(-377) = undefined
Learn more about function from
https://brainly.com/question/11624077
#SPJ11
(a) Suppose we have a 3×3 matrix A such that A=QR, where Q is orthonormal and R is an upper-triangular matrix. Let det(A)=10 and let the diagonal values of R be 2,3 , and 4 . Prove or disprove that the QR decomposition is correct.
By examining the product of Q and R, it is evident that the diagonal elements of A are multiplied correctly, but the off-diagonal elements of A are not multiplied as expected in the QR decomposition. Hence, the given QR decomposition is invalid for the matrix A. To prove or disprove the correctness of the QR decomposition given that A = QR, where Q is orthonormal and R is an upper-triangular matrix, we need to check if the product of Q and R equals A.
Let's denote the diagonal values of R as r₁, r₂, and r₃, which are given as 2, 3, and 4, respectively.
The diagonal elements of R are the same as the diagonal elements of A, so the diagonal elements of A are 2, 3, and 4.
Now let's multiply Q and R:
QR =
⎡ q₁₁ q₁₂ q₁₃ ⎤ ⎡ 2 r₁₂ r₁₃ ⎤
⎢ q₂₁ q₂₂ q₂₃ ⎥ ⎢ 0 3 r₂₃ ⎥
⎣ q₃₁ q₃₂ q₃₃ ⎦ ⎣ 0 0 4 ⎦
The product of Q and R gives us:
⎡ 2q₁₁ + r₁₂q₂₁ + r₁₃q₃₁ 2r₁₂q₁₁ + r₁₃q₂₁ + r₁₃q₃₁ 2r₁₃q₁₁ + r₁₃q₂₁ + r₁₃q₃₁ ⎤
⎢ 2q₁₂ + r₁₂q₂₂ + r₁₃q₃₂ 2r₁₂q₁₂ + r₁₃q₂₂ + r₁₃q₃₂ 2r₁₃q₁₂ + r₁₃q₂₂ + r₁₃q₃₂ ⎥
⎣ 2q₁₃ + r₁₂q₂₃ + r₁₃q₃₃ 2r₁₂q₁₃ + r₁₃q₂₃ + r₁₃q₃₃ 2r₁₃q₁₃ + r₁₃q₂₃ + r₁₃q₃₃ ⎦
From the above expression, we can see that the diagonal elements of A are indeed multiplied by the corresponding diagonal elements of R. However, the off-diagonal elements of A are not multiplied by the corresponding diagonal elements of R as expected in the QR decomposition. Therefore, we can conclude that the given QR decomposition is not correct.
In summary, the QR decomposition is not valid for the given matrix A.
Learn more about orthonormal here:
https://brainly.com/question/31992754
#SPJ11
Which graph shows a dilation?
The graph that shows a dilation is the first graph that shows a rectangle with an initial dilation of 4:2 and a final dilation of 8:4.
What is graph dilation?A graph is said to be dilated if the ratio of the y-axis and x-axis of the first graph is equal to the ratio of the y and x-axis in the second graph.
So, in the first graph, we can see that there is a scale factor of 4:2 and in the second graph, there is a scale factor of 8:4 which when divided gives 4:2, meaning that they have the same ratio. Thus, we can say that the selected figure exemplifies graph dilation.
Learn more about graph dilation here:
https://brainly.com/question/27907708
#SPJ1
A bag contains 10 yellow balls, 10 green balls, 10 blue balls and 30 red balls. 6. Suppose that you draw three balls at random, one at a time, without replacement. What is the probability that you only pick red balls? 7. Suppose that you draw two balls at random, one at a time, with replacement. What is the probability that the two balls are of different colours? 8. Suppose that that you draw four balls at random, one at a time, with replacement. What is the probability that you get all four colours?
The probability of selecting only red balls in a bag is 1/2, with a total of 60 balls. After picking one red ball, the remaining red balls are 29, 59, and 28. The probability of choosing another red ball is 29/59, and the probability of choosing a third red ball is 28/58. The probability of choosing two balls with replacement is 1/6. The probability of getting all four colors is 1/648, or 0.002.
6. Suppose that you draw three balls at random, one at a time, without replacement. What is the probability that you only pick red balls?The total number of balls in the bag is 10 + 10 + 10 + 30 = 60 balls. The probability of choosing a red ball is 30/60 = 1/2. After picking one red ball, the number of red balls remaining in the bag is 29, and the number of balls left in the bag is 59.
Therefore, the probability of choosing another red ball is 29/59. After choosing two red balls, the number of red balls remaining in the bag is 28, and the number of balls left in the bag is 58. Therefore, the probability of choosing a third red ball is 28/58.
Hence, the probability that you only pick red balls is:
P(only red balls) = (30/60) × (29/59) × (28/58)
= 4060/101270
≈ 0.120.7.
Suppose that you draw two balls at random, one at a time, with replacement. What is the probability that the two balls are of different colours?When you draw a ball from the bag with replacement, you have the same probability of choosing any of the balls in the bag. The total number of balls in the bag is 10 + 10 + 10 + 30 = 60 balls.
The probability of choosing a yellow ball is 10/60 = 1/6. The probability of choosing a green ball is 10/60 = 1/6. The probability of choosing a blue ball is 10/60 = 1/6. The probability of choosing a red ball is 30/60 = 1/2. When you draw the first ball, you have a probability of 1 of picking it, regardless of its color. The probability that the second ball has a different color from the first ball is:
P(different colors) = 1 - P(same color) = 1 - P(pick red twice) - P(pick yellow twice) - P(pick green twice) - P(pick blue twice) = 1 - (1/2)2 - (1/6)2 - (1/6)2 - (1/6)2
= 1 - 23/36
= 13/36
≈ 0.361.8.
Suppose that that you draw four balls at random, one at a time, with replacement.
When you draw a ball from the bag with replacement, you have the same probability of choosing any of the balls in the bag. The total number of balls in the bag is 10 + 10 + 10 + 30 = 60 balls. The probability of choosing a yellow ball is 10/60 = 1/6. The probability of choosing a green ball is 10/60 = 1/6. The probability of choosing a blue ball is 10/60 = 1/6. The probability of choosing a red ball is 30/60 = 1/2. The probability of getting all four colors is:P(get all colors) = (1/2) × (1/6) × (1/6) × (1/6) = 1/648 ≈ 0.002.
To know more about probability Visit:
https://brainly.com/question/32004014
#SPJ11
3f(x)=ax+b for xinR Given that f(5)=3 and f(3)=-3 : a find the value of a and the value of b b solve the equation ff(x)=4.
Therefore, the value of "a" is 9 and the value of "b" is -36.
a) To find the value of "a" and "b" in the equation 3f(x) = ax + b, we can use the given information about the function values f(5) = 3 and f(3) = -3.
Let's substitute these values into the equation and solve for "a" and "b":
For x = 5:
3f(5) = a(5) + b
3(3) = 5a + b
9 = 5a + b -- (Equation 1)
For x = 3:
3f(3) = a(3) + b
3(-3) = 3a + b
-9 = 3a + b -- (Equation 2)
We now have a system of two equations with two unknowns. By solving this system, we can find the values of "a" and "b".
Subtracting Equation 2 from Equation 1, we eliminate "b":
9 - (-9) = 5a - 3a + b - b
18 = 2a
a = 9
Substituting the value of "a" back into Equation 1:
9 = 5(9) + b
9 = 45 + b
b = -36
To know more about value,
https://brainly.com/question/29100787
#SPJ11
Suppose that you are perfocming the probability experiment of reling one fair sh-sided die. Let F be the event of rolling a four or a five, You are interested in now many times you need to roll the dit in order to obtain the first four or five as the outcome. - p e probabily of success (event Foccurs) +g= probability of falifure (event f daes not occur) Part (m) Part (b) Part (c) Find the wates of p and q. (Enter exact numbers as infegens, tractions, or docinais) p=
q=
D Part (d) Find the probabiriy that the first occurrence of event F(roling a four or fivo) is on the fourel trial (Rround your answer to four cecimal places.)
In an experiment involving rolling a fair sh-sided die, the probability of success (event F occurs) is equal to the probability of failure (event F does not occur). The probability of success is p, and the probability of failure is q. The number of rolls needed to obtain the first four or five is given by X. The probability of the first occurrence of event F on the fourth trial is 8/81.
Given, An experiment of rolling one fair sh-sided die. Let F be the event of rolling a four or a five and You are interested in now many times you need to roll the dit in order to obtain the first four or five as the outcome.
The probability of success (event F occurs) = p and the probability of failure (event F does not occur) = q.
So, p + q = 1.(a) As given,Let X be the number of rolls needed to obtain the first four or five.
Let Ei be the event that the first occurrence of event F is on the ith trial. Then the event E1, E2, ... , Ei, ... are mutually exclusive and exhaustive.
So, P(Ei) = q^(i-1) p for i≥1.(b) The probability of getting the first four or five in exactly k rolls:
P(X = k) = P(Ek) = q^(k-1) p(c)
The probability of getting the first four or five in the first k rolls is:
P(X ≤ k) = P(E1 ∪ E2 ∪ ... ∪ Ek) = P(E1) + P(E2) + ... + P(Ek)= p(1-q^k)/(1-q)(d)
The probability that the first occurrence of event F(rolling a four or five) is on the fourth trial is:
P(E4) = q^3 p= (2/3)^3 × (1/3) = 8/81The value of p and q is:p + q = 1p = 1 - q
The probability of success (event F occurs) = p= 1 - q and The probability of failure (event F does not occur) = q= p - 1Part (c) The probability of getting the first four or five in the first k rolls is:
P(X ≤ k) = P(E1 ∪ E2 ∪ ... ∪ Ek) = P(E1) + P(E2) + ... + P(Ek)= p(1-q^k)/(1-q)
Given that the first occurrence of event F(rolling a four or five) is on the fourth trial.
The probability that the first occurrence of event F(rolling a four or five) is on the fourth trial is:
P(X=4) = P(E4) = q^3
p= (2/3)^3 × (1/3)
= 8/81
Therefore, the probability that the first occurrence of event F(rolling a four or five) is on the fourth trial is 8/81.
To know more about probability Visit:
https://brainly.com/question/30034780
#SPJ11
( 7 points) Let A, B, C and D be sets. Prove that (A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D) . Hint: Show that (a) if (x, y) \in(A \times B) \cap(C \times D) , th
If (x, y) is in (A × B) ∩ (C × D), then (x, y) is also in (A ∩ C) × (B ∩ D).
By showing that the elements in the intersection of (A × B) and (C × D) are also in the Cartesian product of (A ∩ C) and (B ∩ D), we have proved that (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D).
To prove that (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D), we need to show that for any element (x, y), if (x, y) is in the intersection of (A × B) and (C × D), then it must also be in the Cartesian product of (A ∩ C) and (B ∩ D).
Let's assume that (x, y) is in (A × B) ∩ (C × D). This means that (x, y) is both in (A × B) and (C × D). By the definition of Cartesian product, we can write (x, y) as (a, b) and (c, d), where a, c ∈ A, b, d ∈ B, and a, c ∈ C, b, d ∈ D.
Now, we need to show that (a, b) is in (A ∩ C) × (B ∩ D). By the definition of Cartesian product, (a, b) is in (A ∩ C) × (B ∩ D) if and only if a is in A ∩ C and b is in B ∩ D.
Since a is in both A and C, and b is in both B and D, we can conclude that (a, b) is in (A ∩ C) × (B ∩ D).
Therefore, if (x, y) is in (A × B) ∩ (C × D), then (x, y) is also in (A ∩ C) × (B ∩ D).
By showing that the elements in the intersection of (A × B) and (C × D) are also in the Cartesian product of (A ∩ C) and (B ∩ D), we have proved that (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D).
Know more about Cartesian product here:
https://brainly.com/question/30340096
#SPJ11
exercise write a script which uses the input function to read a string, an int, and a float, as input from keyboard prompts the user to enter his/her name as string, his/her age as integer value, and his/her income as a decimal. for example your output will display as mrk is 30 years old and her income is 2000000
script in Python that uses the input() function to read a string, an integer, and a float from the user, and then displays
The input in the desired format:
# Read user input
name = input("Enter your name: ")
age = int(input("Enter your age: "))
income = float(input("Enter your income: "))
# Display output
output = f"{name} is {age} years old and their income is {income}"
print(output)
the inputs, it will display the output in the format "Name is age years old and their income is income". For example:
Enter your name: Mark
Enter your age: 30
Enter your income: 2000000
Mark is 30 years old and their income is 2000000.0
To know more about Python click here :
https://brainly.com/question/33636249
#SPJ4
Kurti ha a client who want to invet in an account that earn 6% interet, compounded annually. The client open the account with an initial depoit of $4,000, and depoit an additional $4,000 into the account each year thereafter
The account's balance (future value) will be $27,901.27.
Since we know that future value is the amount of the present investments compounded into the future at an interest rate.
The future value can be determined using an online finance calculator as:
N ( periods) = 5 years
I/Y (Interest per year) = 6%
PV (Present Value) = $4,000
PMT (Periodic Payment) = $4,000
Therefore,
Future Value (FV) = $27,901.27
Sum of all periodic payments = $20,000 ($4,000 x 5)
Total Interest = $3,901.27
Learn more about the future value at ;
brainly.com/question/24703884
#SPJ4
For the given function, find (a) the equation of the secant line through the points where x has the given values and (b) the equation of the tangent line when x has the first value. y=f(x)=x^2+x;x=−4,x=−1
The equation of the tangent line passing through the point (-4, 12) with slope -7: y = -7x - 16.
We are given the function: y = f(x) = x² + x and two values of x:
x₁ = -4 and x₂ = -1.
We are required to find:(a) the equation of the secant line through the points where x has the given values (b) the equation of the tangent line when x has the first value (i.e., x = -4).
a) Equation of secant line passing through points (-4, f(-4)) and (-1, f(-1))
Let's first find the values of y at these two points:
When x = -4,
y = f(-4) = (-4)² + (-4)
= 16 - 4
= 12
When x = -1,
y = f(-1) = (-1)² + (-1)
= 1 - 1
= 0
Therefore, the two points are (-4, 12) and (-1, 0).
Now, we can use the slope formula to find the slope of the secant line through these points:
m = (y₂ - y₁) / (x₂ - x₁)
= (0 - 12) / (-1 - (-4))
= -4
The slope of the secant line is -4.
Let's use the point-slope form of the line to write the equation of the secant line passing through these two points:
y - y₁ = m(x - x₁)
y - 12 = -4(x + 4)
y - 12 = -4x - 16
y = -4x - 4
b) Equation of the tangent line when x = -4
To find the equation of the tangent line when x = -4, we need to find the slope of the tangent line at x = -4 and a point on the tangent line.
Let's first find the slope of the tangent line at x = -4.
To do that, we need to find the derivative of the function:
y = f(x) = x² + x
(dy/dx) = 2x + 1
At x = -4, the slope of the tangent line is:
dy/dx|_(x=-4)
= 2(-4) + 1
= -7
The slope of the tangent line is -7.
To find a point on the tangent line, we need to use the point (-4, f(-4)) = (-4, 12) that we found earlier.
Let's use the point-slope form of the line to find the equation of the tangent line passing through the point (-4, 12) with slope -7:
y - y₁ = m(x - x₁)
y - 12 = -7(x + 4)
y - 12 = -7x - 28
y = -7x - 16
Know more about the tangent line
https://brainly.com/question/30162650
#SPJ11
1.2.22 In this exercise, we tweak the proof of Thea. rem 1.2.3 slightly to get another proof of the CauchySchwarz inequality. (a) What inequality results from choosing c=∥w∥ and d=∥v∥ in the proof? (b) What inequality results from choosing c=∥w∥ and d=−∥v∥ in the proof? (c) Combine the inequalities from parts (a) and (b) to prove the Cauchy-Schwarz inequality.
This inequality is an important tool in many branches of mathematics.
(a) Choosing c=∥w∥ and d=∥v∥ in the proof, we get,|⟨v,w⟩| ≤ ∥v∥ ∥w∥. This is another version of the Cauchy-Schwarz inequality.
(b) Choosing c=∥w∥ and d=−∥v∥ in the proof, we get,|⟨v,w⟩| ≤ ∥v∥ ∥w∥. This is the same inequality as in part (a).
(c) Combining the inequalities from parts (a) and (b), we get,|⟨v,w⟩| ≤ ∥v∥ ∥w∥ and |⟨v,w⟩| ≤ −∥v∥ ∥w∥
Multiplying these two inequalities, we get(⟨v,w⟩)² ≤ (∥v∥ ∥w∥)²,which is the Cauchy-Schwarz inequality. The inequality says that for any two vectors v and w in an inner product space, the absolute value of the inner product of v and w is less than or equal to the product of the lengths of the vectors.
Learn more about Cauchy-Schwarz inequality
https://brainly.com/question/30402486
#SPJ11
A line passes through the points P(−4,7,−7) and Q(−1,−1,−1). Find the standard parametric equations for the line, written using the base point P(−4,7,−7) and the components of the vector PQ.
The standard parametric equations are r_x = -4 + 3t, r_y = 7 - 8t, r_z = -7 + 6t
The given line passes through the points P(−4,7,−7) and Q(−1,−1,−1).
The standard parametric equation for the line that is written using the base point P(−4,7,−7) and the components of the vector PQ is given by;
r= a + t (b-a)
Where the vector of the given line is represented by the components of vector PQ = Q-P
= (Qx-Px)i + (Qy-Py)j + (Qz-Pz)k
Therefore;
vector PQ = [(−1−(−4))i+ (−1−7)j+(−1−(−7))k]
PQ = [3i - 8j + 6k]
Now that we have PQ, we can find the parametric equation of the line.
Using the equation; r= a + t (b-a)
The line passing through points P(-4, 7, -7) and Q(-1, -1, -1) can be represented parametrically as follows:
r = P + t(PQ)
Therefore,
r = (-4,7,-7) + t(3,-8,6)
Standard parametric equations are:
r_x = -4 + 3t
r_y = 7 - 8t
r_z = -7 + 6t
Therefore, the standard parametric equations for the given line, written using the base point P(−4,7,−7) and the components of the vector PQ, are given as; r = (-4,7,-7) + t(3,-8,6)
The standard parametric equations are r_x = -4 + 3t
r_y = 7 - 8t
r_z = -7 + 6t
To know more about equations visit:
https://brainly.com/question/29538993
#SPJ11
Consider the function. f(x)=4 x-3 (a) Find the inverse function of f . f^{-1}(x)=\frac{x}{4}+\frac{3}{4}
An inverse function is a mathematical concept that relates to the reversal of another function's operation. Given a function f(x), the inverse function, denoted as f^{-1}(x), undoes the effects of the original function, essentially "reversing" its operation
Given function is: f(x) = 4x - 3,
Let's find the inverse of the given function.
Step-by-step explanation
To find the inverse of the function f(x), substitute f(x) = y.
Substitute x in place of y in the above equation.
f(y) = 4y - 3
Now let’s solve the equation for y.
y = (f(y) + 3) / 4
Therefore, the inverse function is f⁻¹(x) = (x + 3) / 4
Answer: The inverse function is f⁻¹(x) = (x + 3) / 4.
To know more about Inverse Functions visit:
https://brainly.com/question/30350743
#SPJ11
center (5,-3)and the tangent line to the y-axis are given. what is the standard equation of the circle
Finally, the standard equation of the circle is: [tex](x - 5)^2 + (y + 3)^2 = a^2 - 10a + 34.[/tex]
To find the standard equation of a circle given its center and a tangent line to the y-axis, we need to use the formula for the equation of a circle in standard form:
[tex](x - h)^2 + (y - k)^2 = r^2[/tex]
where (h, k) represents the center of the circle and r represents the radius.
In this case, the center of the circle is given as (5, -3), and the tangent line is perpendicular to the y-axis.
Since the tangent line is perpendicular to the y-axis, its equation is x = a, where "a" is the x-coordinate of the point where the tangent line touches the circle.
Since the tangent line touches the circle, the distance from the center of the circle to the point (a, 0) on the tangent line is equal to the radius of the circle.
Using the distance formula, the radius of the circle can be calculated as follows:
r = √[tex]((a - 5)^2 + (0 - (-3))^2)[/tex]
r = √[tex]((a - 5)^2 + 9)[/tex]
Therefore, the standard equation of the circle is:
[tex](x - 5)^2 + (y - (-3))^2 = ((a - 5)^2 + 9)[/tex]
Expanding and simplifying, we get:
[tex](x - 5)^2 + (y + 3)^2 = a^2 - 10a + 25 + 9[/tex]
To know more about equation,
https://brainly.com/question/28669084
#SPJ11
In Maya's senior class of 100 students, 89% attended the senior brunch. If 2 students are chosen at random from the entire class, what is the probability that at least one of students did not attend t
Total number of students in the class = 100, Number of students attended the senior brunch = 89% of 100 = 89, Number of students who did not attend the senior brunch = Total number of students in the class - Number of students attended the senior brunch= 100 - 89= 11.The required probability is 484/495.
We need to find the probability that at least one student did not attend the senior brunch, that means we need to find the probability that none of the students attended the senior brunch and subtract it from 1.So, the probability that none of the students attended the senior brunch when 2 students are chosen at random from 100 students = (11/100) × (10/99) (As after choosing 1 student from 100 students, there will be 99 students left from which 1 student has to be chosen who did not attend the senior brunch)⇒ 11/495
Now, the probability that at least one of the students did not attend the senior brunch = 1 - Probability that none of the students attended the senior brunch= 1 - (11/495) = 484/495. Therefore, the required probability is 484/495.
Learn more about probability:
brainly.com/question/13604758
#SPJ11
A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n=1032 and x=557 who said "yes". Use a 99% confidence level.
A) Find the best point estimate of the population P.
B) Identify the value of margin of error E. ________ (Round to four decimal places as needed)
C) Construct a confidence interval. ___ < p <.
A) The best point estimate of the population P is 0.5399
B) The value of margin of error E.≈ 0.0267 (Round to four decimal places as needed)
C) A confidence interval is 0.5132 < p < 0.5666
A) The best point estimate of the population proportion (P) is calculated by dividing the number of respondents who said "yes" (x) by the total number of respondents (n).
In this case,
P = x/n = 557/1032 = 0.5399 (rounded to four decimal places).
B) The margin of error (E) is calculated using the formula: E = z * sqrt(P*(1-P)/n), where z represents the z-score associated with the desired confidence level. For a 99% confidence level, the z-score is approximately 2.576.
Plugging in the values,
E = 2.576 * sqrt(0.5399*(1-0.5399)/1032)
≈ 0.0267 (rounded to four decimal places).
C) To construct a confidence interval, we add and subtract the margin of error (E) from the point estimate (P). Thus, the 99% confidence interval is approximately 0.5399 - 0.0267 < p < 0.5399 + 0.0267. Simplifying, the confidence interval is 0.5132 < p < 0.5666 (rounded to four decimal places).
In summary, the best point estimate of the population proportion is 0.5399, the margin of error is approximately 0.0267, and the 99% confidence interval is 0.5132 < p < 0.5666.
Learn more about z-score from the
brainly.com/question/31871890
#SPJ11