Suppose that 2 ≤ f ' ( x ) ≤ 3 for all values of x . What are the minimum and maximum possible values of f ( 7 ) − f ( 2 ) ? ≤ f ( 7 ) − f ( 2 ) ≤

Answers

Answer 1

Answer:

10 ≤ f ( 7 ) − f ( 2 ) ≤ 15

Step-by-step explanation:

Integrating the given inequalities along the interval from x = 2 to x = 7 yields the minimum and maximum possible values:

[tex]2 \leq f ' ( x )\leq 3\\\int\limits^7_2 {2} \, dx \leq \int\limits^7_2 {f'(x)} \, dx \leq\int\limits^7_2 {3} \, dx \\\\2*7-(2*2)\leq f(7)-f(2)\leq 3*7-(3*2)\\10\leq f(7)-f(2)\leq 15[/tex]

The minimum possible value is 10 and the maximum possible value is 15.


Related Questions

ope Equation
fy
What is the equation of the line in point-slope form?
4
= {(x + 4)
Oy+4=;
O y-4 = 2(x + 4)
N
Oy - 0 = 2(x-4)
Oy - 4 = 2(x -0)
4
-2.
2.

Answers

Answer:

A

Step-by-step explanation:

For point-slope form, you need a point and the slope.

y - y₁ = m(x - x₁)

Looking at the graph, the points you have are (4, 0) and (-4, -4).  You can use these points to find the slope.  Divide the difference of the y's by the difference of the x's/

-4 - 0 = -4

-4 - 4 = -8

-4/-8 = 1/2

The slope is 1/2.  This cancels out choices C and D.

With the point (-4, -4), A is the answer.

the equation of the line in slope-intercept form is:

y = (1/2)x - 2

What is the Linear equation?

A linear equation is an algebraic equation of the form y=mx+b, where m is the slope and b is the y-intercept, and only a constant and a first-order (linear) term are included. Sometimes, the aforementioned is referred to as a "linear equation of two variables," with y and x serving as the variables.

From the graph, two points on the line are (-4, -4) and (4,0),

The formula for the slope of a line is:

m = (y₂ - y₁) / (x₁ - x₁)

where (x₁, y₁) and (x₂, y₂) are two points on the line.

Using the given points (-4, -4) and (4, 0), we can calculate the slope:

m = (0 - (-4)) / (4 - (-4))

m = 4 / 8

m = 1/2

Now that we know the slope, we can use the slope-intercept form of a line, which is:

y = mx + b

where m is the slope and b is the y-intercept.

To find the y-intercept, we can use one of the given points on the line. Let's use the point (-4, -4):

y = mx + b

-4 = (1/2)(-4) + b

-4 = -2 + b

b = -2

Therefore, the slope-intercept form of the line is y = (1/2)x - 2.

Learn more about Linear equations here:

https://brainly.com/question/11897796

#SPJ7

In 12 years, a bond with a 6.35% annual rate earned $7620 as simple interest. What was the principle amount of the bond

Answers

Answer:

The principal amount is $10160

Step-by-step explanation:

Given; Simple interest, I = 7620

Rate, R = 6.25

Time, T = 12

Principal, P =?

The formula for simple interest, I is;

[tex]I = \frac{PRT}{100}[/tex]

Making P the subject of formula;

[tex]P = \frac{I100}{RT}[/tex]

[tex]P = \frac{7620 *100}{6.25*12}[/tex]

[tex]P = \frac{762000}{75}\\P = 10160[/tex]

Therefore, the principal amount is $10160

Answer:

10000

Step-by-step explanation:

If an amount of money, P, called the principal, is invested for a period of t years at an annual interest rate r, the amount of simple interest, I, earned is given by

I=PrtwhereIPrt=interest=principal=rate=time

The following information is given.

Irt=$7,620=0.0635=12 years

Substituting the given information into the simple interest formula and solving for P gives

7,6207,620=(P)(0.0635)(12)=0.762P

Dividing both sides by 0.762, we have

P=7,6200.762=10,000

Thus, the principal amount of the bond was $10,000.

If two variables, x and y, have a very strong linear relationship, then:______. a. there is evidence that x causes a change in y.b. there is evidence that y causes a change in x.c. there might not be any causal relationship between x and y.d. none of these alternatives is correct.

Answers

Answer:

c. there might not be any causal relationship between x and y.

Step-by-step explanation:

A correlation can be defined as a numerical measure of the relationship between existing between two variables (x and y).

In Mathematics and Statistics, a group of data can either be negatively correlated, positively correlated or not correlated at all.

1. For a negative correlation: a set of values in a data increases, when the other set begins to decrease. Here, the correlation coefficient is less than zero (0).

2. For a positive correlation: a set of values in a data increases, when the other set also increases. Here, the correlation coefficient is greater than zero (0).

3. For no or zero correlation: a set of values in a data has no effect on the other set. Here, the correlation coefficient is equal to zero (0).

If two variables, x and y, have a very strong linear relationship, then there might not be any causal relationship between x and y.

A causal relation exists between two variables (x and y), if the occurrence of the first causes the other; where, the first variable (x) is referred to as the cause while the second variable (y) is the effect.

A strong linear relationship exists between two variables (x and y), if they both increases or decreases at the same time. It usually has a correlation coefficient greater than zero or a slope of 1.

Hence, if two variables, x and y, have a very strong linear relationship, then there might not be any causal relationship between x and y.

by how much is 25% of #25 greater than 15% of #15​

Answers

Answer:

4

Step-by-step explanation:

25% of 25

0.25 × 25 = 6.25

15% of 15​

0.15 × 15 = 2.25

Find the difference.

6.25 - 2.25

= 4

[tex]\frac{d}{7}[/tex] + –59 = –50

d = _______

Answers

Answer: d = 63

Explanation:
d/7 + (-59) = -50
d/7 - 59 = -50
d/7 = -50 + 59
d/7 = 9
d = 9 x 7
d = 63

Write the improper fraction as a mixed number 29/5

Answers

Answer:

5 4/5

Step-by-step explanation:

29 ÷ 5 = 5

29 - 25 = 4

Since 5x5 is 25 and we have 4 as a remainder we put it over the original denominator 5.

I really hope this helps.

29/5 as a mixed number is 5 and 4/5.

To convert the indecorous bit29/5 into a mixed number.

First, divide the numerator( 29) by the denominator( 5) and express the result as a whole number and a bit.

Now, 29 divided by 5 equals 5 with a remainder of 4.

The quotient( 5) becomes the whole number part of the mixed number, and the remainder( 4) becomes the numerator of the bit part, while the denominator remains the same.

Thus, 29/5 as a mixed number is 5 and 4/5.

Learn more about Mixed Fraction here:

https://brainly.com/question/29019463

#SPJ6

suppose we have a fuse box containing 40 fuses of which 6 are defectives. If two fuses are selected at random and removed from the box. Find the probability that both are defective, if the first fuse (a) Replaced (b) Not replaced.

Answers

Answer: a) P(1&2 =defect)= 1/800

b)  P(1&2 =defect)= 1/780

Step-by-step explanation:

a) The probability that 1st of the selected fuses is defective is   2/40=1/20 =0.05

So if we replace it by the not defective the number of defective fuses is 1 and total number is 40.

So the probability that 2-nd selected fuse is defective as well is 1/40

The probability both fuses are defective is

P(1&2 =defect)= 2/40*1/40=2/1600=1/800

b) The probability that 1st of the selected fuses is defective is   2/40=1/20 =0.05

SO residual amount of the fuses is 39. 1 of them is defective.

So the probability that 2-nd selected fuse is defective as well is 1/39

The probability both fuses are defective is

P(1&2 =defect)= 2/40*1/39=2/1560=1/780

pls pls help me help me help me​

Answers

Answer:

2

Step-by-step explanation:

Answer:

I hope it will help you....

Does the following systems produce an infinite number of solutions 2y + x = 4 ; 2y = -x +4

Answers

Answer:

Yes.

Step-by-step explanation:

In the future, simply plug both equations into Desmos.

I NEED HELP PLEASE, THANKS! :)
A music concert is organized at a memorial auditorium. The first row of the auditorium has 16 seats, the second row has 24 seats, the third row has 32 seats, and so on, increasing by 8 seats each row for a total of 50 rows. Find the number of people that can be accommodated in the sixteenth row. (Show work)

Answers

Answer: 136

Step-by-step explanation:

An= A1+(n-1)d

A1=16, d=8, and n=16

A16= 16 +(16-1)(8)

A16= 16(15)(8)

A16= 16+120

A16=136

Hey there! :)

Answer:

f(16) = 136 seats.

Step-by-step explanation:

This situation can be expressed as an explicit function where 'n' is the row number.

The question also states that the number of seats increases by 8. Use this in the equation:

f(n) = 16 + 8(n-1)

Solve for the number of seats in the 16th row by plugging in 16 for n:

f(16) = 16 + 8(16-1)

f(16) = 16 + 8(15)

f(16) = 16 + 120

f(16) = 136 seats.

Which equation can be used to find the area of the rectangle? A. A=9+4 B. A=1/2 (9)(4) C. A=9+9+4+4 D. A=(9)(4)

Answers

Answer:

D. A=(9)(4)

Step-by-step explanation:

area= length x width = 9x4

HELP ASAP! The number of entertainment websites in 1995 wass 54. By 2004 there were 793 entertainment website..
Approximately, what was the rate of change for the number of the websites for this time period??

Answers

Answer: Choice A. 82 websites per year

=============================================================

How I got that answer:

We have gone from 54 websites to 793 websites. This is a change of 793-54 = 739 new websites. This is over a timespan of 2004-1995 = 9 years.

Since we have 739 new websites over the course of 9 years, this means the rate of change is 739/9 = 82.1111... where the '1's go on forever. Rounding to the nearest whole number gets us roughly 82 websites a year.

----------

You could use the slope formula to get the job done. This is because the slope represents the rise over run

slope = rise/run

The rise is how much the number of websites have gone up or down. The run is the amount of time that has passed by. So slope = rise/run = 739/9 = 82.111...

In a more written out way, the steps would be

slope = rise/run

slope = (y2-y1)/(x2-x1)

slope = (793 - 54)/(2004 - 1995)

slope = 739/9

slope = 82.111....

triangle ABC is transformed to create triangle MNL?​

Answers

Answer:

The transformation is rigid because the corresponding side lengths and angles are congruent.

Step-by-step explanation:

Since we have congruent triangles (not similar triangles), they will have to have the same length and angles throughout your transformation. Therefore, our answer is the 1st Option.

Answer:

B) The transformation is rigid because the corresponding side lengths and angles are congruent.

Step-by-step explanation:

which term is the rate at which work is done​

Answers

Answer:

The answer is power.

Hope this helps you

A restaurant has a main location and a traveling food truck. The first matrix A shows the number of managers and associates employed. The second matrix B shows the average annual cost of salary and benefits​ (in thousands of​ dollars). Complete parts​ (a) through​ (c) below.

Managers Associates
Restaurant 5 25 = A
Food Truck 1 4

Salary Benefits
Managers 41 6 = B
Associates 20 2

a. Find the matrix product AB .
b. Explain what AB represents.
c. According to matrix AB , what is the total cost of salaries for all employees (managers and associates) at the restaurant? What is the total cost of benefits for all employees at the food truck?

Answers

Answer:

A*B= [tex]\left[\begin{array}{cc}705&80\\121&14 \end{array}\right][/tex]

Step-by-step explanation:

Given A=  [tex]\left[\begin{array}{cc}5&25\\1&4\end{array}\right] \left[\begin{array}{cc}41&6\\20&2\end{array}\right][/tex] = B

Finding A*B means multiplying the first row with the first column and first row with the second column would give the first row elements. The second ro0w elements are obtained by multiplying the second row with the 1st column and second row with the second column.

so A*B= [tex]\left[\begin{array}{cc}5*41+ 25*20&5*6 + 25*2\\ 1*41+4*20 & 1*6+ 4*2\end{array}\right][/tex]

Now multiply and add the separate elements of the matrix A*B=

[tex]\left[\begin{array}{cc}205+500&30+50\\41+80&6+8\end{array}\right][/tex]

A*B= [tex]\left[\begin{array}{cc}705&80\\121&14 \end{array}\right][/tex]

b. The 1st element of the 1st row shows the salaries of the managers and 2nd element of the 1st row the salaries of associates at the restaurant . The second row 1 st element shows the benefits of the managers and 2nd element the benefits of the associates at the food truck.

c. The total cost of salaries for all employees (managers and associates) at the restaurant = 705 + 80 = 785

Total cost of benefits for all employees at the food truck= 121 + 14= 135

HELPPPPPP!!!!!!!!!! ITS DUENSOON PLS

Answers

Your answer should be 664.11 hope this helped!

Answer:

Step-by-step explanation:

A=2(3.14)rh+2(3.14)r^2

A=2(3.14)(4.5)(19)+2(3.14)(4.5)^2

A=536.94+127.17

A=664.11

Might want to double the math but the formula is right!

Evaluate the expression ........

Answers

Answer:

13

Step-by-step explanation:

p^2 -6p +6

Let p=-1

(-1)^2 -6(-1) +6

1 +6+6

13

A rectangular park measuring 32 yards by 24 yards is surrounded by a trail of uniform width. If the area of the park and the trail combine is 1748 square yards, what is the width of the park

Answers

Answer:

The width = 38 yard

Step-by-step explanation:

Given

Dimension of Park = 32 by 24 yard

Area = 1748 yd²

Required

Find the width of the park

Given that the park is surrounded by a trail;

Let the distance between the park and the trail be represented with y;

Such that, the dimension of the park becomes (32 + y + y) by (24 + y + y) because it is surrounded on all sides

Area of rectangle is calculated as thus;

Area = Length * Width

Substitute 1748 for area; 32 + 2y and 24 + 2y for length and width

The formula becomes

[tex]1748 = (32 + 2y) * (24 +2y)[/tex]

Open Bracket

[tex]1748 = 32(24 + 2y) + 2y(24 + 2y)[/tex]

[tex]1748 = 768 + 64y + 48y + 4y^2[/tex]

[tex]1748 = 768 + 112y + 4y^2[/tex]

Subtract 1748 from both sides

[tex]1748 -1748 = 768 -1748 + 112y + 4y^2[/tex]

[tex]0 = 768 -1748 + 112y + 4y^2[/tex]

[tex]0 = -980 + 112y + 4y^2[/tex]

Rearrange

[tex]4y^2 + 112y -980 = 0[/tex]

Divide through by 4

[tex]y^2 + 28y - 245 = 0[/tex]

Expand

[tex]y^2 + 35y -7y - 245 = 0[/tex]

Factorize

[tex]y(y+35) - 7(y + 35) = 0[/tex]

[tex](y-7)(y+35) = 0[/tex]

Split the above into two

[tex]y - 7 = 0\ or\ y + 35 = 0[/tex]

[tex]y = 7\ or\ y = -35[/tex]

But y can't be less than 0;

[tex]So,\ y = 7[/tex]

Recall that the dimension of the park is 32 + 2y by 24 + 2y

So, the dimension becomes 32 + 2*7 by 24 + 2*7

Dimension = 32 + 14 yard by 24 + 14 yard

Dimension = 46 yard by 38 yard

Hence, the width = 38 yard

The manager of a mall conducted a survey among two groups (n1 = 100, n2 = 100) of visitors to the mall on different days. She found that the first group spent an average of 60 minutes in the mall, while the second group spent an average of 90 minutes in the mall. If the manager wishes to see the difference in the average times spent by the two groups in the mall,

Which of the following could be the alternative hypothesis?

a. The difference in the average times spent by the two groups in the mall is 30 minutes.
b. There is at least some difference in the average times spent by the two groups in the mall.
c. There is a difference in the average times spent by the two groups in the mall, with a standard deviation of 30 minutes.
d. There is no difference in the average times spent by the two groups in the mall.

Answers

Answer:

Option B - There is at least some difference in the average times spent by the two groups in the mall.

Step-by-step explanation:

A null hypothesis is a hypothesis that states that there is no statistical significance between the two variables. Thus, It is usually the hypothesis that a researcher or experimenter will try to disprove or discredit. While an alternative hypothesis is one that states there is a statistically significant relationship between two variables.

Now, applying these definitions to the question, we can see that;

Null Hypothesis is;

H0; There is no difference in the average times spent by the two groups in the mall

While the alternative hypothesis is;

Ha; There is at least some difference in the average times spent by the two groups in the mall

Thus, correct answer is option B

Answer:

It is option b

Step-by-step explanation:

The pair of figures is similar. Find x. Round to the nearest tenth if necessary.
0.1 ft
4.5 ft
0.9 ft
4 ft

Answers

Answer:

x = 4.5 ft

Step-by-step explanation:

Since the figures are similar then the ratios of corresponding sides are equal, that is

[tex]\frac{18}{x}[/tex] = [tex]\frac{8}{2}[/tex] ( cross- multiply )

8x = 36 ( divide both sides by 8 )

x = 4.5

According to a recent​ study, some experts believe that 15​% of all freshwater fish in a particular country have such high levels of mercury that they are dangerous to eat. Suppose a fish market has 150 fish we consider randomly sampled from the population of edible freshwater fish. Use the Central Limit Theorem​ (and the Empirical​ Rule) to find the approximate probability that the market will have a proportion of fish with dangerously high levels of mercury that is more than two standard errors above 0.15. You can use the Central Limit Theorem because the fish were randomly​ sampled; the population is more than 10 times 150​; and n times p is 22.5​, and n times​ (1 minus​ p) is 127.5​, and both are more than 10.

Answers

Answer:

The approximate probability that the market will have a proportion of fish with dangerously high levels of mercury that is more than two standard errors above 0.15 is 0.95.

Step-by-step explanation:

According to the Central limit theorem, if from an unknown population large samples of sizes n > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.

The mean of this sampling distribution of sample proportion is:

 [tex]\mu_{\hat p}=0.15[/tex]

The standard deviation of this sampling distribution of sample proportion is:

 [tex]\sigma_{\hat p}=\sqrt{\frac{p(1-p)}{n}}[/tex]

As the sample size is large, i.e. n = 150 > 30, the central limit theorem can be used to approximate the sampling distribution of sample proportion by the normal distribution.

Compute the mean and standard deviation as follows:

[tex]\mu_{\hat p}=0.15\\\\\sigma_{\hat p}=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.15(1-0.15)}{150}}=0.0292[/tex]

So, [tex]\hat p\sim N(0.15, 0.0292^{2})[/tex]

In statistics, the 68–95–99.7 rule, also recognized as the empirical rule, is a shortcut used to recall that 68%, 95% and 99.7% of the Normal distribution lie within one, two and three standard deviations of the mean, respectively.

Then,

                                  P (µ-σ < X < µ+σ) ≈ 0.68

                                  P (µ-2σ <X < µ+2σ) ≈ 0.95

                                  P (µ-3σ <X < µ+3σ) ≈ 0.997

Then the approximate probability that the market will have a proportion of fish with dangerously high levels of mercury that is more than two standard errors above 0.15 is 0.95.

That is:

[tex]P(\mu_{\hat p}-2\sigma_{\hat p}<\hat p<\mu_{\hat p}+2\sigma_{\hat p})=0.95\\\\P(0.15-2\cdot0.0292<\hat p<0.15+2\cdot0.0292)=0.95\\\\P(0.092<\hat p<0.208)=0.95[/tex]

I NEED HELP FAST, THANKS! :)

Answers

Answer:

  33 units²

Step-by-step explanation:

A (graphing) calculator shows you that f(4) ≈ 8, and f(8) ≈ 8.5. The curve is almost a straight line between, so the area is approximately ...

  A = (1/2)(8 + 8.5)(4) = 33

__

If you do the integration, it gets a bit messy.

  [tex]\displaystyle\dfrac{5}{7}\int_4^8{x^{2/7}}\,dx+\dfrac{1}{2}\int_4^8{x^{4/9}}\,dx+\int_4^8{6}\,dx\\\\=\left.\left(\dfrac{5}{9}x^{9/7}+\dfrac{9}{26}x^{13/9}+6x\right)\right|_4^8\approx 33.16[/tex]

The appropriate answer choice is 33 square units.

1)
Check all the expressions that are equal to this one:
5. (4+1)
A. (5 • 4) + 1
B. 5.4 + 5 - 1
C. (4+1) • 5
D. 5. (1 + 4)

Answers

The answer to this is C.

Show all work to solve 3x^2 – 5x – 2 = 0.

Answers

Answer:

Step-by-step explanation:

3x2−5x−2=0

For this equation: a=3, b=-5, c=-2

3x2+−5x+−2=0

Step 1: Use quadratic formula with a=3, b=-5, c=-2.

x= (−b±√b2−4ac )2a

x= (−(−5)±√(−5)2−4(3)(−2) )/2(3)

x= (5±√49 )/6

x=2 or x= −1 /3

Answer:

x=2 or x= −1/ 3

The solutions to the equation are x = -1/3 and x = 2.

Here are the steps on how to solve [tex]3x^{2}[/tex] – 5x – 2 = 0:

First, we need to factor the polynomial. The factors of 3 are 1, 3, and the factors of -2 are -1, 2. The coefficient on the x term is -5, so we need to find two numbers that add up to -5 and multiply to -2. The two numbers -1 and 2 satisfy both conditions, so the factored polynomial is (3x + 1)(x - 2).

Next, we set each factor equal to 0 and solve for x.

(3x + 1)(x - 2) = 0

3x + 1 = 0

3x = -1

x = -1/3

x - 2 = 0

x = 2

Therefore, the solutions to the equation [tex]3x^{2}[/tex] – 5x – 2 = 0 are x = -1/3 and x = 2.

Here is the explanation for each of the steps:

Step 1: In order to factor the polynomial, we need to find two numbers that add up to -5 and multiply to -2. The two numbers -1 and 2 satisfy both conditions, so the factored polynomial is (3x + 1)(x - 2).

Step 2: We set each factor equal to 0 and solve for x. When we set 3x + 1 equal to 0, we get x = -1/3. When we set x - 2 equal to 0, we get x = 2. Therefore, the solutions to the equation are x = -1/3 and x = 2.

Learn more about equation here: brainly.com/question/29657983

#SPJ2

Amit solved the equation StartFraction 5 over 12 EndFraction = Negative StartFraction x over 420 EndFraction for x using the steps shown below. What was Amit’s error?

Answers

Answer:

The product of 5/ 12 and –420 should have been the value of x.

Answer: D

Step-by-step explanation:

Took the test

Need help with this as soon as possible

Answers

Answer:

Step-by-step explanation:

[tex]\frac{14}{x} =14/x[/tex]

Thus, we can multiply both sides by x to get 14=0.  Because 14 does not equal 0, the equation has no solutions.  A value of x that makes the equation false is 541, which makes the simplified equation turn into 14=0.

Another value of x that makes the equation false is 7, which makes the simplified equation turn into 14=0.

Hope it helps <3

Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line.

y = ln 5x, y = 2, y = 3, x = 0; about the y-axis

2.Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line.

y2 = 2x, x = 2y; about the y-axis

3.Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line.

y = x, y = 0, x = 2, x = 7; about x = 1

Answers

Answer:

1. V = 15.95 (to 2 decimal places)

2. V = 107.23 (to 2 decimal places)

3. V = 560.25 (to 2 decimal places)

Step-by-step explanation:

1. y = ln 5x, y = 2, y = 3, x = 0; about the y-axis

Find volume using the disk method.

First find inverse of y=ln(5x)

5x = exp(y)

x(y)=exp(y)/5

Width of each strip = dy

length of each strip = x(y)

volume of each disk by rotation of strip about y=axis

dV = 2*pi*x(y)dy

total volume  

V = integral (dV) for y=2 to 3

= integral (2*pi*e^y/5) for y=2 to 3

= 2*pi*(e^y/5) for y=2 to 3

= 2pi(e^3-e^2)/5

= 15.95 (to 2 decimal places)

2. y2 = 2x, x = 2y; about the y-axis

Find point of intersection between  

solve y^2/2 = 2y  =>  y=4, x=2y=8, therefore

intersection is at (8,4), which is the upper integration limit

Using the disk method again

Volume of each disk

dV(y) = pi((2y)^2-(y^2/2)^2)dy

Total volume of solid  

V = integral(pi((2y)^2-(y^2/2)^2)dy) for y=0 to 4

= pi (4y^3/3 - y^5/20)  for y = 0,4

= pi (256/3 - 1024/20)

= 512pi/15

= 107.23 (to 2 decimal places)

3. y = x, y = 0, x = 2, x = 7; about x = 1

Use the shell method.

volume of each shell formed by roatation of a vertical strip about the axis of rotation (x=1)

dV = 2*pi*(x-1)*(y*dx)

Total volume of rotation

V = integral(2*pi*(x-1)*y dx for x=2 to 7

= 535pi/3

= 560.25 (to 2 decimal places)

60 points +brainleist to best answer!

Answers

Answer:

A and B are independent because P(A) * P(B) = P(A and B).

Step-by-step explanation:

If A and B are independent, then P(A) * P(B) = P(A and B)

since

P(A)*P(B) = (2/3*1/4) = 2/12 = 1 / 6 = P(A and B)

A and B are independent.

Answer:

YES THANKS FOR 30

Step-by-step explanation:

How do you write 0.0683 in scientific notation? ____× 10^____

Answers

Answer:

It's written as

[tex]6.83 \times {10}^{ - 2} [/tex]

Hope this helps you

Answer:

6.83 × 10 -2

hopefully this helped :3

What is the point-slope form of a line with slope 3/2 that contains the point
(-1,2)?
A. y+2 = (x - 1)
B. y-2 = {(x-1)
C. y-2 = = {(x+1)
D. y+2= {(x+1)

Answers

Answer:

y - 2 = (3/2)(x + 1)

Step-by-step explanation:

Start with the point-slope formula y - k = m(x - h).  With m = 3/2, h = -1 and k = 2, we get:

y - 2 = (3/2)(x + 1)

Other Questions
Vector A has components (5,6) and vector B has components (-12, 3). What is the direction of the vector C check all that apply A product price searcher (monopolist, oligopolist, or monopolistic competitive firm) will maximize its profits by hiring factors up to the point at whicha. MRP > MFC.b. VMP > MFC.c. MRP = MFC.d. VMP = MFC.e. c and d Punishment Received for Not Obeying Family Rules Please Help!! A number is tripled and then 17 is subtracted. If theresult is 40, find the original number.. How much physical activity should an adult have each week?A. 60 minutes per day, 7 days a weekB. 30 minutes per day, 7 days a weekC. 60 minutes per day, 5 days a weekD. 30 minutes per day, 5 days a weekPlease select the best answer from the choices provided.ABthere to searchQ81g Given: JP = KP; PX = PY Prove: PYJ PXK Triangles P Y J and P X K overlap and intersect at point Z. Point X of triangle P X K is on side J P of triangle P Y J. Point Y of triangle P Y J is on side K P of triangle P X K. Which best describes the missing reasons? : : Read the epitaphs of Mr. and Mrs. Purkapile from the Spoon River Anthology and answer the question that follows.Mrs. PurkapileHE ran away and was gone for a year.When he came home he told me the silly storyOf being kidnapped by pirates on Lake MichiganAnd kept in chains so he could not write me.I pretended to believe it, though I knew very wellWhat he was doing, and that he metThe milliner, Mrs. Williams, now and thenWhen she went to the city to buy goods, as she said.But a promise is a promiseAnd marriage is marriage,And out of respect for my own characterI refused to be drawn into a divorceBy the scheme of a husband who had merely grown tiredOf his marital vow and duty.Mr. PurkapileSHE loved me.Oh! how she loved me I never had a chance to escapeFrom the day she first saw me.But then after we were married I thoughtShe might prove her mortality and let me out,Or she might divorce me. But few die, none resign.Then I ran away and was gone a year on a lark.But she never complained. She said all would be wellThat I would return. And I did return.I told her that while taking a row in a boatI had been captured near Van Buren StreetBy pirates on Lake Michigan,And kept in chains, so I could not write her.She cried and kissed me, and said it was cruel,Outrageous, inhuman! I then concluded our marriageWas a divine dispensationAnd could not be dissolved,Except by death.I was right.Recall Benjamin Franklin said, "Good wives usually make good husbands" and "The likeliest Way, either to obtain a good Husband, or to keep one so, is to be Good yourself."What would Benjamin Franklin say about the Purkapile's marriage?Answer in at least three complete sentences using supporting details from the reading in this module 9. A 30 cm ruler is found to have a center of mass of 15.6 cm. The percent error of the center of mass is _____, if the ruler is assumed to have uniform mass. A competitive firm sells its output for $60 per unit. Assume that labor is the only input that varies for the firm. The marginal product of the 10th worker is 20 units of output per day; the marginal product of the 11th worker is 16 units of output per day. The firm pays its workers a wage of $150 per day. For the 11th worker, the value of the marginal product of labor is Which state of matter is characterized by ionized particles, no definite shape or volume, and good electrical conductivity? gas liquid plasma solid If 3x-5=10x+9, what is 4(x+7)? Find the length of UC Beth wrote a system of equations to determine when a referee will earn the same salary working the East Conference and West Conference games. y = 40x 25 and y = 35x 5 (x = total games and y = amount earned) Beth determined that at 135 games, the referee would earn the same salary for each conference game. Is she correct? based on the passage and what u have learned in the lesson, write three to four sentences explaining whether dipping letters in vinegar to prevent the spread of yellow fever was a good conclusion The master budgeting process typically begins with the sales budget and ends with a cash budget and: Solve the system of equations by substituion,-5x + y = 37.5x - 1.5y = 3 Q2:Which expression is equivalent to 4(x + 1) 7(x + 3)?A11x + 25B11x 17C3x 17D3x + 25 Nzjksjsjdidnxnskusxh A taut string of length 10 inches is plucked at the center. The vibration travels along the string at a constant rate of c inches per millisecond in both directions. If x represents the position on the string from the left-most end, so that 0x10, which of the following equations can be used to find the location x of the vibration after 0.3 milliseconds? A. | x -5 | =0. 3 B. cx5=0.3 C. | x -0.3 | = 5 D. | x - 10 | =0.3c