Answer:
500uF
Explanation:
On the graph C (Charge/Coulomb) increases by .005 each measurement and the Voltage by 10. Capacitance= Charge/Potential difference. .005/10 =.0005 which is written as 500uF. This works since if u simply work it backwards, 1uF is 1 millionth of a Coulomb times that by 500 which gives .0005 then by 10 for Voltage and then u get the original charge.
So the answer is 500uF.
A person drops a pebble of mass m1 from a height h, and it hits the floor with kinetic energy KE. The person drops another pebble of mass m2 from a height of 4h, and it hits the floor with the same kinetic energy KE. How do the masses of the pebbles compare
Hello,
QUESTION)✔ We have: KE = PE (potential energy)
PE = m x g x h
The potential energy that the pebble of mass 1 has is called PE1 and the potential energy that the pebble of mass 2 has is called PE2
PE1 = PE2 ⇔ PE1/PE2 = 1
[tex]\frac{m_1\times g\times h}{m_2\times g\times 4h} = 1 \\ \\ \frac{m_1}{m_2\times 4} = 1 \\ \\ \frac{m_1}{m_2} = 4[/tex]
The mass m1 is therefore 4 times greater than that of the stone of mass m2.
How much work is done in pushing an object 7.0 m across a floor with a force of 50 N and then
pushing it back to its original position? How much power is used if this work is done in 20 sec?
Answer:
35/2 J/s
Explanation:
Just use the 2 formulas
Work done = Force * distance moved
Power = Work done/time
WD = 7 * 50 = 350
Power = 350 / 20
= 35/2 J/s
An ideal gas undergoes an adiabatic expansion, a process in which no heat flows into or out of the gas. As a result, (a) the temperature of the gas remains constant and the pressure decreases. (b) both the temperature and pressure of the gas decrease. (c) the temperature of the gas decreases and the pressure increases. (d) both the temperature and volume of the gas increase. (e) both the temperature and pressure of the gas increase. Group of answer choices a b c d e
Answer:
(b) both the temperature and pressure of the gas decrease.
Explanation:
An ideal gas undergoes an adiabatic expansion, a process in which no heat flows into or out of the gas. As a result, both the temperature and pressure of the gas decrease.
Gay Lussac states that when the volume of an ideal gas is kept constant, the pressure of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Gay Lussac's law is given by;
[tex] PT = K[/tex]
Also, according to the first law of thermodynamics which states that energy cannot be created or destroyed but can only be transformed from one form to another. Thus, the ideal gas does work on the environment with respect to the volume and temperature.
A 744 N force is applied to an object to reach an acceleration of 24 m/s2. What is the objects mass?
31kg
Explanation:
F = ma
m = F/a
m = 744N/24m/s^2
m = 31kg
(*Newton's Second Law*)
Tom has a mass of 50,000 g and runs up a flight of stairs 4 m high in 12.5 seconds.
Calculate Tom’s power. (g = 10 m/s2)
Answer:
160 watts.
Explanation:
Remark
Power = Work / Time
Work = F * d
Note: Since he is running up stairs he is doing work against gravity.
Givens
m = 50000 g kg / 1000 grmsm = 50000 / 1000 = 50 kgh = 4 mtime = 12.5 secondsg = 10 m/s^2Formula
P = W * d/tW = m*g *d / tSolution
P = 50kg * 10 m/s^2 * 4 m / 12.5 P = 160 watts.
30. Easy Guided Online Tutorial One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 25 m/s. The masses of the two objects are 3.0 and 8.0 kg. Determine the final speed of the two-object system after the collision for the case when the large-mass object is the one moving initially and the case when the small-mass object is the one moving initially.
Answer:
[tex]18.18\ \text{m/s}[/tex]
[tex]6.82\ \text{m/s}[/tex]
Explanation:
[tex]m_1[/tex] = Mass of large object = 8 kg
[tex]m_2[/tex] = Mass of smaller object = 3 kg
When large mass is moving
[tex]u_1[/tex] = 25 m/s
[tex]u_2[/tex] = 0
For completely inelastic collision we have the relation
[tex]m_1u_1+m_2u_2=(m_1+m_2)v\\\Rightarrow v=\dfrac{m_1u_1+m_2u_2}{m_1+m_2}\\\Rightarrow v=\dfrac{8\times 25+3\times 0}{8+3}\\\Rightarrow v=18.18\ \text{m/s}[/tex]
Speed of the combined mass when the larger object is moving is [tex]18.18\ \text{m/s}[/tex]
When smaller mass is moving
[tex]u_1[/tex] = 0
[tex]u_2[/tex] = 25 m/s
[tex]v=\dfrac{m_1u_1+m_2u_2}{m_1+m_2}\\\Rightarrow v=\dfrac{8\times 0+3\times 25}{8+3}\\\Rightarrow v=6.82\ \text{m/s}[/tex]
Speed of the combined mass when the smaller object is moving is [tex]6.82\ \text{m/s}[/tex]
If you wrap 150 coils of heavy wire around a big iron nail and attach the ends of the wire to a 6.0v battery, you have a A) radio B) electromagnet C) galvanometer D) ammeter
Answer:
B
Explanation:
Because of the voltage attached to the iron nail
2.4 What is the radiation error of a temperature measurement?
I
Answer:
diameter of the wire = 0.05 in =0.05 /12 =4.167 *10 ^-3 ft
area of cross section of the wire = A = 22/7 * ( d /2 ) ^2 =0.786 * ( 4.167 *10 ^-3 ) ^2 =1.365 *10 ^-5 ft2
E =...
Explanation:
can someone pls tell me what a force diagram is
The way you change the speed of a wave is to:
a
Change it's medium
b
Change it's energy
c
Transfer it to a new position
d
Apply a force
Answer:
transfer it to a new position
Badll
Which of the following is an example of
the Law of Inertia?
A. Sitting in a chair and breaking it
B. Throwing a ball in outer space and it goes on forever
unless acted upon by another force
C. Eating a salad to bring chemical energy into the body
D. Driving a car on a track
BRAINLEST FOR CORRECT ANSWER PLEASE
Which has more momentum: a 3 kg sledgehammer swung at 1.5 m/s OR a 4 kg sledgehammer swung at 0.9 m/s? SHOW YOUR WORK
Answer:
Sledgehammer A has more momentum
Explanation:
Given:
Mass of Sledgehammer A = 3 Kg
Swing speed = 1.5 m/s
Mass of Sledgehammer B = 4 Kg
Swing speed = 0.9 m/s
Find:
More momentum
Computation:
Momentum = mv
Momentum sledgehammer A = 3 x 1.5
Momentum sledgehammer A = 4.5 kg⋅m/s
Momentum sledgehammer B = 4 x 0.9
Momentum sledgehammer B = 3.6 kg⋅m/s
Sledgehammer A has more momentum
One thing that animals have not demonstrated the ability to do with language (that humans can) is use language to describe itself. This use is called
a. reflexiveness.
b. specialization.
C. prevarication.
d. duality of patterning sounds, which is used to produce an infinite number of unique utterances.
Answer:
The answer is letter B hope it helps
Help me, 100 points to answer right, answer without context will be reported
1. In the situation below, a tractor pulls a 850 sledge along a ramp of height ℎ = 1 and large = 30 °. If the tractor applies a constant force to the sledge = 6750 , at an angle = 36.9 °, determine the total work performed by all forces on the sledge to move it along the ramp. The coefficient of kinetic friction between the sledge and the plane is = 0.3. Tip: for the calculation, remember that only the components of the windows that are parallel to the direction of travel contribute to the work. Disregard the dimensions of the sled.
2) When firing a 2 projectile at a 1.4 bloco block, initially at rest, it is observed that the projectile is stuck in the block and the system moves together for a distance = 0.1 before stop. If the coefficient of kinetic friction between the block and the surface is = 0.25, determine what was the velocity of the projectile in the instant before impact. Tip: here you must use the conservation of linear momentum and also energy, considering the work done by the frictional force
Match the descriptions with the graphs !
Answer:
Graph 1 matches with B, 2 with A, and 3 with C.
Explanation:
Graph 2 shows a car whose distance part of the graph is not going up or down, while the time going up. That means that the car is stopped. Graph 1 shows a straight line, meaning that the car is traveling at a constant speed. Graph 3 is a curved line, meaning the speed of the car is changing somehow, and since the line is becoming more horizontal, the car is getting slower.
A small mirror is attached to a vertical wall, and it hangs a distance of 1.87 m above the floor. The mirror is facing due east, and a ray of sunlight strikes the mirror early in the morning and then again later in the morning. The incident and reflected rays lie in a plane that is perpendicular to both the wall and the floor. Early in the morning, the reflected ray strikes the floor at a distance of 3.56 m from the base of the wall. Later on in the morning, the ray is observed to strike the floor at a distance of 1.46 m from the wall. The earth rotates at a rate of 15.0o per hour. How much time (in hours) has elapsed between the two observations
Answer:
t = 1.62 h
Explanation:
A flat mirror fulfills the law of reflection where the incident angle is equal to the reflected angle.
θ_i = θ_r
If we use trigonometry to find the angles, the mirror is at a height of L = 1.87 m, and the reflected rays reach a distance x1 = 3.56 m
tan θ₁ = x₁ / L
tan θ₁ = [tex]\frac{3.56}{1.87}[/tex]
θ₁ = tan⁻¹ 1.90
θ₁ = 62.29º
for the second case x₂ = 1.46 m
tan θ₂ = x₂ / L
θ₂ = tan⁻¹ [tex]\frac{1.46}{1.87}[/tex]
θ₂ = 37.98º
the difference in degree traveled is
Δθ = θ₁- θ₂
Δθ = 62.29 - 37.98
Δθ = 24.31º
as in the exercise they indicate that every 15º there is an hour
t = 24.31º (1h / 15º)
t = 1.62 h
which two options describes behaviors of particles that are related to the chemical properties of the materials
a- forming hydrogen bonds between them
b- reacting quickly with water
c- having a high mass
d- forming bonds with other atoms
Answer:
The two correct answers are B.) reacting quickly with water, and D.) forming bonds with other atoms.
Explanation:
I took the quiz on a.pex and these were correct.
Given three different locations on Earth's surface, where will the weight of a person be greatest?
Answer:
Explanation:
In order to answer this question, we simply have to refer to the laws of the equations of gravitational mechanics.
The equation given by Newton tells us that
[tex]F = \frac{Gm_{1} m_{2} }{r^{2} }[/tex]
In the case where we compare a specific place where the Force of Gravity is greater or lesser, we focus on the term assigned to the Planet's Radius.
In the case of [tex]G, m_{1} ,m_{2}[/tex], we understand that they are constant.
We can easily notice that the more the Radius (Height seen from a viewer on the ground), the lower the force will be.
In other words, the smaller the radius in which the measurement is made with respect to the center of the earth, the greater the gravitational force.
In that order of ideas the smallest radio has South Pole, which is about 6356 km from the center of the Earth on the Equator line
A concave lens cannot produce a real image.
A. True
B. False
Answer:
B. False
A concave mirror and a converging lens will only produce a real image if the object is located beyond the focal point.
~Hoped this helped~
~Brainiliest?~
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes over a pulley. If the pulley is a disk of radius R and mass M , find the acceleration of the masses. Express your answer in terms of the variables m1, m2, R, M, and appropriate constants.
Answer:
Explanation:
Suppose m₂ is greater than m₁ and it is going down . m₁ will be going up.
Let tension in string be T₁ and T₂ . Let common acceleration of system be a
For motion of m₁
T₁-m₁g = m₁a ----- (1)
For motion of m₂
m₂g- T₂ = m₂a ------- (2)
For motion of pulley
(T₂-T₁ )R represents net torque
(T₂-T₁ )R = I x α where I is moment of inertia of disc and α is angular acceleration of disc
(T₂-T₁ )R = 1/2 M R² x a / R
(T₂-T₁ ) = M a /2
Adding (1) and (2)
(m₂-m₁)g = (m₂+m₁)a + (T₂-T₁ )
(m₂-m₁)g = (m₂+m₁)a + Ma/2
(m₂-m₁)g = (m₂+m₁+ 0.5M)a
a = (m₂-m₁)g / ( (m₂+m₁+ 0.5M)
The acceleration of the masses is [tex]\dfrac{g(m_2+m_1)}{(m_2-m_1-0.5M)}[/tex].
Given to us
Masses = m₁, m₂
The radius of the pulley = R
Mass of the pulley = M
Assumption
Let the mass m₁ > m₂. therefore, the mass m₁ is going down due to its weight while m₂ is going up.Assuming the tension in the string be T₁ and T₂, respectively.Also, the common acceleration in the system is a.Tensions in stringsWe know the acceleration due to gravity is denoted by g,
Tension in string 1, T₁[tex]T_1 = m_1(a+g)[/tex]......... equation 1
Tension in string 2, T₂[tex]T_2 = m_2(a-g)[/tex]......... equation 2
Inertia and acceleration of the pulleyThe inertia of the pulley, [tex]I = \dfrac{1}{2}MR^2[/tex]
Acceleration of the pulley, [tex]a = {\alpha }\times {R}[/tex]
Torque in the pulley[tex](T_2-T_1)R = I \times \alpha \\\\[/tex]
Substitute the values we get,
[tex][m_2(a-g)-m_1(a+g)]R = \dfrac{1}{2} MR^2 \times \dfrac{a}{R}\\\\[/tex]
[tex][m_2a-m_2g-m_1a-m_1g]R= \dfrac{1}{2} MR \times a[/tex]
[tex]m_2a-m_1a-m_2g-m_1g= \dfrac{1}{2} M \times a[/tex]
[tex]a(m_2-m_1)-g(m_2+m_1)= 0.5M \times a[/tex]
[tex]a(m_2-m_1)-0.5Ma=g(m_2+m_1)\\\\a(m_2-m_1-0.5M) = g(m_2+m_1)\\\\a = \dfrac{g(m_2+m_1)}{(m_2-m_1-0.5M)}[/tex]
Hence, the acceleration of the masses is [tex]\dfrac{g(m_2+m_1)}{(m_2-m_1-0.5M)}[/tex].
Learn more about Tension in strings:
https://brainly.com/question/4087961
Which of the following would produce the most power?
b
ОООО
A mass of 10 kilograms lifted 10 meters in 10 seconds
A mass of 5 kilograms lifted 10 meters in 5 seconds
A mass of 10 kilograms lifted 10 meters in 5 seconds
A mass of 5 kilograms lifted 5 meters in 10 seconds
d
Answer:
A mass of 10 kilograms lifted 10 meters in 5 seconds.
Explanation:
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
[tex] Power = \frac {Energy}{time} [/tex]
But Energy = mgh
Substituting into the equation, we have
[tex] Power = \frac {mgh}{time} [/tex]
Given the following data;
Mass = 10kg
Height = 10m
Time = 5 seconds
We know that acceleration due to gravity is equal to 9.8 m/s²
[tex] Power = \frac {10*9.8*10}{5} = 490 Watts [/tex]
Hence, a mass of 10 kilograms lifted 10 meters in 5 seconds would produce the most power.
Which best explains why we are able to accelerate forward when starting to run? A) The runner's upper body quickly leans forward, causing the entire body to begin accelerating forward. B) As one leg moves backward, it provides an opposite force for the other foot to move forward. C) The foot not touching the ground propels the entire body as it swings forward. D) The striking foot pushes backward against the ground. The friction with the ground provides an equal and opposite force forward.
Answer:
D.The striking foot pushes backward against the ground. The friction with the ground provides an equal and opposite force forward
Answer:
d
Explanation:
An airplane of mass 13300 kg is flying in a straight line at a constant altitude and with a speed of 560.0 km/hr. The force that keeps the airplane in the air is provided entirely by the aerodynamic lift generated by the wings. The direction of this force is perpendicular to the wing surface. Calculate the magnitude of the lift generated by the wings of this airplane.
Answer:
The magnitude of the lift generated by the wings of the airplane is 130,340 N.
Explanation:
Given;
mass of the airplane, m = 13,300 kg
speed of the airplane, v = 560 km/h = 155.56 m/s
The magnitude of the lift generated by the wings of the airplane is calculated as;
[tex]F_l = mg\\\\where;\\\\F_l \ is \ the \ magnitude \ of \ the \ lift \ generated\\g \ is \ acceleration \ due \ to \ gravity = 9.8 \ m/s^2\\\\F_l = 13,300 \times \ 9.8\\\\F_l = 130,340 \ N[/tex]
Therefore, the magnitude of the lift generated by the wings of the airplane is 130,340 N.
A beam of protons is directed in a straight line along the z direction through a region of space in which there are crossed electric and magnetic fields The electric field is 550 V m in the y direction and the protons move at a constant speed of 105 m s 1 What must be the magnitude of the magnetic field such that the beam of protons continues along its straight line trajectory Express your answer using two significant figures
Answer:
B = 5.23 T
Explanation:
Given that,
Electric field, E = 550 V/m
The speed of the proton, v = 105 m/s
We need to find the magnitude of the magnetic field such that the beam of protons continues along its straight-line trajectory.
To move in a straight line, the magnitude of the electric force from the field and the magnetic field must be equal i.e.
[tex]qE=qvB\\\\B=\dfrac{E}{v}\\\\B=\dfrac{550}{105}\\\\B=5.23\ T[/tex]
So, the magnitude of the magnetic field is equal to 5.23 T.
Calculate the amount of torque of an object being pushed by 6 N force along a circular path of a radius of 1x10^-2 mat 30 degree angle.
Answer:
The amount of torque is 0.03 N.m.
Explanation:
To find the amount of torque we need to use the following equation:
[tex] \tau = \vec {r} \times \vec{F} = rFsin(\theta) [/tex] (1)
Where:
r: is the radius = 1x10⁻² m
F: is the force = 6 N
θ: is the angle = 30°
By entering the above values into equation (1) we have:
[tex]\tau = 1 \cdot 10^{-2} m*6 N*sin(30) = 0.03 N.m[/tex]
Therefore, the amount of torque is 0.03 N.m.
I hope it helps you!
In which regions can the gravitational field strength due to the two planets be zero? Explain.
A. None
B. A, B and C
C. A and C
D. B
Answer:
I believe its a and c but my notes are all kinds of messed up so im sorry if its wrong
Explanation:
None of the regions can the gravitational field strength due to the two planets be zero.
What is gravitational field?
A gravitational field is a model used in physics to explain the effects that a large thing has on the area surrounding it, exerting a force on smaller, less massive bodies. Consequently, a gravitational field, which is measured in newtons per kilogram, is employed to describe gravitational processes.
Field due to given masses can not be zero in the given region they do not cancel each other.
None of the regions can the gravitational field strength due to the two planets be zero.
To learn more about gravitational field refer to the link:
brainly.com/question/12324569
#SPJ2
A car travels at a constant speed of 25 m/s. Find the power supplied by the engine if it can supply a maximum force of 18,000 N
Answer:
720
Explanation:
WILL REWARD 20 more pts once solved
4) If you have a diverging lens with a focal length of -15 cm and it produces an image that is 9
cm from the lens, what is the height of the image if the object was 4,5 cm tall?
b) Draw a ray tracing diagram of the situation below (label all points in cm) :
Explanation:
step 1. a diverging lens is "concave" on both side and always has a negative focal length
step 2. so 1/f = 1/s + 1/s' where f is the focal length, s is the object location, and s' is the image location (f, s, s' are all on the left side of the lens)
step 3. 1/-15 = 1/s + 1/-9 (image is virtual (negative))
step 4. 3/-45 = 1/s + 5/-45
step 5. s = 22.5cm (object is 22.5cm from lens)
step 6. s'/s = 9/22.5 ÷ 0.4 (magnification)
step 7. if the object is 4.5cm then the image is 4.5(0.4) = 1.8cm tall.
50 points help please
Answer:
C?
Explanation:
Yep,It's C all right.
Answer:
Yep,It's C all right.
Explanation:
At the end of the previous experiment, aclumsy scientist drops the coil, while still in the magnetic field, and still oriented with its plane perpendicular to the magnetic field, denting it and changing its shape to a semi-circle. The new shape has the same perimeter, but a different area, and it takes 0.036s to deform. What isthe average induced EMF during this mishap
Answer:
hello your question has some missing parts below are the missing parts
A Circular, 10-turn coil has a radius of 10.7 cm and is oriented with its plane perpendicular to a 0.2-T magnetic field.
answer : 1 volt
Explanation:
Determine the Average induced EMF during this mishap
A' = A/2 ( for a semi circle )
where A = [tex]\frac{\pi r^2}{2}[/tex]
To determine the Average induced EMF apply the relation below
| E | = η * [tex]\frac{\beta A}{T}[/tex] ----- ( 1 )
Replace A in equation 1 with A = [tex]\frac{\pi r^2}{2}[/tex]
hence equation becomes : | E | = η * βπr^2 / 2T'
where : T' = 0.0365 , β = 0.2 , η = 10 , r = 0.107
∴| E | = 0.999 ≈ 1volts