spring stretches by 21.0 cm when a 135 N object is attached. What is the weight of a fish that would stretch the spring by 43.9 cm?

Answers

Answer 1

Answer:

F2 = 282.28N

Explanation:

F = force

E = extension

F1/E1=F2/E2135/21 = F2/43.96.43 = F2/43.9F2 = 6.43 x 43.9F2 = 282.28N

Related Questions

mention two similarities of citizen and aliens​

Answers

Answer:

The main points of difference between a citizen and alien are: (a) A citizen is a permanent resident of a state, while an alien is a temporary resident, who comes for a specific duration of time as a tourist or on diplomatic assignment. ... Aliens do not possess such rights in the state where they reside temporarily

Explanation:

Which best describes the relationship between heat, internal energy, and thermal energy?
Internal energy is heat that flows, and heat is the part of thermal energy that can be transferred.
Internal energy is thermal energy that flows, and thermal energy is the part of heat that can be transferred.
Thermal energy is heat that flows, and heat is the part of internal energy that can be transferred.
Heat is thermal energy that flows, and thermal energy is the part of internal energy that can be transferred.
Mark this and return
Save and Exit
Next
Submit

Answers

Answer:

I think it is the 4th answer choice

Explanation:

Heat is thermal energy that flows in the direction of high temp to low temp, and internal energy is the "energy contained in a system", and thermal energy is a part of that.

How did the magnet’s density measurement using the Archimedes’ Principle compare to the density measurement using the calculated volume? Which method might be more accurate? Why?

Answers

Answer:

The two methods will yield different results as one is subject to experimental errors that us the Archimedes method of measurement, the the density measurement method will be more accurate

Explanation:

This is because the density method using the calculated volume will huve room for less errors that's occur in practical method i.e Archimedes method due to human error

A package is dropped from a helicopter moving upward at 1.5 m/s. If it takes 16.0 s before the package strikes the ground, how high above the ground was the package when it was released if air resistance is negligible?

Answers

Well we know acceleration from free fall due to gravity is 9.8m/s^2

Lay out

S = displacement is what we need

U

V = 1.5m/s

A = 9.8m/s2

T = 16.0s

Use the equation s=vt-1/2at^2

Where a = acceleration t= time and v= velocity

Sub in the values to get displacement or height from ground

= -1230.4 metres which would be positive as you’re measuring distance (scalar quantity) so it’s 1230.4 metres

Suppose you take two non-zero displacements represented by vectors A & B.The magnitude of A is 5 m and the magnitude of B is 6 m. Under what circumstances can you end up back at your starting point? What is the magnitude of the largest displacement you can end up from the starting point?
Suppose you take two non-zero displacements represented by vectors A & B which are perpendicular to each other. The magnitude of A is 5 m and the magnitude of B is 6 m. What is the component of vector B along the direction of vector A measured in m?

Answers

Answer:

a. When the total displacement is -(A + B)

b. A + B = 1 m or -(A + B) = -11 m

c. 0 m

Explanation:

a. Under what circumstances can you end up back at your starting point?

If we have the displacement A and displacement B. The total displacement is A + B. We would end up at the starting point if we take a displacement -(A + B) from point B

b. What is the magnitude of the largest displacement you can end up from the starting point?

The maximum displacement we can obtain is when A and B are in the same direction. So A + B = 5 m + 6 m = 11 m or -A - B = -(A + B) = -11 m.

c. When A and B are perpendicular, what is the component of B in the direction of A?

Since A is perpendicular to B, the angle between A and B is 90°

So the component of B in A,s direction is Bcos90° = B × 0 = 0 m

A diver running at 2.5 m/s dives out horizontally from the edge of a vertical cliff and 3.0 seconds later reaches the water below. How far from its base did the diver hit the water

Answers

Explanation:

u = 2.5 m/s

v = 0

t = 3sec

s = ?

s = (u+v)/t

s = (0+2.5)/3

s = 2.5/3 = 0.83 m

A horizontal clothesline is tied between 2 poles, 12 meters apart. When a mass of 1 kilograms is tied to the middle of the clothesline, it sags a distance of 4 meters. What is the magnitude of the tension on the ends of the clothesline

Answers

Answer:

The  tension on the clotheslines is  [tex]T = 8.83 \ N[/tex]

Explanation:

The  diagram illustrating this  question is  shown on the first uploaded image

From the question we are told that  

    The distance between the two poles is  [tex]d = 12 \ m[/tex]

     The mass tie to the middle of the clotheslines [tex]m = 1 \ kg[/tex]

     The length at which the clotheslines sags is  [tex]l = 4 \ m[/tex]

Generally the weight due to gravity at the middle of the  clotheslines is mathematically represented as

          [tex]W = mg[/tex]

let the angle which the tension on the  clotheslines makes with the horizontal be  [tex]\theta[/tex] which mathematically evaluated using the SOHCAHTOA as follows

        [tex]Tan \theta = \frac{ 4}{6}[/tex]

=>     [tex]\theta = tan^{-1}[\frac{4}{6} ][/tex]

=>     [tex]\theta = 33.70^o[/tex]

   So the vertical component of this  tension is  mathematically represented a  

      [tex]T_y = 2* Tsin \theta[/tex]

Now at equilibrium the  net horizontal force is  zero which implies that

          [tex]T_y - mg = 0[/tex]

=>       [tex]T sin \theta - mg = 0[/tex]

substituting values

          [tex]T = \frac{m*g}{sin (\theta )}[/tex]

substituting values

           [tex]T = \frac{1 *9.8}{2 * sin (33.70 )}[/tex]

           [tex]T = 8.83 \ N[/tex]

A very large sheet of a conductor carries a uniform charge density of on its surfaces. What is the electric field strength 3.00 mm outside the surface of the conductor?

Answers

Complete Question

A very large sheet of a conductor carries a uniform charge density of [tex]4.00\ pC/mm^2[/tex]  on its surfaces. What is the electric field strength 3.00 mm outside the surface of the conductor?

Answer:

The electric field is  [tex]E = 4.5198 *10^{5} \ N/C[/tex]

Explanation:

From the question we are told that

    The charge density is  [tex]\sigma = 4.00pC /mm^2 = 4.00 * 10^{-12 } * 10^{6} = 4.00 *10^{-6}C/m[/tex]

    The position outside the surface is  [tex]a = 3.00 \ mm = 0.003 \ m[/tex]

   

Generally the electric field is mathematically represented as

          [tex]E = \frac{\sigma}{\epsilon _o }[/tex]

Where  [tex]\epsilon_o[/tex] is  the permitivity of free space with values  [tex]\epsilon _o = 8.85 *10^{-12} F/m[/tex]

substituting values  

           [tex]E = \frac{4.0*10^{-6}}{8.85 *10^{-12} }[/tex]

           [tex]E = 4.5198 *10^{5} \ N/C[/tex]

Two identical small charged spheres are a certain distance apart, and each one initially experiences an electrostatic force of magnitude F due to the other. With time, charge gradually leaks off of both spheres. When each of the spheres has lost half its initial charge, the magnitude of the electrostatic force will be

Answers

Answer:

F' = F/4

Thus, the magnitude of electrostatic force will become one-fourth.

Explanation:

The magnitude of force applied by each charge on one another can be given by Coulomb's Law:

F = kq₁q₂/r²   -------------- equation 1

where,

F = Force applied by charges

k = Coulomb's Constant

q₁ = magnitude of first charge

q₂ = magnitude of 2nd charge

r = distance between the charges

Now, in the final state the charges on both spheres are halved. Therefore,

q₁' = q₁/2

q₂' = q₂/2

Hence, the new force will be:

F' = kq₁'q₂'/r²

F' = k(q₁/2)(q₂/2)/r²

F' = (kq₁q₂/r²)(1/4)

using equation 1:

F' = F/4

Thus, the magnitude of electrostatic force will become one-fourth.

The magnitude of the electrostatic force will be F' = F/4

The magnitude of the electrostatic force:

Here we used Coulomb's Law:

F = kq₁q₂/r²   -------------- equation 1

Here

F = Force applied by charges

k = Coulomb's Constant

q₁ = magnitude of first charge

q₂ = magnitude of 2nd charge

r = distance between the charges

Now

q₁' = q₁/2

q₂' = q₂/2

So, the new force should be

F' = kq₁'q₂'/r²

F' = k(q₁/2)(q₂/2)/r²

F' = (kq₁q₂/r²)(1/4)

So,

F' = F/4

Learn more about force here: https://brainly.com/question/14282312

In the child's game of tetherball, a rope attached to the top of a tall pole is tied to a ball. Players hit the ball in opposite directions in an attempt to wrap the ball and rope around the pole. Assume the rope has negligible mass and that resistive forces, such as air resistance and friction, can be neglected. As the ball wraps around the pole between hits, how does the angular speed of the ball change

Answers

Answer:

The angular speed of the ball will increase

Explanation:

the angular speed of the ball will increase because the force of hit by the players will sum up in opposite direction to increase the angular speed

An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about _____ years.

Answers

Answer:

An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about  2 years.

Explanation:

Given;

orbital period of 3 years, P = 3 years

To calculate the years of an orbital with a semi-major axis, we apply Kepler's third law.

Kepler's third law;

P² = a³

where;

P is the orbital period

a is the orbital semi-major axis

(3)² = a³

9 = a³

a = [tex]a = \sqrt[3]{9} \\\\a = 2.08 \ years[/tex]

Therefore, An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about  2 years.

1. In a Millikan type experiment, two horizontal plates are 2.5 cm apart. A latex sphere of
mass 1.5 x 10-15 kg remains stationary when the potential difference between the
plates is 460 V, with the upper plate positive. [2+2+2+2 = 8 marks]
a. Is the sphere charged negatively or positively?
b. What is the magnitude of the electric field intensity between the plates?
C. Calculate the magnitude of the charge on the latex sphere.
d. How many excess or deficit electrons does the sphere have?

Answers

Answer:

Explanation:

a. Is the sphere charged negatively or positively?

The sphere us negatively charged. In a Millikan type experiment, there will be two forces that will be acting on the sphere which are the electric force which acts upward and also the gravity which acts downward.

Because the upper plate is positively charged, there'll what an attractive curve with an upward direction which will be felt by the negatively charged sphere.

b. What is the magnitude of the electric field intensity between the plates?

The magnitude of the electric field intensity between the plates is 18400v/m.

C. Calculate the magnitude of the charge on the latex sphere.

The magnitude of the charge on the latex sphere hae been solved and attached

d. How many excess or deficit electrons does the sphere have?

There are 5 excess electrons that the sphere has.

Check the attachment for further explanation.

A 975-kg pickup comes to rest from a speed of 87.5 km/h in a distance of 125 m. Suppose the pickup is initially traveling in the positive direction.
(a) If the brakes are the only thing making the car come to a stop, calculate the force (in newtons, in a component along the direction of motion of the car) that the brakes apply on the car .
(b) Suppose instead of braking that the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force, in newtons, exerted on the car in this case 33%
(c) What is the ratio of the force on the car from the concrete to the braking force?

Answers

Answer:

A) Force = 2303.925 N in the negative x-direction

B) F ≈ 143998.28 N

C) Ratio = 62.5

Explanation:

A) Since the brakes are the only thing making the van to come to a stop, then first of all, we will calculate the force (in a component along the direction of motion of the car) that the brakes will apply on the van.

Let's find the deceleration using Newton's law of motion formula;

v² = u² + 2as

where;

v = final velocity,

u = initial velocity,

s = displacement

a = acceleration

We are given;

u = 87.5 km/h = 24.3056 m/s

s = 125 m

v = 0 m/s

Thus;

0 = (24.3056)² + 2a(125)

- (24.3056)²= 250a

a = - 24.3056²/250

a = - 2.363 m/s²

Now, force = mass × acceleration

We are given mass = 975 kg

Thus;

Force = 975 x (-2.363)

Force = 2303.925 N in the negative x-direction

B) formula for kinetic energy is

KE = ½mv²

KE = ½(975)(24.3056)²

= 287996.568288 J

Work done on impact = F x 2

Thus;

2F = 287996.568288

F = 287996.568288/2

F ≈ 143998.28 N

C) Ratio = Force on car/braking force = 143998.284/2303.925 = 62.5

Five identical cylinders are each acted on by forces of equal magnitude. Which force exerts the biggest torque about the central axes of the cylinders

Answers

Answer:

From the image, the force as shown in option A will exert the biggest torque on the cylinder about its central axes.

Explanation:

The image is shown below.

Torque is the product of a force about the center of rotation of a body, and the radius through which the force acts. For a given case such as this, in which the cylinders are identical, and the forces are of equal magnitude, the torque at the maximum radius away from the center will exert the maximum torque. Also, the direction of the force also matters. To generate the maximum torque, the force must be directed tangentially away from the circle formed by the radius through which the force acts away from the center. Option A satisfies both condition and hence will exert the most torque on the cylinder.

Please Help!!!! I WILL GIVE BRAINLIEST!!!!!!!!!!!!!

Upon using Thomas Young’s double-slit experiment to obtain measurements, the following data were obtained. Use these data to determine the wavelength of light being used to create the interference pattern. Do this using three different methods.

The angle to the eighth maximum is 1.12°.

The distance from the slits to the screen is 302.0 cm.

The distance from the central maximum to the fifth minimum is 3.33 cm.

The distance between the slits is 0.000250 m.



The 3 equations I used were 1). d sin θ_m =(m)λ 2). delta x =λL/d and 3.) d(x_n)/L=(n-1/2)λ
but all my answers are different.
DID I DO SOMETHING WRONG!!!!!!!

Answers

Given info

d = 0.000250 meters = distance between slits

L = 302 cm = 0.302 meters = distance from slits to screen

[tex]\theta_8 = 1.12^{\circ}[/tex] = angle to 8th max (note how m = 8 since we're comparing this to the form [tex]\theta_m[/tex])

[tex]x_n = x_5 = 3.33 \text{ cm} = 0.0333 \text{ meters}[/tex] (n = 5 as we're dealing with the 5th minimum )

---------------

Method 1

[tex]d\sin(\theta_m) = m\lambda\\\\0.000250\sin(\theta_8) = 8\lambda\\\\8\lambda = 0.000250\sin(1.12^{\circ})\\\\\lambda = \frac{0.000250\sin(1.12^{\circ})}{8}\\\\\lambda \approx 0.000 000 61082633\\\\\lambda \approx 6.1082633 \times 10^{-7} \text{meters}\\\\ \lambda \approx 6.11 \times 10^{-7} \text{ meters}\\\\ \lambda \approx 611 \text{ nm}[/tex]

Make sure your calculator is in degree mode.

-----------------

Method 2

[tex]\Delta x = \frac{\lambda*L*m}{d}\\\\L*\tan(\theta_m) = \frac{\lambda*L*m}{d}\\\\\tan(\theta_m) = \frac{\lambda*m}{d}\\\\\tan(\theta_8) = \frac{\lambda*8}{0.000250}\\\\\tan(1.12^{\circ}) = \frac{\lambda*8}{0.000250}\\\\\lambda = \frac{1}{8}*0.000250*\tan(1.12^{\circ})\\\\\lambda \approx 0.00000061094306 \text{ meters}\\\\\lambda \approx 6.1094306 \times 10^{-7} \text{ meters}\\\\\lambda \approx 611 \text{ nm}\\\\[/tex]

-----------------

Method 3

[tex]\frac{d*x_n}{L} = \left(n-\frac{1}{2}\right)\lambda\\\\\frac{0.000250*3.33}{302.0} = \left(5-\frac{1}{2}\right)\lambda\\\\0.00000275662251 \approx \frac{9}{2}\lambda\\\\\frac{9}{2}\lambda \approx 0.00000275662251\\\\\lambda \approx \frac{2}{9}*0.00000275662251\\\\\lambda \approx 0.00000061258279 \text{ meters}\\\\\lambda \approx 6.1258279 \times 10^{-7} \text{ meters}\\\\\lambda \approx 6.13 \times 10^{-7} \text{ meters}\\\\\lambda \approx 613 \text{ nm}\\\\[/tex]

There is a slight discrepancy (the first two results were 611 nm while this is roughly 613 nm) which could be a result of rounding error, but I'm not entirely sure.

A proton of mass and a charge of is moving through vacuum at a constant velocity of 10000 directly to the east when it enters a region of uniform electric field that points to the south with a magnitude of E =3.62e+3 N/C . The region of uniform electric field is 5 mm wide in the east-west direction.

Required:
How far (in meters) will the proton have been deflected towards the south by the time it exits the region of uniform electric field.

Answers

Complete Question

A proton of mass m​p​​= 1.67×10​−27​​ kg and a charge of q​p​​= 1.60×10​−19​​ C is moving through vacuum at a constant velocity of 10,000 m/s directly to the east when it enters a region of uniform electric field that points to the south with a magnitude of E = 3.62e+3 N/C . The region of uniform electric field is 5 mm wide in the east-west direction. How far (in meters) will the proton have been deflected towards the south by the time it exits the region of uniform electric field. You may neglect the effects of friction and gravity, and assume that the electric field is zero outside the specified region. Answer is to be in units of meters

Answer:

    [tex]s = 0.039 \ m[/tex]

Explanation:

From the question we are told that

    The  mass of the proton is  [tex]m = 1.67 *10^{-27} \ g[/tex]

    The charge of on the proton is [tex]q = 1.60 *10^{-19} \ C[/tex]

      The speed of the proton is  [tex]v = 10000 \ m/s[/tex]

     The magnitude of the electric field is  [tex]E = 3.62*10^{3 } \ N/C[/tex]

       The width covered by the electric field    [tex]d = 5mm = 5 *10^{-3} \ m[/tex]      

       

Generally the acceleration of the proton due to the electric toward the south  (at the point where the force on the proton is equal to the electric force due to the electric field) is  mathematically represented as

       [tex]a = \frac{q* E}{m}[/tex]  

Substituting values

       [tex]a = \frac{1.60*10^{-19 } * 3.26 *10^{3}}{ 1.67*10^{-27}}[/tex]

      [tex]a = 3.12*10^{11} \ m/s^2[/tex]

Generally the time it will take the proton to cross the electric field is  mathematically represented as

      [tex]t = \frac{d}{v}[/tex]

Substituting values

      [tex]t = \frac{5 *10^{-3}}{10000}[/tex]

     [tex]t = 5 *10^{-7} \ s[/tex]

Generally the the distance covered by the proton toward the south is  

       [tex]s = ut + \frac{1}{2} * a*t^2[/tex]

   Here  u = 0  m/s  this  because before the proton entered the electric field region the it velocity towards the south is  zero

     So

       [tex]s = \frac{1}{2} * a*t^2[/tex]

Substituting values

      [tex]s = \frac{1}{2} * 3.12 *10^{11}*(5 *10^{-7})^2[/tex]

      [tex]s = 0.039 \ m[/tex]

   

When a nerve cell fires, charge is transferred across the cell membrane to change the cell's potential from negative to positive. For a typical nerve cell, 9.2pC of charge flows in a time of 0.52ms .What is the average current through the cell membrane?

Answers

Answer:

The average current will be "17.69 nA".

Explanation:

The given values are:

Charge,

q = 9.2 pC

Time,

t = 0.52ms

The equivalent circuit of the cell surface is provided by:

⇒  [tex]i_{avg}=\frac{charge}{t}[/tex]

Or,

⇒  [tex]i_{avg}=\frac{q}{t}[/tex]

On substituting the given values, we get

⇒         [tex]=\frac{9.2\times 10^{-12}}{0.52\times 10^{-3}}[/tex]

⇒         [tex]=17.69^{-9}[/tex]

⇒         [tex]=17.69 \ nA[/tex]

Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 25.0 m above water with an initial speed of 20.0 m/s strikes the water with a final speed of what, independent of the direction thrown.

Answers

Complete question is;

Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 25.0 m above water with an initial speed of 20.0 m/s strikes the water with a final speed of 31.1 m/s, independent of the direction thrown

Answer:

It is proved that the final speed is truly 31.1 m/s

Explanation:

From energy - conservation principle;

E_i = Initial potential energy + Initial Kinetic Energy

Or

E_i = U_i + K_i

Similarly, for final energy

E_f = U_f + K_f

So, expressing the formulas for potential and kinetic energies, we now have;

E_i = (m × g × y_i) + (½ × m × v_i²)

Similarly,

E_f = (m × g × y_f) + (½ × m × v_f²)

We are given;

y_i = 25 m

y_f = 0 m

v_i = 20 m/s

v_f = 31.1 m/s

So, plugging in relevant values;

E_i = m((9.8 × 25) + (½ × 20²))

E_i = 485m

Similarly;

E_f = m((9.8 × 0) + (½ × v_f²)

E_f ≈ ½m•v_f²

From energy conservation principle, E_i = E_f.

Thus;

485m = ½m•v_f²

m will cancel out to give;

½v_f² = 485

v_f² = 485 × 2

v_f² = 970

v_f = √970

v_f ≈ 31.1 m/s

A 5.0-Ω resistor and a 9.0-Ω resistor are connected in parallel. A 4.0-Ω resistor is then connected in series with this parallel combination. An ideal 6.0-V battery is then connected across the series-parallel combination of the three resistors. What is the current through (a) the 4.0-Ω resistor? (b) the 5.0-Ω resistor? (c) the 9.0-Ω resistor?

Answers

Answer:

Explanation:

The current through the  resistor is 0.83 A

.

Part b

The current through  resistor is 0.53 A

.

Part c

The current through  resistor is 0.30 A

A 16.0-m uniform ladder weighing 520 N rests against a frictionless wall. The ladder makes a 65.0° angle with the horizontal.
(a) Find the horizontal and vertical forces the ground exerts on the base of the ladder when an 850-N firefighter has climbed 4.20 m along the ladder from the bottom. Horizontal Force Magnitude = Direction = Vertical Force Magnitude = Direction =
(b) If the ladder is just on the verge of slipping when the firefighter is 9.40 m from the bottom, what is the coefficient of static friction between ladder and ground?

Answers

Answer:

we can conclude that the component of the horizontal force and vertical force are 225.28 N and 1370 N respectively.

Coefficient of static friction = 0.26

Explanation:

Given that:

length of the ladder = 16.0 m

weight of the ladder = 520 N

angle θ = 65.0°

(a) We are to find the horizontal and vertical forces the ground exerts on the base of the ladder when an :

Force = 850 N

distance of the climber from the base of the ladder = 4.20 m

The diagrammatic illustration representing what the given information entails can be seen from the attached file below.

Let consider the Ladder being at point A with the horizontal layer of the ground.

From the whole system; the condition for the equilibrium at the point A can be computed as :

[tex]N_2 (16 \ Sin\ 65) = 850(4.2 \ \times Cos \ 65 )+ 520 (\dfrac{16}{2}) Cos \ 65[/tex]

[tex]N_2 (14.50) = 850(1.7749 )+ 520 (8) \times 0.4226[/tex]

[tex]N_2 (14.50) = 1508.665+1758.016[/tex]

[tex]N_2 (14.50) = 3266.681[/tex]

[tex]N_2 =\dfrac{ 3266.681}{14.50}[/tex]

[tex]N_2 =225.28 \ N[/tex]

[tex]N_1 = mg+F\\[/tex]

where ;

w =mg

[tex]N_1 = 520+850[/tex]

[tex]N_1 = 1370 \ N[/tex]

Therefore; we can conclude that the component of the horizontal force and vertical force are 225.28 N and 1370 N respectively.

(b) If the ladder is just on the verge of slipping when the firefighter is 9.40 m from the bottom, what is the coefficient of static friction between ladder and ground?

the coefficient of static friction between ladder and ground when the firefighter is 9.40 m from the bottom can be calculated as:

[tex]N_2 (16 \ Sin\ 65) = 850(9.4 \ \times Cos \ 65 )+ 520 (\dfrac{16}{2}) Cos \ 65[/tex]

[tex]N_2 (14.50) = 850(3.9726 )+ 520 (8) \times 0.4226[/tex]

[tex]N_2 (14.50) =3376.71+1758.016[/tex]

[tex]N_2 (14.50) =5134.726[/tex]

[tex]N_2 =\dfrac{5134.726}{14.50}[/tex]

[tex]N_2 =354.12 \ N[/tex]

Therefore; the coefficient of the static friction is;

[tex]\mu = \dfrac{f_s}{N_1}[/tex]

[tex]\mu = \dfrac{354.12}{1370}[/tex]

[tex]\mu[/tex]  = 0.26

Coefficient of static friction = 0.26

a car slows down from - 27.7 m/s to -10.9 m/s while undergoing a displacement of -105 m .what is its acceleration?

Answers

Answer:

3.09 m/s²

Explanation:

Given:

Δx = -105 m

v₀ = -27.7 m/s

v = -10.9 m/s

Find: a

v² = v₀² + 2aΔx

(-10.9 m/s)² = (-27.7 m/s)² + 2a (-105 m)

a = 3.09 m/s²

You want to produce three 2.00-mm-diametercylindrical wires, each with a resistance of 1.00 Ω at room temperature. One wire is gold (rhog=2.44×10^−8Ω⋅m), one is copper (rhoc=1.72×10^−8Ω⋅m), and one is aluminum (rhoa=2.75×10−8Ω⋅m).

Required:

a. What will be the length of the gold wire?
b. What will be the length of the copper wire?
c. What will be the length of the aluminum wire?
d. Gold has a density of 1.93 × 10^4 kg/m^3. What will be the mass of the gold wire?
e. If gold is currently worth $40 per gram, what is the cost of the gold wire?

Answers

Answer:

(a) L =  128.75 m

(b) L =  182.56 m

(c) L =  114.28 m

(d) Mass of Gold = 7.68 kg = 7680 gram

(e) Cost of Gold Wire = $ 307040

Explanation:

The resistance of the wire is given as:

R = ρL/A

where,

R = Resistance

ρ = resistivity

L = Length

A = cross-sectional area

(a)

For Gold Wire:

ρ = 2.44 x 10⁻⁸ Ω.m

A = πd²/4 = π(2 x 10⁻³ m)²/4 = 3.14 x 10⁻⁶ m²

R = 1 Ω

Therefore,

1 Ω = (2.44 x 10⁻⁸ Ω.m)L/(3.14 x 10⁻⁶ m²)

L = (1 Ω)(3.14 x 10⁻⁶ m²)/(2.44 x 10⁻⁸ Ω.m)

L =  128.75 m

(b)

For Copper Wire:

ρ = 1.72 x 10⁻⁸ Ω.m

A = πd²/4 = π(2 x 10⁻³ m)²/4 = 3.14 x 10⁻⁶ m²

R = 1 Ω

Therefore,

1 Ω = (1.72 x 10⁻⁸ Ω.m)L/(3.14 x 10⁻⁶ m²)

L = (1 Ω)(3.14 x 10⁻⁶ m²)/(1.72 x 10⁻⁸ Ω.m)

L =  182.56 m

(c)

For Aluminum Wire:

ρ = 2.75 x 10⁻⁸ Ω.m

A = πd²/4 = π(2 x 10⁻³ m)²/4 = 3.14 x 10⁻⁶ m²

R = 1 Ω

Therefore,

1 Ω = (2.75 x 10⁻⁸ Ω.m)L/(3.14 x 10⁻⁶ m²)

L = (1 Ω)(3.14 x 10⁻⁶ m²)/(2.75 x 10⁻⁸ Ω.m)

L =  114.28 m

(d)

Density = Mass/Volume

Mass = (Density)(Volume)

Volume of Gold = AL = (3.14 x 10⁻⁶ m²)(128.75 m) = 4.04 x 10⁻⁴ m³

Therefore,

Mass of Gold = (1.9 x 10⁴ kg/m³)(4.04 x 10⁻⁴ m³)

Mass of Gold = 7.68 kg = 7680 gram

(e)

Cost of Gold Wire = (Unit Price of Gold)(Mass of Gold)

Cost of Gold Wire = ($ 40/gram)(7680 grams)

Cost of Gold Wire = $ 307040

(a) L is = 128.75 m

(b) L is = 182.56 m

(c) L is = 114.28 m

(d) Mass of Gold is = 7.68 kg = 7680 gram

(e) Cost of Gold Wire is = $307040

Calculation of Diameter cylindrical

When The resistance of the wire is given as:

R is = ρL/A

Now, where

R is = Resistance

ρ is = resistivity

L is = Length

A is = cross-sectional area

(a) For Gold Wire is:

ρ is = 2.44 x 10⁻⁸ Ω.m

A is = πd²/4 = π(2 x 10⁻³ m)²/4 = 3.14 x 10⁻⁶ m²

R is = 1 Ω

Thus,

1 Ω is = (2.44 x 10⁻⁸ Ω.m)L/(3.14 x 10⁻⁶ m²)

L is = (1 Ω)(3.14 x 10⁻⁶ m²)/(2.44 x 10⁻⁸ Ω.m)

L is =  128.75 m

(b) For Copper Wire is:

ρ is = 1.72 x 10⁻⁸ Ω.m

Then A = πd²/4 = π(2 x 10⁻³ m)²/4 = 3.14 x 10⁻⁶ m²

R is = 1 Ω

Thus,

After that 1 Ω = (1.72 x 10⁻⁸ Ω.m)L/(3.14 x 10⁻⁶ m²)

Now, L = (1 Ω)(3.14 x 10⁻⁶ m²)/(1.72 x 10⁻⁸ Ω.m)

Therefore, L =  182.56 m

(c) For Aluminum Wire is:

ρ is = 2.75 x 10⁻⁸ Ω.m

A is = πd²/4 = π(2 x 10⁻³ m)²/4 = 3.14 x 10⁻⁶ m²

R is = 1 Ω

Thus,

Then 1 Ω = (2.75 x 10⁻⁸ Ω.m)L/(3.14 x 10⁻⁶ m²)

After that L = (1 Ω)(3.14 x 10⁻⁶ m²)/(2.75 x 10⁻⁸ Ω.m)

L =  114.28 m

(d) Density is = Mass/Volume

Mass is = (Density)(Volume)

Then Volume of Gold = AL = (3.14 x 10⁻⁶ m²)(128.75 m) = 4.04 x 10⁻⁴ m³

Therefore,

Now, Mass of Gold = (1.9 x 10⁴ kg/m³)(4.04 x 10⁻⁴ m³)

Then Mass of Gold = 7.68 kg = 7680 gram

(e) The Cost of Gold Wire is = (Unit Price of Gold)(Mass of Gold)

Than Cost of Gold Wire = ($ 40/gram)(7680 grams)

Therefore, The Cost of Gold Wire is = $ 307040

Find more information about Diameter cylindrical here:

https://brainly.com/question/26988752

An X-Ray machine delivers a radiation dose of 5mRem/hr. at 3ft from the machine. How far will the X-Ray technician have to move to reduce his exposure to 2mRem/hr.? I1/I2 = (D2)2/(D1)2 -------> I1(D1)2 = I2(D2)2

Answers

Answer:

4.7ft

Explanation:

Pls see attached file

A boat that has a speed of 6km / h must cross a 200m wide river perpendicular to the current that carries a speed of 1m / s. Calculate a) the final speed of the boat b) displacement experienced by the boat in the direction of the current when making the journey

Answers

Answer:

a) 1.94 m/s

b) 120 m

Explanation:

Convert km/h to m/s:

6 km/h = 1.67 m/s

a) The final speed is found with Pythagorean theorem:

v = √((1.67 m/s)² + (1 m/s)²)

v = 1.94 m/s

b) The time it takes the boat to cross the river is:

t = (200 m) / (1.67 m/s)

t = 120 s

The displacement in the direction of the current is:

x = (1 m/s) (120 s)

x = 120 m

The magnitude of the magnetic flux through the surface of a circular plate is 6.80 10-5 T · m2 when it is placed in a region of uniform magnetic field that is oriented at 43.0° to the vertical. The radius of the plate is 8.50 cm. Determine the strength of the magnetic field. mT A circular plate of radius r is lying flat. A field of arrows labeled vector B rising up and to the right pass through the plate.

Answers

Answer:

B = 4.1*10^-3 T = 4.1mT

Explanation:

In order to calculate the strength of the magnetic field, you use the following formula for the magnetic flux trough a surface:

[tex]\Phi_B=S\cdot B=SBcos\alpha[/tex]        (1)

ФB: magnetic flux trough the circular surface = 6.80*10^-5 T.m^2

S: surface area of the circular plate = π.r^2

r: radius of the circular plate = 8.50cm = 0.085m

B: magnitude of the magnetic field = ?

α: angle between the direction of the magnetic field and the normal to the surface area of the circular plate = 43.0°

You solve the equation (1) for B, and replace the values of the other parameters:

[tex]B=\frac{\Phi_B}{Scos\alpha}=\frac{6.80*10^{-5}T.m^2}{(\pi (0.085m)^2)cos(43.0\°)}\\\\B=4.1*10^{-3}T=4.1mT[/tex]

The strength of the magntetic field is 4.1mT

A commercial diffraction grating has 500 lines per mm. Part A When a student shines a 480 nm laser through this grating, how many bright spots could be seen on a screen behind the grating

Answers

Answer:

The number of bright spot is  m =4

Explanation:

From the question we are told that

    The number of lines is  [tex]s = 500 \ lines / mm = 500 \ lines / 10^{-3} m[/tex]

     The wavelength of the laser is  [tex]\lambda = 480 nm = 480 *10^{-9} \ m[/tex]

Now the the slit is mathematically evaluated as

        [tex]d = \frac{1}{s} = \frac{1}{500} * 10^{-3} \ m[/tex]

Generally the diffraction grating is mathematically represented as

        [tex]dsin\theta = m \lambda[/tex]

Here m is the order of fringes (bright fringes) and at maximum m  [tex]\theta = 90^o[/tex]

    So

          [tex]\frac{1}{500} * sin (90) = m * (480 *10^{-3})[/tex]

=>        [tex]m = 4[/tex]

This  implies that the number of bright spot is  m =4

A projectile is launched with V0 = 7.6 m/s and initial angle = 1.27 radians above the horizontal. What is the initial horizontal component of the projectile velocity in miles per hour?

Answers

Answer:

The horizontal component is  [tex]v_h = 1.7096 \ m/s[/tex]

Explanation:

A diagram illustrating the projection is  shown on the first uploaded image  (from  IB Maths Resources from British international school Phuket )

From the question we are told that  

    The initial velocity is  [tex]v_o = 7.6 \ m/s[/tex]

      The angle of projection is  [tex]\theta = 1.27 \ rad = 72.77^o[/tex]

The  horizontal component of this  projectile  velocity is  mathematically represented as

          [tex]v_h = v_o * cos (\theta )[/tex]

substituting values  

         [tex]v_h = 7.6 * cos (72.77 )[/tex]

        [tex]v_h = 1.7096 \ m/s[/tex]

A dumbbell-shaped object is composed by two equal masses, m, connected by a rod of negligible mass and length r. If I1 is the moment of inertia of this object with respect to an axis passing through the center of the rod and perpendicular to it and I2 is the moment of inertia with respect to an axis passing through one of the masses, it follows that:

a. I1 > I2
b. I2 > I1.
c. I1 = I2.

Answers

Answer:

B: I2>I1

Explanation:

See attached file

A particle confined to a motion along the x axis moves with a constant acceleration of 2.5m/s2. Its velocity at t=0s is 6m/s. Find its velocity at t=4s.

Answers

Answer:

v = 16 m/s

Explanation:

It is given that,

Acceleration of a particle along x -axis is [tex]2.5\ m/s^2[/tex]

At t = 0s, its velocity is 6 m/s

We need to find the velocity at t = 4 s

It means that the initial velocity of the particle is 6 m/s

Let v is the velocity at t = 4 s

So,

v = u + at

[tex]v=6+2.5\times 4\\\\v=16\ m/s[/tex]

So, the velocity at t = 4 s is 16 m/s.

Answer:

v = 16 m/s

Explanation:

It is given that,

Acceleration of a particle along x -axis is  

At t = 0s, its velocity is 6 m/s

We need to find the velocity at t = 4 s

It means that the initial velocity of the particle is 6 m/s

Let v is the velocity at t = 4 s

So,

v = u + at

So, the velocity at t = 4 s is 16 m/s.

How does an atom of rubidium-85 become a rubidium ion with a +1 charge?

Answers

Answer:

C. The atom loses 1 electron to have a total of 36.

Explanation:

Cations have a positive charge. Cations lose electrons.

The number of electrons in a Rubidium atom is 37. If the atom loses 1 electron, then it has 36 left.

Other Questions
5.Solve the inequality.9 +6 > 59 > 11g > 1g> -1 What exactly is a 'Factorial'? Give Brainlist to the finest answer A friend throws a heavy ball toward you while you are standing on smooth ice. You can either catch the ball or deflect it back toward your friend. What should you do in order to maximize your speed right after your interaction with the ball?A. You should catch the ball.B. You should let the ball go past you without touching it.C. You should deflect the ball back toward your friend.D. More information is required to determine how to maximize your speed.E. It doesn't matter. Your speed is the same regardless of what you do. You have just received an offer in the mail from Friendly Loans. The company is offering to loan you $4,250 with low monthly payments of $90 per month. If the interest rate on the loan is an APR of 15.3 percent compounded monthly, how long will it take for you to pay off the loan CORRECT ANSWER GETS BRAINLIEST!! PLSS HELP!!! Appeals to logos were common in colonial-era rhetoric because so many people believed in Would you rather have an apple, mango, banana, grape, pear, orange, lime, strawberry, raspberry, blueberry, kiwifruit, passionfruit, watermelon, nectarine, apricot, peach or a plum? (Just wondering) After a dreary day of rain, the sun peeks through the clouds and a rainbow forms. You notice the rainbow is the shape of a parabola. The equation for this parabola is y = -x2 + 36. Graph of a parabola opening down at the vertex 0 comma 36 crossing the xaxis at negative 6 comma 0 and 6 comma 0. In the distance, an airplane is taking off. As it ascends during take-off, it makes a slanted line that cuts through the rainbow at two points. Create a table of at least four values for the function that includes two points of intersection between the airplane and the rainbow. Analyze the two functions. Answer the following reflection questions in complete sentences. What is the domain and range of the rainbow? Explain what the domain and range represent. Do all of the values make sense in this situation? Why or why not? What are the x- and y-intercepts of the rainbow? Explain what each intercept represents. Is the linear function you created with your table positive or negative? Explain. What are the solutions or solution to the system of equations created? Explain what it or they represent. Create your own piecewise function with at least two functions. Explain, using complete sentences, the steps for graphing the function. Graph the function by hand or using a graphing software of your choice (remember to submit the graph). g "At the current exchange rate of $1.40 per British pound, a one-day pass to Worldwide Theme Park of Florida sells for 54 pounds at travel agencies throughout Great Britain. If the exchange rate increases to $1.70 per pound, what will happen to the price of a one-day pass sold in Great Britain?" Based on the passage and novel, The Lightning Thief, what way is Percy used as a pawn in a larger game? A)Hephaestus uses Percy as a pawn in order to help him become a stronger demi-god. B)Hephaestus uses Percy in order to try to capture Ares cheating with his wife Aphrodite. C)Ares uses Percy as a pawn so that Percy can prove that he's worthy of fighting him later in the novel. D)Ares uses Percy as a pawn so that Ares can get his shield back without exposing his relationship with Aphrodite. Which propaganda technique is being used in the following statement? "My opponent is not qualified to be class president because he lacks the needed qualifications. Answer as fast as possible A. Card Stacking B. Generality C. None, this statement is not propaganda. D. Circular reasoning You are comparing two samples of the octopus genome, one from an octopus that can make ink (sample 1), and one from an Octopus that can'tmake ink (sample 2). You notice the one who can't make ink has a mutation Sample 1: ATTACAGTACTGGCA Sample 2: ATTACAATACTGGCALooking at the sequences carefully you determine it is amutationA. InsertionB. SubstitutionC. DeletionD. Inversion The sales budget for Perrier Inc. is forecasted as follows: Month Sales Revenue May $130,000 June 150,000 July 200,000 August 130,000 To prepare a cash budget, the company must determine the budgeted cash collections from sales. Historically, the following trend has been established regarding cash collection of sales: 60 percent in the month of sale. 20 percent in the month following sale. 15 percent in the second month following sale. 5 percent uncollectible.60 percent in the month of sale.20 percent in the month following sale.15 percent in the second month following sale.The company gives a 2 percent cash discount for payments made by customers during the month of sale. The accounts receivable balance on April 30 is $22,000, of which $7,000 represents uncollected March sales and $15,000 represents uncollected April sales. Prepare a schedule of budgeted cash collections from sales for May, June, and July. Include a three-month summary of estimated cash collections. Match each artist with one of his best-known works.The Return from theMarketChardin2.Reynolds?Colonel Acland and LordSydney: The ArchersHogarthBeer Street 10. 80 machines can produce 4800 identical pens in 5 hours. At this ratea) how many pens would one machine produce in one hour?b) how many pens would 25 machines produce in 7 hours? What was the primary commodity traded by French traders in colonial North America?Select the best answer from the choices provided.OA.Paper money.Silver piecesC.Fur peltsOD.Blankets Dan Stocked up on batteries. He Brought 10 packages of AA and AAA batteries for a total of 72 batteries. The AA batteries are sold in packages of 6, and the AAA batteries are sold in packages of 8. Write a system of equations that can be solved to find how many packages of each type of battery Dan bought. Remember to define your variables. Which statement about tobacco use is true? A. Smokeless tobacco can lead to cancer but is not addictive. B. Smoking relaxes people because it lowers the heart rate. C. Smoking can lead to emphysema as well as strokes. Can someone write these decimals in order starting with the smallest please:) 0.6, 0.64, 0.06, 0.604, 0.0604 The mean height of a Clydesdale horse is 72 inches with a standard deviation of 1.2 inches. What is the probability that a Clydesdale is greater than 75 inches tall? Select one: 2.5 0.9938 62.5 0.0062