State whether the following statement is true or false. The two lines 5x+y=5 and 10x+2y=0 are parallel. Choose the correct answer below. True False

Answers

Answer 1

The correct answer that they are parallel or not is: True.

To determine if two lines are parallel, we need to compare their slopes. If the slopes of two lines are equal, then the lines are parallel.

If the slopes are different, the lines are not parallel.

Let's analyze the given lines:

Line 1: 5x + y = 5

Line 2: 10x + 2y = 0

To compare the slopes, we need to rewrite the equations in slope-intercept form (y = mx + b), where "m" represents the slope:

Line 1:

5x + y = 5

y = -5x + 5

Line 2:

10x + 2y = 0

2y = -10x

y = -5x

By comparing the slopes, we can see that the slopes of both lines are equal to -5. Since the slopes are the same, we can conclude that the lines are indeed parallel.

Therefore, the correct answer that they are parallel or not: True.

It's important to note that parallel lines have the same slope but may have different y-intercepts. In this case, both lines have a slope of -5, indicating that they are parallel.

To know more about parallel refer here:

https://brainly.com/question/16853486#

#SPJ11


Related Questions

you are given the following random sample from a population that you believe to be approximately normally distributed. a. What is a 95% confidence interval for the population mean value? b. What is a 95% lower confidence bound for the population variance?

Answers

A. What is a 95% confidence interval for the population mean value?

(9.72, 11.73)

To calculate a 95% confidence interval for the population mean, we need to know the sample mean, the sample standard deviation, and the sample size.

The sample mean is 10.72.

The sample standard deviation is 0.73.

The sample size is 10.

Using these values, we can calculate the confidence interval using the following formula:

Confidence interval = sample mean ± t-statistic * standard error

where:

t-statistic = critical value from the t-distribution with n-1 degrees of freedom and a 0.05 significance level

standard error = standard deviation / sqrt(n)

The critical value from the t-distribution with 9 degrees of freedom and a 0.05 significance level is 2.262.

The standard error is 0.73 / sqrt(10) = 0.24.

Therefore, the confidence interval is:

Confidence interval = 10.72 ± 2.262 * 0.24 = (9.72, 11.73)

This means that we are 95% confident that the population mean lies within the interval (9.72, 11.73).

B. What is a 95% lower confidence bound for the population variance?

10.56

To calculate a 95% lower confidence bound for the population variance, we need to know the sample variance, the sample size, and the degrees of freedom.

The sample variance is 5.6.

The sample size is 10.

The degrees of freedom are 9.

Using these values, we can calculate the lower confidence bound using the following formula:

Lower confidence bound = sample variance / t-statistic^2

where:

t-statistic = critical value from the t-distribution with n-1 degrees of freedom and a 0.05 significance level

The critical value from the t-distribution with 9 degrees of freedom and a 0.05 significance level is 2.262.

Therefore, the lower confidence bound is:

Lower confidence bound = 5.6 / 2.262^2 = 10.56

This means that we are 95% confident that the population variance is greater than or equal to 10.56.

Learn more about Confidence Interval.

https://brainly.com/question/33318373

#SPJ11

Given that the study manager wants the QC efforts to be focused on selecting outlier values, whose method is a better way of selecting the sample

Answers

The method suggested by the study statistician, which involves selecting values more than 3 standard deviations from the mean, is a better way of selecting the sample to focus on outlier values.

This method takes into account the variability of the data by considering the standard deviation. By selecting values that are significantly distant from the mean, it increases the likelihood of capturing clinically improbable or impossible values that may require further review.

On the other hand, the method suggested by the study manager, which selects the 75 highest and 75 lowest values for each lab test, does not take into consideration the variability of the data or the specific criteria for identifying outliers. It may include values that are within an acceptable range but are not necessarily outliers.

Therefore, the method suggested by the study statistician provides a more focused and statistically sound approach to selecting the sample for quality control efforts in identifying outlier values.

The question should be:

In the running of a clinical trial, much laboratory data has been collected and hand entered into a data base. There are 50 different lab tests and approximately 1000 values for each test, so there are about 50,000 data points in the data base. To ensure accuracy of these data, a sample must be taken and compared against source documents (i.e. printouts of the data) provided by the laboratories that performed the analyses.

The study manager for the trial can allocate resources to check up to 15% of the data and he wants the QC efforts to be focused on checking outlier values so that clinically improbable or impossible values may be identified and reviewed. He suggests that the sample consist of the 75 highest and 75 lowest values for each lab test since that represents about 15% of the data. However, he would be delighted if there was a way to select less than 15% of the data and thus free up resources for other study tasks.

The study statistician is consulted. He suggests calculating the mean and standard deviation for each lab test and including in the sample only the values that are more than 3 standard deviations from the mean.

Given that the study manager wants the QC efforts to be focused on selecting outlier values, whose method is a better way of selecting the sample?

To learn more about standard deviation:

https://brainly.com/question/475676

#SPJ11

for the solid, each cross section perpendicular to the x-axis is a rectangle whose height is three times its width in the xy-plane. what is the volume of the solid?

Answers

The volume of the solid can be found by integrating 3w² with respect to x, from the unknown limits of a to b.

To find the volume of the solid, we can use the concept of integration.

Let's assume the width of each rectangle is "w". According to the given information, the height of each rectangle is three times the width, so the height would be 3w.

Now, we need to find the limits of integration. Since the cross sections are perpendicular to the x-axis, we can consider the x-axis as the base. Let's assume the solid lies between x = a and x = b.

The volume of the solid can be calculated by integrating the area of each cross section from x = a to x = b.

The area of each cross section is given by:

Area = width * height

= w * 3w

= 3w²

Now, integrating the area from x = a to x = b gives us the volume of the solid:

Volume = [tex]\int\limits^a_b {3w^2} \, dx[/tex]

To find the limits of integration, we need to know the values of a and b.

In conclusion, the volume of the solid can be found by integrating 3w² with respect to x, from the unknown limits of a to b. Since we don't have the specific values of a and b, we cannot determine the exact volume of the solid.

To know more about limits of integration visit:

brainly.com/question/31994684

#SPJ11

derivative rules suppose u and v are differentiable functions at t=0 with u(0)=〈0, 1, 1〉, u′(0)=〈0, 7, 1〉, v(0)=〈0, 1, 1〉, and v′(0)=〈1, 1, 2〉 . evaluate the following expressions. ddt(u⋅v)|t=0

Answers

d/dt[u(t)·v(t)] = u(t)·v′(t) + v(t)·u′(t) is the derivative rule for the function and ddt(u⋅v)|t=0 = 11 is the evaluated value.

Let's use the Product Rule to differentiate u(t)·v(t), d/dt[u(t)·v(t)] = u(t)·v′(t) + v(t)·u′(t).

Using the Product Rule,

d/dt[u(t)·v(t)] = u(t)·v′(t) + v(t)·u′(t)

ddt(u⋅v) = u⋅v′ + v⋅u′

Given that u and v are differentiable functions at t=0 with u(0)=⟨0,1,1⟩, u′(0)=⟨0,7,1⟩, v(0)=⟨0,1,1⟩,

and v′(0)=⟨1,1,2⟩, we have

u(0)⋅v(0) = ⟨0,1,1⟩⋅⟨0,1,1⟩

=> 0 + 1 + 1 = 2

u′(0) = ⟨0,7,1⟩

v′(0) = ⟨1,1,2⟩

Therefore,

u(0)·v′(0) = ⟨0,1,1⟩·⟨1,1,2⟩

= 0 + 1 + 2 = 3

v(0)·u′(0) = ⟨0,1,1⟩·⟨0,7,1⟩

= 0 + 7 + 1 = 8

So, ddt(u⋅v)|t=0

= u(0)⋅v′(0) + v(0)⋅u′(0)

= 3 + 8 = 11

Hence, d/dt[u(t)·v(t)] = u(t)·v′(t) + v(t)·u′(t) is the derivative rule for the function and ddt(u⋅v)|t=0 = 11 is the evaluated value.

To know more about derivative visit:

https://brainly.com/question/25324584

#SPJ11

Consider the following function: f(x,y)=2xe −2y Step 1 of 3 : Find f xx.
​Consider the following function: f(x,y)=2xe −2y Step 2 of 3: Find f yy​
Consider the following function: f(x,y)=2xe −2y Step 3 of 3 : Find f xy

Answers

Step 1: To find f_xx, we differentiate f(x,y) twice with respect to x:

f_x = 2e^(-2y)

f_xx = (d/dx)f_x = (d/dx)(2e^(-2y)) = 0

So, f_xx = 0.

Step 2: To find f_yy, we differentiate f(x,y) twice with respect to y:

f_y = -4xe^(-2y)

f_yy = (d/dy)f_y = (d/dy)(-4xe^(-2y)) = 8xe^(-2y)

So, f_yy = 8xe^(-2y).

Step 3: To find f_xy, we differentiate f(x,y) with respect to x and then with respect to y:

f_x = 2e^(-2y)

f_xy = (d/dy)f_x = (d/dy)(2e^(-2y)) = -4xe^(-2y)

So, f_xy = -4xe^(-2y).

Learn more about differentiate here:

https://brainly.com/question/24062595

#SPJ11

suppose you sampled 14 working students and obtained the following data representing, number of hours worked per week {35, 20, 20, 60, 20, 13, 12, 35, 25, 15, 20, 35, 20, 15}. how many students would be in the 3rd class if the width is 15 and the first class ends at 15 hours per week? select one: 6 5 3 4

Answers

To determine the number of students in the third class, we need to first calculate the boundaries of each class interval based on the given width and starting point.

Given that the first class ends at 15 hours per week, we can construct the class intervals as follows:

Class 1: 0 - 15

Class 2: 16 - 30

Class 3: 31 - 45

Class 4: 46 - 60

Now we can examine the data and count how many values fall into each class interval:

Class 1: 13, 12, 15 --> 3 students

Class 2: 20, 20, 20, 25, 15, 20, 15 --> 7 students

Class 3: 35, 35, 35, 60, 35 --> 5 students

Class 4: 20 --> 1 student

Therefore, there are 5 students in the third class.

In summary, based on the given data and the class intervals with a width of 15 starting at 0-15, there are 5 students in the third class.

Learn more about interval here

https://brainly.com/question/30460486

#SPJ11

Suppose the probability of an IRS audit is 4.8 percent for U.S. taxpayers who file form 1040 and who earned $100,000 or more.

Answers

Approximately 480 taxpayers in this category can expect to be audited by the IRS.

The probability of an IRS audit for U.S. taxpayers who file form 1040 and earn $100,000 or more is 4.8 percent.

This means that out of every 100 taxpayers in this category, approximately 4.8 of them can expect to be audited by the IRS.
To calculate the number of taxpayers who can expect an audit, we can use the following formula:
Number of taxpayers audited

= Probability of audit x Total number of taxpayers
Let's say there are 10,000 taxpayers who file form 1040 and earn $100,000 or more.

To find out how many of them can expect an audit, we can substitute the given values into the formula:
Number of taxpayers audited

= 0.048 x 10,000

= 480
To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11
.

The odds of an IRS audit for a taxpayer who filed form 1040 and earned $100,000 or more are approximately 1 in 19.8. The odds of an event happening are calculated by dividing the probability of the event occurring by the probability of the event not occurring.

In this case, the probability of being audited is 4.8 percent, which can also be expressed as 0.048.

To calculate the odds of being audited, we need to determine the probability of not being audited. This can be found by subtracting the probability of being audited from 1. So, the probability of not being audited is 1 - 0.048 = 0.952.

To find the odds, we divide the probability of being audited by the probability of not being audited. Therefore, the odds of being audited for a taxpayer who filed form 1040 and earned $100,000 or more are:

    0.048 / 0.952 = 0.0504

This means that the odds of being audited for such a taxpayer are approximately 0.0504 or 1 in 19.8.

In conclusion, the odds of an IRS audit for a taxpayer who filed form 1040 and earned $100,000 or more are approximately 1 in 19.8.

Learn more about probability from the given link:

https://brainly.com/question/32117953

#SPJ11

Let \( f(x)=\left(x^{2}-x+2\right)^{5} \) a. Find the derivative. \( f^{\prime}(x)= \) b. Find \( f^{\prime}(3) \cdot f^{\prime}(3)= \)

Answers

a. Using chain rule, the derivative of a function is [tex]\[f'(x) = 5\left(x^2 - x + 2\right)^4 \cdot (2x - 1).\][/tex]

b. The evaluation of the function  f'(3) . f'(3) = 419990400

What is the derivative of the function?

a. To find the derivative of  [tex]\(f(x) = \left(x^2 - x + 2\right)^5\)[/tex], we can apply the chain rule.

Using the chain rule, we have:

[tex]\[f'(x) = 5\left(x^2 - x + 2\right)^4 \cdot \frac{d}{dx}\left(x^2 - x + 2\right).\][/tex]

To find the derivative of x² - x + 2, we can apply the power rule and the derivative of each term:

[tex]\[\frac{d}{dx}\left(x^2 - x + 2\right) = 2x - 1.\][/tex]

Substituting this result back into the expression for f'(x), we get:

[tex]\[f'(x) = 5\left(x^2 - x + 2\right)^4 \cdot (2x - 1).\][/tex]

b. To find f'(3) . f'(3) , we substitute x = 3  into the expression for f'(x) obtained in part (a).

So we have:

[tex]\[f'(3) = 5\left(3^2 - 3 + 2\right)^4 \cdot (2(3) - 1).\][/tex]

Simplifying the expression within the parentheses:

[tex]\[f'(3) = 5(6)^4 \cdot (6 - 1).\][/tex]

Evaluating the powers and the multiplication:

[tex]\[f'(3) = 5(1296) \cdot 5 = 6480.\][/tex]

Finally, to find f'(3) . f'(3), we multiply f'(3) by itself:

f'(3) . f'(3) = 6480. 6480 = 41990400

Therefore, f'(3) . f'(3) = 419990400.

Learn more on derivative of a function here;

https://brainly.com/question/32205201

#SPJ4

Complete question;

Let [tex]\(f(x) = \left(x^2 - x + 2\right)^5\)[/tex]. (a). Find the derivative of f'(x). (b). Find f'(3)



Solve the following equation.

37+w=5 w-27

Answers

The value of the equation is 16.

To solve the equation 37 + w = 5w - 27, we'll start by isolating the variable w on one side of the equation. Let's go step by step:

We begin with the equation 37 + w = 5w - 27.

First, let's get rid of the parentheses by removing them.

37 + w = 5w - 27

Next, we can simplify the equation by combining like terms.

w - 5w = -27 - 37

-4w = -64

Now, we want to isolate the variable w. To do so, we divide both sides of the equation by -4.

(-4w)/(-4) = (-64)/(-4)

w = 16

After simplifying and solving the equation, we find that the value of w is 16.

To check our solution, we substitute w = 16 back into the original equation:

37 + w = 5w - 27

37 + 16 = 5(16) - 27

53 = 80 - 27

53 = 53

The equation holds true, confirming that our solution of w = 16 is correct.

To know more about equation:

https://brainly.com/question/29538993


#SPJ4

Given that \( 6 i \) is a zero of \( g \), write the polynomial in factored form as a product of linear factors: \[ g(r)=6 r^{5}-7 r^{4}+204 r^{3}-238 r^{2}-432 r+504 \]

Answers

The factorization of the given polynomial is: [tex]\[g(r) = (r - 6i)(r + 6i)(2r - 3)(3r - 4)(r - 2)\][/tex].

As we are given that [tex]\(6i\)[/tex]is a zero of [tex]\(g\)[/tex]and we know that every complex zero has its conjugate as a zero as well,

hence the conjugate of [tex]\(6i\) i.e, \(-6i\)[/tex] will also be a zero of[tex]\(g\)[/tex].

Therefore, the factorization of the given polynomial is: [tex]\[g(r) = (r - 6i)(r + 6i)(2r - 3)(3r - 4)(r - 2)\][/tex].

To know more about polynomial visit:

https://brainly.com/question/11536910

#SPJ11

How are the graphs of y=2x and y=2x+2 related? The graph of y=2x+2 is the graph of y=2x translated two units down. The graph of y=2x+2 is the graph of y=2x translated two units right. The graph of y=2x+2 is the graph of y=2x translated two units up. The graph of y=2x+2 is the graph of y=2x translated two units left. The speedometer in Henry's car is broken. The function y=∣x−8∣ represents the difference y between the car's actual speed x and the displayed speed. a) Describe the translation. Then graph the function. b) Interpret the function and the translation in terms of the context of the situation

Answers

(a) The function y = |x - 8| represents the absolute difference y between the car's actual speed x and the displayed speed.

In terms of translation, the function y = |x - 8| is a translation of the absolute value function y = |x| horizontally by 8 units to the right. This means that the graph of y = |x - 8| is obtained by shifting the graph of y = |x| to the right by 8 units.

(b) The translation of the function y = |x - 8| has a specific interpretation in the context of the situation with Henry's car's broken speedometer. The value x represents the car's actual speed, and y represents the difference between the actual speed and the displayed speed.

By subtracting 8 from x in the function, we are effectively shifting the reference point from zero (which represents the displayed speed) to 8 (which represents the actual speed). Taking the absolute value ensures that the difference is always positive.

The graph of y = |x - 8| will have a "V" shape, centered at x = 8. The vertex of the "V" represents the point of equality, where the displayed speed matches the actual speed. As x moves away from 8 in either direction, y increases, indicating a greater discrepancy between the displayed and actual speed.

Overall, the function and its translation provide a way to visualize and quantify the difference between the displayed speed and the actual speed, helping to identify when the speedometer is malfunctioning.

LEARN MORE ABOUT speed here: brainly.com/question/32673092

#SPJ11

Science
10 Consider the following statement.
A student measured the pulse rates
(beats per minute) of five classmates
before and after running. Before they
ran, the average rate was 70 beats
per minute, and after they ran,
the average was 150 beats per minute.
The underlined portion of this statement
is best described as
Ja prediction.
Ka hypothesis.
L an assumption.
M an observation.

Answers

It is an observation rather than a prediction, hypothesis, or assumption.

The underlined portion of the statement, "Before they ran, the average rate was 70 beats per minute, and after they ran, the average was 150 beats per minute," is best described as an observation.

An observation is a factual statement made based on the direct gathering of data or information. In this case, the student measured the pulse rates of five classmates before and after running, and the statement reports the average rates observed before and after the activity.

It does not propose a cause-and-effect relationship or make any assumptions or predictions. Instead, it presents the actual measured values and provides information about the observed change in pulse rates. Therefore, it is an observation rather than a prediction, hypothesis, or assumption.

for such more question on prediction

https://brainly.com/question/25796102

#SPJ8

Question

A student measured the pulse rates

(beats per minute) of five classmates

before and after running. Before they

ran, the average rate was 70 beats

per minute, and after they ran,

the average was 150 beats per minute.

The underlined portion of this statement

is best described as

Ja prediction.

Ka hypothesis.

L an assumption.

M an observation.

find the exact length of the curve. y = 8 1 3 cosh(3x), 0 ≤ x ≤ 8

Answers

The calculated length of the arc is 3.336 units in the interval

How to determine the length of the arc

from the question, we have the following parameters that can be used in our computation:

y = 3cosh(x)

The interval is given as

[0, 8]

The arc length over the interval is represented as

[tex]L = \int\limits^a_b {{f(x)^2 + f'(x))}} \, dx[/tex]

Differentiate f(x)

y' = 3sinh(x)

Substitute the known values in the above equation, so, we have the following representation

[tex]L = \int\limits^8_0 {{3\cosh^2(x) + 3\sinh(x))}} \, dx[/tex]

Integrate using a graphing tool

L = 3.336

Hence, the length of the arc is 3.336 units

Read more about integral at

brainly.com/question/32418363

#SPJ4

Question 5 (20 points ) (a) in a sample of 12 men the quantity of hemoglobin in the blood stream had a mean of 15 / and a standard deviation of 3 g/ dlfind the 99% confidence interval for the population mean blood hemoglobin . (round your final answers to the nearest hundredth ) the 99% confidence interval is. dot x pm t( s sqrt n )15 pm1

Answers

The 99% confidence interval for the population mean blood hemoglobin is 12.31 < μ < 17. 69.

Given that,

Hemoglobin concentration in a sample of 12 men had a mean of 15 g/dl and a standard deviation of 3 g/dl.

We have to find the 99% confidence interval for the population mean blood hemoglobin.

We know that,

Let n = 12

Mean X = 15 g/dl

Standard deviation s = 3 g/dl

The critical value α = 0.01

Degree of freedom (df) = n - 1 = 12 - 1 = 11

[tex]t_c[/tex] = [tex]z_{1-\frac{\alpha }{2}, n-1}[/tex] = 3.106

Then the formula of confidential interval is

= (X - [tex]t_c\times \frac{s}{\sqrt{n} }[/tex] ,  X + [tex]t_c\times \frac{s}{\sqrt{n} }[/tex] )

= (15- 3.106 × [tex]\frac{3}{\sqrt{12} }[/tex], 15 + 3.106 × [tex]\frac{3}{\sqrt{12} }[/tex] )

= (12.31, 17.69)

Therefore, The 99% confidence interval for the population mean blood hemoglobin is 12.31 < μ < 17. 69.

To know more about interval visit:

https://brainly.com/question/32670572

#SPJ4

2. Let Ψ(t) be a fundamental matrix for a system of differential equations where Ψ(t)=[ −2cos(3t)
cos(3t)+3sin(3t)

−2sin(3t)
sin(3t)−3cos(3t)

]. Find the coefficient matrix, A(t), of a system for which this a fundamental matrix. - Show all your work.

Answers

The coefficient matrix A(t) for which Ψ(t) is a fundamental matrix is:

A(t) = [ -3cos(3t) + 9sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

This matrix represents the coefficients of the system of differential equations associated with the given fundamental matrix Ψ(t).

To find the coefficient matrix A(t) for which Ψ(t) is a fundamental matrix, we can use the formula:

A(t) = Ψ'(t) * Ψ(t)^(-1)

where Ψ'(t) is the derivative of Ψ(t) with respect to t and Ψ(t)^(-1) is the inverse of Ψ(t).

We have Ψ(t) = [ -2cos(3t)   cos(3t) + 3sin(3t)

             -2sin(3t)   sin(3t) - 3cos(3t) ],

we need to compute Ψ'(t) and Ψ(t)^(-1).

First, let's find Ψ'(t) by taking the derivative of each element in Ψ(t):

Ψ'(t) = [ 6sin(3t)    -3sin(3t) + 9cos(3t)

         -6cos(3t)   -3cos(3t) - 9sin(3t) ].

Next, let's find Ψ(t)^(-1) by calculating the inverse of Ψ(t):

Ψ(t)^(-1) = (1 / det(Ψ(t))) * adj(Ψ(t)),

where det(Ψ(t)) is the determinant of Ψ(t) and adj(Ψ(t)) is the adjugate of Ψ(t).

The determinant of Ψ(t) is given by:

det(Ψ(t)) = (-2cos(3t)) * (sin(3t) - 3cos(3t)) - (-2sin(3t)) * (cos(3t) + 3sin(3t))

         = 2cos(3t)sin(3t) - 6cos^2(3t) - 2sin(3t)cos(3t) - 6sin^2(3t)

         = -8cos^2(3t) - 8sin^2(3t)

         = -8.

The adjugate of Ψ(t) can be obtained by swapping the elements on the main diagonal and changing the signs of the elements on the off-diagonal:

adj(Ψ(t)) = [ sin(3t) -3sin(3t)

            cos(3t) + 3cos(3t) ].

Finally, we can calculate Ψ(t)^(-1) using the determined values:

Ψ(t)^(-1) = (1 / -8) * [ sin(3t) -3sin(3t)

                        cos(3t) + 3cos(3t) ]

         = [ -sin(3t) / 8   3sin(3t) / 8

             -cos(3t) / 8  -3cos(3t) / 8 ].

Now, we can compute A(t) using the formula:

A(t) = Ψ'(t) * Ψ(t)^(-1)

    = [ 6sin(3t)    -3sin(3t) + 9cos(3t) ]

      [ -6cos(3t)   -3cos(3t) - 9sin(3t) ]

      * [ -sin(3t) / 8   3sin(3t) / 8 ]

         [ -cos(3t) / 8  -3cos(3t) / 8 ].

Multiplying the matrices, we obtain:

A(t) = [ -3cos(3t) + 9

sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

Therefore, the coefficient matrix A(t) for which Ψ(t) is a fundamental matrix is given by:

A(t) = [ -3cos(3t) + 9sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

To know more about coefficient matrix refer here:
https://brainly.com/question/17815790#

#SPJ11

Use the rule for order of operations to simplify the expression as much as possible: 18-2(2 . 4-4)=

Answers

The simplified form of the expression 18 - 2(2 * 4 - 4) is 10.

To simplify the expression using the order of operations (PEMDAS/BODMAS), we proceed as follows:

18 - 2(2 * 4 - 4)

First, we simplify the expression inside the parentheses:

2 * 4 = 8

8 - 4 = 4

Now, we substitute the simplified value back into the expression:

18 - 2(4)

Next, we multiply:

2 * 4 = 8

Finally, we subtract:

18 - 8 = 10

Therefore, the simplified form of the expression 18 - 2(2 * 4 - 4) is 10.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

The lengths of the legs of a right triangle are given below. Find the length of the hypotenuse. a=55,b=132 The length of the hypotenuse is units.

Answers

The length of the hypotenuse of a right triangle can be found using the Pythagorean theorem. In this case, with the lengths of the legs being a = 55 and b = 132, the length of the hypotenuse is calculated as c = √(a^2 + b^2). Therefore, the length of the hypotenuse is approximately 143.12 units.

The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (c) is equal to the sum of the squares of the lengths of the other two sides (a and b). Mathematically, it can be expressed as c^2 = a^2 + b^2.

In this case, the lengths of the legs are given as a = 55 and b = 132. Plugging these values into the formula, we have c^2 = 55^2 + 132^2. Evaluating this expression, we find c^2 = 3025 + 17424 = 20449.

To find the length of the hypotenuse, we take the square root of both sides of the equation, yielding c = √20449 ≈ 143.12. Therefore, the length of the hypotenuse is approximately 143.12 units.

Learn more about Pythagorean theorem

brainly.com/question/14930619

#SPJ11



Goldbach's conjecture states that every even number greater than 2 can be written as the sum of two primes. For example, 4=2+2,6=3+3 , and 8=3+5 .

b. Given the conjecture All odd numbers greater than 2 can be written as the sum of two primes, is the conjecture true or false? Give a counterexample if the conjecture is false.

Answers

According to the given question ,the conjecture is false.The given conjecture, "All odd numbers greater than 2 can be written as the sum of two primes," is false.


1. Start with the given conjecture: All odd numbers greater than 2 can be written as the sum of two primes.
2. Take the counterexample of the number 9.
3. Try to find two primes that add up to 9. However, upon investigation, we find that there are no two primes that add up to 9.
4. Therefore, the conjecture is false.

To learn more about odd numbers

https://brainly.com/question/16898529

#SPJ11

Use transformations of the graph of f(x)=e^x to graph the given function. Be sure to the give equations of the asymptotes. Use the graphs to determine each function's domain and range. If applicable, use a graphing utility to confirm the hand-drawn graphs. g(x)=e^(x−5). Determine the transformations that are needed to go from f(x)=e^x to the given graph. Select all that apply. A. shrink vertically B. shift 5 units to the left C. shift 5 units downward D. shift 5 units upward E. reflect about the y-axis F. reflect about the x-axis G. shrink horizontally H. stretch horizontally I. stretch vertically

Answers

Use transformations of the graph of f(x)=e^x to graph the given function. Be sure to the give equations of the asymptotes. Thus, option C, A, H and I are the correct answers.

The given function is g(x) = e^(x - 5). To graph the function, we need to determine the transformations that are needed to go from f(x) = e^x to g(x) = e^(x - 5).

Transformations are described below:Since the x-axis value is increased by 5, the graph must shift 5 units to the right. Therefore, option B is incorrect. The graph shifts downwards by 5 units since the y-axis value of the graph is reduced by 5 units.

Therefore, the correct option is C.

The graph gets shrunk vertically since it becomes narrower. Therefore, option A is correct.Since there are no y-axis changes, the graph is not reflected about the y-axis. Therefore, the correct option is not E.Since there are no x-axis changes, the graph is not reflected about the x-axis. Therefore, the correct option is not F.

There is no horizontal compression because the horizontal distance between the points remains the same. Therefore, the correct option is not G.There is a horizontal expansion since the graph is stretched out. Therefore, the correct option is H.

There is a vertical expansion since the graph is stretched out. Therefore, the correct option is I.Using the transformations, the new graph will be as shown below:Asymptotes:

There are no horizontal asymptotes for the function. Range: (0, ∞)Domain: (-∞, ∞)The graph shows that the function is an increasing function. Therefore, the range of the function is (0, ∞) and the domain is (-∞, ∞). Thus, option C, A, H and I are the correct answers.

Learn more about Transformations  here:

https://brainly.com/question/11709244

#SPJ11

Equations are given whose graphs enclose a region. Find the area of the region. (Give an exact answer. Do not round.)
f(x) = x^2; g(x) = − 1/13 (13 + x); x = 0; x = 3

Answers

To find the area of the region enclosed by the graphs of the given equations, f(x) = x^2 and g(x) = -1/13(13 + x), within the interval x = 0 to x = 3, we need to calculate the definite integral of the difference between the two functions over that interval.

The region is bounded by the x-axis (y = 0) and the two given functions, f(x) = x^2 and g(x) = -1/13(13 + x). To find the area of the region, we integrate the difference between the upper and lower functions over the interval [0, 3].

To set up the integral, we subtract the lower function from the upper function:

A = ∫[0,3] (f(x) - g(x)) dx

Substituting the given functions:

A = ∫[0,3] (x^2 - (-1/13)(13 + x)) dx

Simplifying the expression:

A = ∫[0,3] (x^2 + (1/13)(13 + x)) dx

Now, we can evaluate the integral to find the exact area of the region enclosed by the graphs of the two functions over the interval [0, 3].

Learn more about integrate here:

https://brainly.com/question/31744185

#SPJ11

a perimeter of 2,000 centimeters and a width that is 100
centimeters less than its length. Find the area of rectangle
cm2

Answers

the area of the rectangle is 247,500 cm².

the length of the rectangle be l.

Then the width will be (l - 100) cm.

The perimeter of the rectangle can be defined as the sum of all four sides.

Perimeter = 2 (length + width)

So,2,000 cm = 2(l + (l - 100))2,000 cm

= 4l - 2000 cm4l

= 2,200 cml

= 550 cm

Now, the length of the rectangle is 550 cm. Then the width of the rectangle is

(550 - 100) cm = 450 cm.

Area of the rectangle can be determined as;

Area = length × width

Area = 550 cm × 450 cm

Area = 247,500 cm²

To learn more about area

https://brainly.com/question/15822332

#SPJ11

Suppose g is a function which has continuous derivatives, and that g(0)=−13,g ′
(0)=6, g ′′
(0)=6 and g ′′′
(0)=18 What is the Taylor polnomial of degree 2 for a, centered at a=0 ? T 2

(x)= What is the Taylor polnomial of degree 3 for q, centered at a=0 ? T 3

(x)= Use T 2

(x) to approximate g(0.2)≈ Use T 3

(x) to approximate g(0.2)≈

Answers

g(0.2) ≈ -11.656 using the Taylor polynomial of degree 3.

To find the Taylor polynomial of degree 2 for a function g centered at a = 0, we need to use the function's values and derivatives at that point. The Taylor polynomial is given by the formula:

T2(x) = g(0) + g'(0)(x - 0) + (g''(0)/2!)(x - 0)^2

Given the function g(0) = -13, g'(0) = 6, and g''(0) = 6, we can substitute these values into the formula:

T2(x) = -13 + 6x + (6/2)(x^2)

      = -13 + 6x + 3x^2

Therefore, the Taylor polynomial of degree 2 for g centered at a = 0 is T2(x) = -13 + 6x + 3x^2.

Now, let's find the Taylor polynomial of degree 3 for the same function g centered at a = 0. The formula for the Taylor polynomial of degree 3 is:

T3(x) = T2(x) + (g'''(0)/3!)(x - 0)^3

Given g'''(0) = 18, we can substitute this value into the formula:

T3(x) = T2(x) + (18/3!)(x^3)

      = -13 + 6x + 3x^2 + (18/6)x^3

      = -13 + 6x + 3x^2 + 3x^3

Therefore, the Taylor polynomial of degree 3 for g centered at a = 0 is T3(x) = -13 + 6x + 3x^2 + 3x^3.

To approximate g(0.2) using the Taylor polynomial of degree 2 (T2(x)), we substitute x = 0.2 into T2(x):

g(0.2) ≈ T2(0.2) = -13 + 6(0.2) + 3(0.2)^2

                 = -13 + 1.2 + 0.12

                 = -11.68

Therefore, g(0.2) ≈ -11.68 using the Taylor polynomial of degree 2.

To approximate g(0.2) using the Taylor polynomial of degree 3 (T3(x)), we substitute x = 0.2 into T3(x):

g(0.2) ≈ T3(0.2) = -13 + 6(0.2) + 3(0.2)^2 + 3(0.2)^3

                 = -13 + 1.2 + 0.12 + 0.024

                 = -11.656

Learn more about Taylor polynomial here: brainly.com/question/32476593

#SPJ11

Let S be the universal set, where: S={1,2,3,…,18,19,20} Let sets A and B be subsets of S, where: Set A={3,6,9,11,13,15,19,20} Set B={1,4,9,11,12,14,20} Find the following: LIST the elements in the set (A∣JB) : (A∪B)={ Enter the elements as a list, separated by commas. If the result is the empty set, enter DNE LIST the elements in the set (A∩B) : (A∩B)={1 Enter the elements as a list. sedarated bv commas. If the result is tne emotv set. enter DNE

Answers

The elements in the Set (A∪B) are: 1, 3, 4, 6, 9, 11, 12, 13, 14, 15, 19, 20.

And the elements in the set (A∩B) are: 9, 11.

To find (A∪B), which is the set of all elements that are in A or B (or both), we simply combine the elements of both sets without repeating any element. Therefore:

(A∪B) = {1, 3, 4, 6, 9, 11, 12, 13, 14, 15, 19, 20}

To find (A∩B), which is the set of all elements that are in both A and B, we need to identify the elements that are common to both sets. Therefore:

(A∩B) = {9, 11}

Therefore, the elements in the set (A∪B) are: 1, 3, 4, 6, 9, 11, 12, 13, 14, 15, 19, 20.

And the elements in the set (A∩B) are: 9, 11.

Learn more about "Set" : https://brainly.com/question/13458417

#SPJ11

Compulsory for the Cauchy-Euler equations. - Problem 8: Determine whether the function f(z)=1/z is analytic for all z or not.

Answers

The function f(z) = 1/z is not analytic for all values of z.  In order for a function to be analytic, it must satisfy the Cauchy-Riemann equations, which are necessary conditions for differentiability in the complex plane.

The Cauchy-Riemann equations state that the partial derivatives of the function's real and imaginary parts must exist and satisfy certain relationships.

Let's consider the function f(z) = 1/z, where z = x + yi, with x and y being real numbers. We can express f(z) as f(z) = u(x, y) + iv(x, y), where u(x, y) represents the real part and v(x, y) represents the imaginary part of the function.

In this case, u(x, y) = 1/x and v(x, y) = 0. Taking the partial derivatives of u and v with respect to x and y, we have ∂u/∂x = -1/x^2, ∂u/∂y = 0, ∂v/∂x = 0, and ∂v/∂y = 0.

The Cauchy-Riemann equations require that ∂u/∂x = ∂v/∂y and ∂u/∂y = -∂v/∂x. However, in this case, these conditions are not satisfied since ∂u/∂x ≠ ∂v/∂y and ∂u/∂y ≠ -∂v/∂x. Therefore, the function f(z) = 1/z does not satisfy the Cauchy-Riemann equations and is not analytic for all values of z.

Learn more about derivatives here: https://brainly.com/question/25324584

#SPJ11

Consider the following quadratic function. f(x)=−2x^2 − 4x+1 (a) Write the equation in the form f(x)=a(x−h)^2 +k. Then give the vertex of its graph. (b) Graph the function. To do this, plot five points on the graph of the function: the vertex, two points to the left of the vertex, and two points to the right of the vertex. Then click on the graph-a-function button.

Answers

(a) In order to write the equation in the form f(x) = a(x - h)^2 + k, we need to complete the square and convert the given quadratic function into vertex form, where h and k are the coordinates of the vertex of the graph, and a is the vertical stretch or compression coefficient. f(x) = -2x² - 4x + 1

= -2(x² + 2x) + 1

= -2(x² + 2x + 1 - 1) + 1

= -2(x + 1)² + 3Therefore, the vertex of the graph is (-1, 3).

Thus, f(x) = -2(x + 1)² + 3. The vertex of its graph is (-1, 3). (b) To graph the function, we can first list the x-coordinates of the points we need to plot, which are the vertex (-1, 3), two points to the left of the vertex, and two points to the right of the vertex.

Let's choose x = -3, -2, -1, 0, and 1.Then, we can substitute each x value into the equation we derived in part

(a) When we plot these points on the coordinate plane and connect them with a smooth curve, we obtain the graph of the quadratic function. f(-3) = -2(-3 + 1)² + 3

= -2(4) + 3 = -5f(-2)

= -2(-2 + 1)² + 3

= -2(1) + 3 = 1f(-1)

= -2(-1 + 1)² + 3 = 3f(0)

= -2(0 + 1)² + 3 = 1f(1)

= -2(1 + 1)² + 3

= -13 Plotting these points and connecting them with a smooth curve, we get the graph of the quadratic function as shown below.

To know more about equation, visit:

https://brainly.com/question/29657983

#SPJ11



Multiply and simplify.

-³√2 x² y² . 2 ³√15x⁵y

Answers

After simplifying the given expression [tex]-³√2 x² y² . 2 ³√15x⁵y[/tex], we know that the resultant answer is [tex]30x⁷y³.[/tex]

To multiply and simplify the expression [tex]-³√2 x² y² . 2 ³√15x⁵y[/tex], we can use the rules of exponents and radicals.

First, let's simplify the radicals separately.

-³√2 can be written as 2^(1/3).

[tex]2³√15x⁵y[/tex] can be written as [tex](15x⁵y)^(1/3).[/tex]

Next, we can multiply the coefficients together: [tex]2 * 15 = 30.[/tex]

For the variables, we add the exponents together:[tex]x² * x⁵ = x^(2+5) = x⁷[/tex], and [tex]y² * y = y^(2+1) = y³.[/tex]

Combining everything, the final answer is: [tex]30x⁷y³.[/tex]

Know more about expression here:

https://brainly.com/question/1859113

#SPJ11

The simplified expression after multiplying is expression =[tex]-6x^(11/3) y^(11/3).[/tex]

To multiply and simplify the expression -³√2 x² y² . 2 ³√15x⁵y, we need to apply the laws of exponents and radicals.

Let's break it down step by step:

1. Simplify the radical expressions:
  -³√2 can be written as 1/³√(2).
  ³√15 can be simplified to ³√(5 × 3), which is ³√5 × ³√3.

2. Multiply the coefficients:
  1/³√(2) × 2 = 2/³√(2).

3. Multiply the variables with the same base, x and y:
  x² × x⁵ = x²+⁵ = x⁷.
  y² × y = y²+¹ = y³.

4. Multiply the radical expressions:
  ³√5 × ³√3 = ³√(5 × 3) = ³√15.

5. Combining all the results:
  2/³√(2) × ³√15 × x⁷ × y³ = 2³√15/³√2 × x⁷ × y³.

This is the simplified form of the expression. The numerical part is 2³√15/³√2, and the variable part is x⁷y³.

Please note that this is the simplified form of the expression, but if you have any additional instructions or requirements, please let me know and I will be happy to assist you further.

Learn more about expression:

brainly.com/question/34132400

#SPJ11



John simplified the expression as shown. Is his work correct? Explain.

Answers

The correct simplification of algebraic expression 3 + (-15) ÷ (3) + (-8)(2) is -18.

Simplifying an algebraic expression is when we use a variety of techniques to make algebraic expressions more efficient and compact – in their simplest form – without changing the value of the original expression.

John's simplification in incorrect as it does not follow the rules of DMAS. This means that while solving an algebraic expression, one should follow the precedence of division, then multiplication, then addition and subtraction.

The correct simplification is as follows:

= 3 + (-15) ÷ (3) + (-8)(2)

= 3 - 5 - 16

= 3 - 21

= -18

Learn more about algebraic expression here

https://brainly.com/question/28884894

#SPJ4

John simplified the expression below incorrectly. Shown below are the steps that John took. Identify and explain the error in John’s work.

=3 + (-15) ÷ (3) + (-8)(2)

= −12 ÷ (3) + (−8)(2)

= -4 + 16

= 12



Expand each binomial.

(3 y-11)⁴

Answers

Step-by-step explanation:

mathematics is a equation of mind.

8. If one of the roots of \( x^{3}+2 x^{2}-11 x-12=0 \) is \( -4 \), the remaining solutions are (a) \( -3 \) and 1 (b) \( -3 \) and \( -1 \) (c) 3 and \( -1 \) (d) 3 and 1

Answers

The remaining solutions of the cubic equation x^3 + 2x^2 - 11x - 12 = 0 with one root -4 is x= 3 and x=-1 (Option c)

To find the roots of the cubic equation x^3 + 2x^2 - 11x - 12 = 0 other than -4 ,

Perform polynomial division or synthetic division using -4 as the divisor,

        -4 |  1   2   -11   -12

            |     -4      8      12

        -------------------------------

           1  -2   -3      0

The quotient is x^2 - 2x - 3.

By setting the quotient equal to zero and solve for x,

x^2 - 2x - 3 = 0.

Factorizing the quadratic equation using the quadratic formula to find the remaining solutions, we get,

(x - 3)(x + 1) = 0.

Set each factor equal to zero and solve for x,

x - 3 = 0 gives x = 3.

x + 1 = 0 gives x = -1.

Therefore, the remaining solutions are x = 3 and x = -1.

To learn more about quadratic formula visit:

https://brainly.com/question/29077328

#SPJ11

The function r(t)=⟨2sin(5t),0,3+2cos(5t)) traces a circle. Determine the radius, center, and plane containing the circle. (Use symbolic notation and fractions where needed.) radius: (Use symbolic notation and fractions where needed. Give your answer as the coordinates of a point in the form (*, ∗, ) ).) center: The circle lies in the yz-plane xy-plane xz-plane

Answers

The function r(t) = ⟨2sin(5t), 0, 3+2cos(5t)⟩ traces a circle. The radius of the circle is 2 units, and the center is located at the point (0, 0, 3). The circle lies in the xy-plane.

To determine the radius of the circle, we can analyze the expression for r(t) = ⟨2sin(5t), 0, 3+2cos(5t)⟩. In this case, the x-coordinate is given by 2sin(5t), the y-coordinate is always 0, and the z-coordinate is 3+2cos(5t). Since the y-coordinate is always 0, the circle lies in the xz-plane.

For a circle with center (a, b, c) and radius r, the general equation of a circle can be expressed as (x-a)² + (y-b)² + (z-c)² = r². Comparing this equation with the given function r(t), we can determine the values of the center and radius.

In our case, the x-coordinate is 2sin(5t), which means the center lies at x = 0. The y-coordinate is always 0, so the center's y-coordinate is 0. The z-coordinate is 3+2cos(5t), so the center's z-coordinate is 3. Therefore, the center of the circle is (0, 0, 3).

To find the radius, we need to consider the distance from the center to any point on the circle. Since the x-coordinate ranges from -2 to 2, we can see that the maximum distance from the center to any point on the circle is 2 units. Hence, the radius of the circle is 2 units.

In conclusion, the circle traced by the function r(t) = ⟨2sin(5t), 0, 3+2cos(5t)⟩ has a radius of 2 units and is centered at (0, 0, 3). It lies in the xy-plane, as the y-coordinate is always 0.

Learn more about Radius of Circle here:

brainly.com/question/31831831

#SPJ11

Other Questions
a. Describe one thing you have learned that will influence/change how you will approach the second half of your project.b. We have focused much of the training on teamwork and team dynamics. Describe an issue or conflict that arose on your project and how you resolved it. Was this an effective way to resolve it? If yes, then why, or if not how would you approach the problem differently going forward?c. Life-long learning is an important engineering skill. Describe life-long learning in your own words, and how you have applied this to your work on your project.d. How is your Senior Design experience different from your initial expectations?e. How do you feel your team is performing, and do you believe the team is on track to finish your project successfully? Why or why not? CLINICAL CASE 10 REPRODUCTIVE SYSTEM year-old woman visits an infertility clinic complaining that she and her husband A 34- have attempted conceive for 3 years without results. Her sexual history revealed a past of unprotected sex with different partners. She always had irregular periods. No pelvic or Pap smears have been done in the past 10 years. Her cervix appeared to be inflamed and bled easily during scraping for a Pap smear Upon pelvic examination she had bilateral, slightly tender masses on either side of her uterus, each 6-8 cm in diameter. Imaging revealed bilateral complete obstruction of both fallopian tubes. A lab of cervical mucus tested positive for STD. Her Pap test result was "High-Grade Squamous Intraepithelial Lesion. A total hysterectomy is performed. Questions 1. What is the diagnosis (referring to the Pap test)? 2. What do you think is the stage of the disease? 3. Which is the causative agent of this disease? 4. What do you think is the cause of fallopian tubes' obstruction? Which is the most common STD that produces this condition? 5. What are the two bilateral masses? A power plant has thermal efficiency of 0.3. It receives 1000 kW of heat at 600C while it rejects 100 kW of heat at 25C. The amount of work done by a pump is 10 kW. The efficiency of electricity generation using the mechanical work produced by the turbine is 0.7. Estimate the electrical work produced. Q2 Any unwanted component in a signal can be filtered out using a digital filter. By assuming your matrix number as 6 samples of a discrete input signal, x[n] of the filter system, (a) (b) (c) Design a highpass FIR digital filter using a sampling frequency of 30 Hz with a cut-off frequency of 10 Hz. Please design the filter using Hamming window and set the filter length, n = 5. Analyse your filter designed in Q2 (a) using the input signal, x[n]. Plot the calculated output signal. note: if your matrix number is XX123456, 6 samples as signal used in Q2 should be {1,2,3,4,5,6} Label the components of the cell membrane3. Label the components of the cell membrane: AL in comparing two enolates, the one with more substituents around the c=c double bond is lower in energy and is called the ____________ enolate. A manufacturer of yeast finds that the culture grows exponentially at the rate of 13% per hour . a) if the initial mass is 3.7 , what mass will be present after: 7 hours and then 2 days Which of the following statements about bile are true? Select all that apply. a. Bile is produced in the liver. b. Bile breaks down triglycerides into monoglycerides, fatty acids, and glycerol. c. Bile is produced in the gall bladder. d. Bile emulsifies fats in the small intestine. family has 3 children. Assume that the chances of having a boy or a girl are equally likely. Enter answers as fractions. Part 1 out of 2 a. What is the probability that the family has 1 girl? 7 The probability is Find the arc length function for the graph of \( f(x)=2 x^{3 / 2} \) using \( (0,0) \) as the starting point. What is the length of the curve from \( (0,0) \) to \( (4,16) \) ? Find the arc length fun a nurse assesses a client admitted to the cardiac unit. which statement by the client alerts the nurse to the possibility of right-sided heart failure? When a firm determines the desired cost for a product or service, given a competitive market price, in order to earn a desired profit, the firm is exercising: Group of answer choices Target costing. Absorption costing. Variable costing. Competitive costing. Life cycle costing. J A block is qiuen an initial volocity of 6.00 mls up incline. How far up the the block before coming down tractiongless 30.0 Incline does what size tw copper conductor should be used for the branch circuit? (show all of your calculations in your word-processing document.) Canadian nuclear reactors use heavy water moderators in which elastic collisions occur between the neutrons and deuterons of mass 2.0 u Correct Part C How many such successive collisions will reduce the speed of a neutron to 1/6560 of its original value? Express your answer as a number of collisions. Determine whether the vectors u =(2,1,0,3), v =(1,2,5,1) and w=(7,1,5,8) form a linearly dependent set or a linearly independent set. If dependent, find a linear relation among them. technician a says that the location of the live axle will determine the drive configuration. technician b says that a live axle just supports the wheel. who is correct? Use quantifiers and predicates with more than one variable to express these statements. make sure you clearly define how you are using those quantifiers, predicates, and variables Which of the following statements is TRUE of certification of a union by the NLRB using a secret-ballot election?A. Once a union is certified by the NLRB, its status is binding on the employer for at least two years, during which time the employer must bargain with it.B. It is mandatory for a certified union to undergo a recertification election every two years.C. If a certified union fails to reach its first contract within two months of bargaining, it is penalized under the NLRA.D. The NLRB will not entertain a rival certification petition for a bargaining unit represented by a certified union within the first year.Which of the following statements is TRUE of certification of a union by the NLRB using a secret-ballot election? A company manufactures two products. The price function for product A is p=16 1/2 x (for 0x32 ), and for product B is q=33y (for 0y33 ), both in thousands of dollars, where x and y are the amounts of products A and B, respectively. If the cost function is as shown below, find the quantities and the prices of the two products that maximize profit. Also find the maximum profit.