Answer:5.52 or -4. 52
Step-by-step explanation:
Simplify 4 + (−3 − 8)
Answer:
-7
Step-by-step explanation:
4 + (−3 − 8)
PEMDAS
Parentheses first
4 + (-11)
Add and subtract next
-7
Answer:
first I'm using BODMAS
4+(-11)
= -7
hope it helps
Mexican currency is the peso. One Mexican peso is currently equal to 0.055 U.S. dollars. If a traveler exchanges $400 for Mexican pesos, how many pesos will he receive? Round to the nearest peso.
Answer:
7,273 Pesos
Step-by-step explanation:
1 Peso = $0.055
The formula below converts pesos to dollars:
1 Peso x 0.055 = $1
The formula below converts dollars to pesos:
$1/0.055= 1 Pesos
We use the second formula because we are coverting
from dollars to pesos.
$400/0.055=7,273 Pesos
Answer:
22
Step-by-step explanation:
If one Mexican peso is .055 U.S dollars that means it has a greater value than the dollar so we can make the following ratio 1:.055. But if the .055 is a 400 1:400 we just multiply to get 22.
What is the surface area of this right prism?
Answer: C - 600cm^2
Step-by-step explanation:
Area of one triangle:
(12)(5) ÷ 2 = 30
Area of two triangles:
30 x 2 = 60
Area of top rectangle:
Step 1: Figure out side length of triangle by using pythagorean:
√a^2 + b^2 = c
√(5)^2 + (12)^2 = c
√25 + 144 = c
√ 169 = c
13 = c
Step 2: Find area of top rectangle:
(18) x (13)
234
Find area of bottom rectangle:
(18) x (12)
216
Find area of back rectangle:
(18) x (5)
90
Add all the underlined numbers:
Area of two triangles + Area of top rectangle + Area of bottom rectangle + Area of back rectangle
60 + 234 + 216 + 90 = 600cm^2
How many x-intercepts does the graph of y = 2x2 + 4x - 3 have?
Answer:
3
Step-by-step explanation:
Given
y
=
2
x
2
−
4
x
+
3
The y-intercept is the value of
y
when
x
=
0
XXX
y
=
2
(
0
)
2
−
4
(
0
)
+
3
=
3
For a quadratic in the general form:
XXX
y
=
a
x
2
+
b
x
+
c
the determinant
Δ
=
b
2
−
4
a
c
indicates the number of zeros.
Δ
⎧
⎪
⎨
⎪
⎩
<
0
==⇒
no solutions
=
0
==⇒
one solution
>
0
==⇒
two solutions
In this case
XXX
Δ
=
(
−
4
)
2
−
4
(
2
)
(
3
)
<
0
so there are no solutions (i.e. no values for which the expression is equal to zero).
This can also be seen from a graph of this equation:
graph{2x^2-4x+3 [-6.66, 13.34, -0.64, 9.36]}
Answer link
Vinícius Ferraz
Nov 13, 2015
(
0
,
3
)
Explanation:
x
=
0
⇒
y
=
0
−
0
+
3
y
=
0
⇒
x
=
−
b
±
√
b
2
−
4
a
c
2
a
a
=
2
,
b
=
−
4
,
c
=
3
But
Δ
< 0, then there is no real root
(
x
0
,
0
)
.
Answer:
it has 2
Step-by-step explanation:
I hope this helps!
1- if angle A = 30, then its complementary is -- and its supplementary is
2- If a triangle has an area of 360, and its base = 10, what is its height?
3- if two triangles have the same angle measures, then the triangles are
4. What is the definition of similar triangles?
5- One of triangle congruence tests is SSS, what are 3 other congruent tests
6- What is a regular polygon?
7- If a rectangle has an area of 240 and a length of 24, what is the width?
8- Colinear points lie on the same
9- 3 non-colinear points determine a
10- The sum of 2 supplementary angles add up to -------
1 - complementary = 90- 30 = 60
suplementary = 180- 30 = 150
2 - area = hb/2 = 360 = hb/2 = h = 72
3 - similar
4- see number 3
5 - asa, ssa, sas
6 - polygon that had all equal angle measures and sides (equiangular and equilateral)
7 - length x width = area so
240 / 24 = 10
8 - line
9 - triangle
10 - 180, as see in question 1
vote me brainliest ):>
The tens digit in a two digit number is 4 greater than one’s digit. If we interchange the digits in the number, we obtain a new number that, when added to the original number, results in the sum of 88. Find this number
Answer:
The original digit is 62
Step-by-step explanation:
Let the Tens be represented with T
Let the Units be represented with U
Given:
Unknown Two digit number
Required:
Determine the number
Since, it's a two digit number, then the number can be represented as;
[tex]T * 10 + U[/tex]
From the first sentence, we have that;
[tex]T = 4 + U[/tex]
[tex]T = 4+U[/tex]
Interchanging the digit, we have the new digit to be [tex]U * 10 + T[/tex]
So;
[tex](U * 10 + T) + (T * 10+ U) = 88[/tex]
[tex]10U + T + 10T + U= 88[/tex]
Collect Like Terms
[tex]10U + U + T + 10T = 88[/tex]
[tex]11U + 11T = 88[/tex]
Divide through by 11
[tex]U + T = 8[/tex]
Recall that [tex]T = 4+U[/tex]
[tex]U + T = 8[/tex] becomes
[tex]U + 4 + U = 8[/tex]
Collect like terms
[tex]U + U = 8 - 4[/tex]
[tex]2U = 4[/tex]
Divide both sides by 2
[tex]U = 2[/tex]
Substitute 2 for U in [tex]T = 4+U[/tex]
[tex]T = 4 + 2[/tex]
[tex]T = 6[/tex]
Recall that the original digit is [tex]T * 10 + U[/tex]
Substitute 6 for T and 2 for U
[tex]T * 10 + U[/tex]
[tex]6 * 10 + 2[/tex]
[tex]60 + 2[/tex]
[tex]62[/tex]
Hence, the original digit is 62
Someone please answer this emergency pleaseee
Answer:
7). y = 140
8). x = 9
Step-by-step explanation:
Question (7).
All-right pencil factory will produce the graphite pencils, table formed will represent a linear graph.
Three points on the graph are (12, 42) and (18, 63), (40, y)
Slope of the line passing through these points = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
m = [tex]\frac{63-42}{18-12}[/tex] = [tex]\frac{y-42}{40-12}[/tex]
[tex]\frac{21}{6}[/tex] = [tex]\frac{y-42}{40-12}[/tex]
3.5 = [tex]\frac{y-42}{40-12}[/tex]
98 = y - 42
y = 140
Question (8),
If a bicyclist rides at a constant rate, table formed will represent a linear graph.
Slope of a line passing through three points (2, 25), (5, 62.5) and (x, 112.5) given in the table,
m = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\frac{62.5-25}{5-2}=\frac{112.5-62.5}{x-5}[/tex]
[tex]\frac{37.5}{3}=\frac{50}{x-5}[/tex]
37.5x - 187.5 = 150
37.5x = 337.5
x = 9
Rectangle LMNO has vertices L(–4,6), M(–1,6), N(–1,2), and O(–4,2). Suppose you first reflect this rectangle across the y-axis. Then, translate it down four units and to the left one unit. Where are the corresponding vertices L′M′N′O′ located?
Answer:
L'(3, 2)
M'(0, 2)
N'(0, -2)
O'(3, -2)
Step-by-step explanation:
Vertices of a rectangle LMNO are L(-4, 6), M(-1, 6), N(-1, 2) and O(-4, 2).
If a point (x, y) is reflected across y-axis, rule to be followed,
(x, y) → (-x, y)
After reflection across y-axis new ordered pairs will be,
L(-4, 6) → L"(4, 6)
M(-1, 6) → M"(1, 6)
N(-1, 2) → N"(1, 2)
O(-4, 2) → O"(4, 2)
Then these points were translated 4 units down and 1 unit left,
Rule to be followed for the translation will be,
(x'', y'') → [(x' - 1), (y' - 4)]
By this rule vertices of the rectangle after translation will be,
L''(4, 6) → L'(3, 2)
M''(1, 6) → M'(0, 2)
N''(1, 2) → N'(0, -2)
O''(4, 2) → O'(3, -2)
Answer:
L'(3, 2)
M'(0, 2)
N'(0, -2)
O'(3, -2)
Step-by-step explanation:
CAN SOMEONE PLEASE HELP ME THIS IS DUE SOON!!
Answer:
95 ft²
Step-by-step explanation:
Given:
regular pyramid with,
Square base of side length (s) = 5 ft
Slant height (l) = 7 ft
Required:
Surface area
Solution:
Surface area of a regular pyramid = ½*P*l + B
Where,
P = perimeter of the square base = 4(s) = 4(5) = 20 ft
l = slant height = 7 ft
B = area of base = s² = 5² = 25 ft²
Surface area = ½*20*7 + 25
= 10*7 + 25
= 70 + 25
Surface area of regular pyramid = 95 ft²
Please help me
And explain
Answer: 144
Step-by-step explanation:
ABD plus DBC makes up ABC so when you add the two it will give you a whole (76+68).
Which expression is equivalent to [tex]4^7*4^{-5}[/tex]? A. [tex]4^{12}[/tex] B. [tex]4^2[/tex] C. [tex]4^{-2}[/tex] D. [tex]4^{-35}[/tex]
Answer:
B. [tex]4^2[/tex]
Step-by-step explanation:
[tex]4^7 \times 4^{-5}[/tex]
Apply rule (if bases are same) : [tex]a^b \times a^c = a^{b + c}[/tex]
[tex]4^{7 + -5}[/tex]
Add exponents.
[tex]=4^2[/tex]
Answer:
[tex] {4}^{2} [/tex]Step by step explanation
[tex] {4}^{7} \times {4}^{ - 5} [/tex]
Use product law of indices
i.e
[tex] {x}^{m} \times {x}^{n} = {x}^{m + n} [/tex]
( powers are added in multiplication of same base)
[tex] = {4}^{7 + ( - 5)} [/tex]
[tex] = {4}^{7 - 5} [/tex]
[tex] = {4}^{2} [/tex]
Hope this helps...
Best regards!
solve the inequality:8x+3>2x-15
8x + 3 > 2x - 15
8x - 2x > -15 - 3
6x > -18
x > -3
Answer:
x > -3
Step-by-step explanation:
8x + 3 > 2x - 15
Add -3 and -2x on both sides.
8x - 2x > -15 - 3
6x > -18
Divide 6 into both sides.
x > -18/6
x > -3
what value of x is in the solution set of 2(3x–1)>4x–6?
Answer:
x > -2
Step-by-step explanation:
2(3x–1)>4x–6
Divide each side by 2
2/2(3x–1)>4x/2–6/2
3x-1 > 2x-3
Subtract 2x from each side
3x-2x-1 > 2x-3-2x
x-1 > -3
Add 1 to each side
x-1+1 > -3+1
x > -2
HELP!! Im not sure what i did wrong!!
I'm not sure what exactly you did wrong, but I agree with you that the sample size is too small, so the correct answer will probably be the fourth options. Hope that this gives you some confidence, and 'm sorry not to be able to help you any further...
Pluto's distance P(t)P(t)P, left parenthesis, t, right parenthesis (in billions of kilometers) from the sun as a function of time ttt (in years) can be modeled by a sinusoidal expression of the form a\cdot\sin(b\cdot t)+da⋅sin(b⋅t)+da, dot, sine, left parenthesis, b, dot, t, right parenthesis, plus, d. At year t=0t=0t, equals, 0, Pluto is at its average distance from the sun, which is 6.96.96, point, 9 billion kilometers. In 666666 years, it is at its closest point to the sun, which is 4.44.44, point, 4 billion kilometers away. Find P(t)P(t)P, left parenthesis, t, right parenthesis. \textit{t}tstart text, t, end text should be in radians.
Answer: P(t) = 1.25.sin([tex]\frac{\pi}{3}[/tex].t) + 5.65
Step-by-step explanation: A motion repeating itself in a fixed time period is a periodic motion and can be modeled by the functions:
y = A.sin(B.t - C) + D or y = Acos(B.t - C) + D
where:
A is amplitude A=|A|
B is related to the period by: T = [tex]\frac{2.\pi}{B}[/tex]
C is the phase shift or horizontal shift: [tex]\frac{C}{B}[/tex]
D is the vertical shift
In this question, the motion of Pluto is modeled by a sine function and doesn't have phase shift, C = 0.
Amplitude:
a = [tex]\frac{largest - smallest}{2}[/tex]
At t=0, Pluto is the farthest from the sun, a distance 6.9 billions km away. At t=66, it is closest to the star, P(66) = 4.4 billions km. Then:
a = [tex]\frac{6.9-4.4}{2}[/tex]
a = 1.25
b
A time period for Pluto is T=66 years:
66 = [tex]\frac{2.\pi}{b}[/tex]
b = [tex]\frac{\pi}{33}[/tex]
Vertical Shift
It can be calculated as:
d = [tex]\frac{largest+smallest}{2}[/tex]
d = [tex]\frac{6.9+4.4}{2}[/tex]
d = 5.65
Knowing a, b and d, substitute in the equivalent positions and find P(t).
P(t) = a.sin(b.t) + d
P(t) = 1.25.sin([tex]\frac{\pi}{3}[/tex].t) + 5.65
The Pluto's distance from the sun as a function of time is
P(t) = 1.25.sin([tex]\frac{\pi}{3}[/tex].t) + 5.65
Answer:
P(t) = 1.25.sin(.t) + 5.65
Step-by-step explanation:
A competition
took place in 1983
takes place every 6 years.
What is the first year after 2045 that it will also take place?
Answer:
2049.
Step-by-step explanation:
2045 - 1983 = 62 years.
So the competition will take place in 1983 + 60 = 2043.
After 2045 the competition takes place in 2049.
PLEASE HELP!!!! Find the common difference
Answer:
The common difference is 1/2
Step-by-step explanation:
Data obtained from the question include:
3rd term (a3) = 0
Common difference (d) =.?
From the question given, we were told that the 7th term (a7) and the 4th term (a4) are related by the following equation:
a7 – 2a4 = 1
Recall:
a7 = a + 6d
a4 = a + 3d
a3 = a + 2d
Note: 'a' is the first term, 'd' is the common difference. a3, a4 and a7 are the 3rd, 4th and 7th term respectively.
But, a3 = 0
a3 = a + 2d
0 = a + 2d
Rearrange
a = – 2d
Now:
a7 – 2a4 = 1
Substituting the value of a7 and a4, we have
a + 6d – 2(a + 3d) = 1
Sustitute the value of 'a' i.e –2d into the above equation, we have:
–2d + 6d – 2(–2d + 3d) = 1
4d –2(d) = 1
4d –2d = 1
2d = 1
Divide both side by 2
d = 1/2
Therefore, the common difference is 1/2
***Check:
d = 1/2
a = –2d = –2 x 1/2 = –1
a3 = 0
a3 = a + 2d
0 = –1 + 2(1/2)
0 = –1 + 1
0 = 0
a7 = a + 6d = –1 + 6(1/2) = –1 + 3 = 2
a4 = a + 3d = –1 + 3(1/2) = –1 + 3/2
= (–2 + 3)/2 = 1/2
a7 – 2a4 = 1
2 – 2(1/2 = 1
2 – 1 = 1
1 = 1
The length of time it takes students to complete a statistics examination is uniformly distributed and varies between 40 and 60 minutes. What is the probability density function for the length of time to complete the exam?
Answer:
[tex]X \sim Unif (a=40, b=60)[/tex]
And for this case we want to find the probability density function and we know that is given by:
[tex] f(x) =\frac{1}{b-a}=\frac{1}{60-40}= \frac{1}{20}, 40\leq X\leq 60[/tex]
Step-by-step explanation:
Let X the random variable who represent the length of time it takes students to complete a statistics examination. And the distribution for x is given by:
[tex]X \sim Unif (a=40, b=60)[/tex]
And for this case we want to find the probability density function and we know that is given by:
[tex] f(x) =\frac{1}{b-a}=\frac{1}{60-40}= \frac{1}{20}, 40\leq X\leq 60[/tex]
3/7 of which is 2 1/14
Answer:
Let the number be x
The statement is written as
[tex] \frac{3}{7}x = \frac{29}{14} [/tex]
Multiply through by 14
That's
[tex] 14 \times \frac{3}{7} x = \frac{29}{14} \times 14[/tex]
We get
2 × 3x = 29
6x = 29
Divide both sides by 6
That's
[tex] \frac{6x}{6} = \frac{29}{6} [/tex]
[tex]x \: = \frac{29}{6} \: \: or \\ 4 \frac{5}{6} [/tex]
Hope this helps you
You spend $3.50 on fruit. Apples cost $0.20 each while oranges cost $0.30 each. The equation models the situation, where x is the number of apples and y is the number of oranges. Which of the following is not a possible solution in the context of the problem?
a. 1 apple; 11 oranges
b. 11 apples; 1 orange
c. 7 apples; 7 oranges
d. 4 apples; 9 oranges
Answer:
b. 11 apples; 1 orange
Step-by-step explanation:
We test each option, and see if the total is $3.50(what you spend). If the result is different, it is not a possible solution.
a. 1 apple; 11 oranges
1 apple for $0.20
11 oranges for $0.30 each
0.20 + 11*0.30 = $3.50
Possible solution
b. 11 apples; 1 orange
11 apples for $0.20 each
1 orange for $0.30
11*0.2 + 0.3 = 2.5
Not $3.5, so this is not a possible solution.
This is the answer
c. 7 apples; 7 oranges
7*0.2 + 7*0.3 = $3.5
Possible
d. 4 apples; 9 oranges
4*0.2 + 9*0.3 = $3.5
Possible
evaluate the algebraic expression for the given values 6+5(x-6)³ for X=8
Find the domain of the function f(x) = 7x2 + 8x - 15.
Answer:
Domain is all real numbers or (negative infinity, positive infinity)
Step-by-step explanation:
Domain is all values of x (inputs) that will work with the function. Since a parabola has no limits for x, and all numbers work for x, then the domain can be any number. That leaves us with All Real Numbers as our answer.
Bijan has agreed to run a half-marathon to raise money for charity. Each day before school, Bijan runs a 2.4-mile route around his neighborhood. Then, each day after school, he runs on a lakeside trail. After 4 days, Bijan has run a total of 14.8 miles. Suppose you want to find out the length of the lakeside trail, x. What expression would represent how far Bijan runs everyday? What is the equation that represents his total distance after 4 days?
Answer:
First one is (x+2.4)
Second one is 4(x+2.4)=14.8
Step-by-step explanation:
Answer:
What expression would represent how far Bijan runs everyday?
✔ (x + 2.4)
What is the equation that represents his total distance after 4 days?
✔ 4(x + 2.4) = 14.8
Step-by-step explanation: I TOOK THE TEST
I need help please!!!!! Will give BRAINLIST !!
Answer:
0.65
Step-by-step explanation:
There are 65 student that do sports as 20+20+25=65. In total there are 100 student and you find this by adding up all the values. Now all you do is divide 65/100 and get 0.65 and that is the probability a random student plays sports.
The number of job applications submitted before landing an interview are normally distributed with a population standard deviation of 4 applications and an unknown population mean. A random sample of 19 job seekers is taken and results in a sample mean of 55 applications. The confidence intervalis (52.87.57.14). What is the margin of error? Round to two decimal places.
Answer:
The margin of error = 2.13
Step-by-step explanation:
Explanation:-
Given random sample size 'n' =19
mean of the sample(x⁻) = 55 applicants
Given standard deviation of the Population(S.D) = 4
Given confidence intervals are
((52.87.57.14)
we know that The Margin of error is determined by
[tex]M.E = Z_{\alpha } \frac{S.D}{\sqrt{n} }[/tex]
The confidence intervals are determined by
(x⁻ - M.E , x⁻+ M.E)
Step(ii):-
Given confidence intervals are
((52.87.57.14)
Now equating
(x⁻ - M.E , x⁻+ M.E) = ((52.87 , 57.14)
Given mean of the sample x⁻ = 55
( 55 - M.E , 55 + M.E) =((52.87.57.14)
Equating
55 - M.E = 52.87
M.E = 55 - 52.87
M.E = 2.13
Final answer:-
The margin of error = 2.13
The mean arrival rate of flights at Philadelphia International Airport is 195 flights or less per hour with a historical standard deviation of 13 flights. To increase arrivals, a new air traffic control procedure is implemented. In the next 30 days, the arrival rate per day is given in the data vector below called flights. Air traffic control manager wants to test if there is sufficient evidence that arrival rate has increased.
flights <- c(210, 215, 200, 189, 200, 213, 202, 181, 197, 199,
193, 209, 215, 192, 179, 196, 225, 199, 196, 210,
199, 188, 174, 176, 202, 195, 195, 208, 222, 221)
a) Find sample mean and sample standard deviation of arrival rate using R functions mean() and sd().
b) Is this a left-tailed, right-tailed or two-tailed test? Formulate the null and alternative hypothesis.
c) What is the statistical decision at the significance level α = .01?
Answer:
a) The sample mean is M=200.
The sample standard deviation is s=13.19.
b) Right-tailed. The null and alternative hypothesis are:
[tex]H_0: \mu=195\\\\H_a:\mu> 195[/tex]
c) At a significance level of 0.01, there is notenough evidence to support the claim that the arrival rate is significantly higher than 195.
Step-by-step explanation:
We start by calculating the sample and standard deviation.
The sample size is n=30.
The sample mean is M=200.
The sample standard deviation is s=13.19.
[tex]M=\dfrac{1}{n}\sum_{i=1}^n\,x_i\\\\\\M=\dfrac{1}{30}(210+215+200+. . .+221)\\\\\\M=\dfrac{6000}{30}\\\\\\M=200\\\\\\s=\sqrt{\dfrac{1}{n-1}\sum_{i=1}^n\,(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{29}((210-200)^2+(215-200)^2+(200-200)^2+. . . +(221-200)^2)}\\\\\\s=\sqrt{\dfrac{5048}{29}}\\\\\\s=\sqrt{174.07}=13.19\\\\\\[/tex]
This is a hypothesis test for the population mean.
The claim is that the arrival rate is significantly higher than 195. As we are interested in only the higher tail for a significant effect, this is a right-tailed test.
Then, the null and alternative hypothesis are:
[tex]H_0: \mu=195\\\\H_a:\mu> 195[/tex]
The significance level is 0.01.
The standard deviation of the population is known and has a value of σ=13.
We can calculate the standard error as:
[tex]\sigma_M=\dfrac{\sigma}{\sqrt{n}}=\dfrac{13}{\sqrt{30}}=2.373[/tex]
Then, we can calculate the z-statistic as:
[tex]z=\dfrac{M-\mu}{\sigma_M}=\dfrac{200-195}{2.373}=\dfrac{5}{2.373}=2.107[/tex]
This test is a right-tailed test, so the P-value for this test is calculated as:
[tex]\text{P-value}=P(z>2.107)=0.018[/tex]
As the P-value (0.018) is bigger than the significance level (0.01), the effect is not significant.
The null hypothesis failed to be rejected.
At a significance level of 0.01, there is notenough evidence to support the claim that the arrival rate is significantly higher than 195.
Based on data from the Greater New York Blood Program, when blood donors are randomly selected the probability of the having Group O blood is 0.45. Knowing that information, find the probability that AT LEAST ONE of the 5 donors has Group O blood type.
Answer:
The probability that at least one of the 5 donors has Group O blood type is 0.9497.
Step-by-step explanation:
We can model this as a binomial random variable, with n=5 (the sample size) and p=0.45.
The probability that exactly k donors have Group O blood type in the sample can be written as:
[tex]P(x=k) = \dbinom{n}{k} p^{k}(1-p)^{n-k}\\\\\\P(x=k) = \dbinom{5}{k} 0.45^{k} 0.55^{5-k}\\\\\\[/tex]
We have to calculate the probability P(x≥1). In this case it easy to substract from 1 the probabitity that x is exactly 0:
[tex]P(X\geq1)=1-P(x=0)\\\\\\P(x=0) = \dbinom{5}{0} p^{0}(1-p)^{5}=0.55^5=0.0503\\\\\\P(x\geq1)=1-0.0503=0.9497[/tex]
Of 41 bank customers depositing a check, 22 received some cash back. Construct a 90 percent confidence interval for the proportion of all depositors who ask for cash back. (Round your answers to 4 decimal places.)
Answer:
CI: {0.4085; 0.6647}
Step-by-step explanation:
The confidence interval for a proportion (p) is given by:
[tex]p \pm z*\sqrt{\frac{(1-p)*p}{n} }[/tex]
Where n is the sample size, and z is the z-score for the desired confidence interval. The score for a 90% confidence interval is 1.645. The proportion of depositors who ask for cash back is:
[tex]p=\frac{22}{41}=0.536585[/tex]
Thus the confidence interval is:
[tex]0.536585 \pm 1.645*\sqrt{\frac{(1-0.536585)*0.536585}{41}}\\0.536585 \pm 0.128109\\L=0.4085\\U=0.6647[/tex]
The confidence interval for the proportion of all depositors who ask for cash back is CI: {0.4085; 0.6647}
I have no idea what this is
Answer:
B. -1.
Step-by-step explanation:
[tex]i^1[/tex] = i
[tex]i^2 = -1[/tex]
[tex]i^3 = -i[/tex]
[tex]i^4 = 1[/tex]
...And it keeps going in a pattern, from i to -1 to -i to 1. And so, we have four values.
34 / 4 = 8 with a remainder of 2. That means that the value of [tex]i^{34}[/tex] is the same thing as [tex]i^2\\[/tex], so it is B. -1.
Hope this helps!
if X= 2, Y=-2 and Z=3 find the value of 3 X + Y - Z
Answer:
1Given,
X=2
y=-2
z=3
Now,
[tex]3x + y - z \\ = 3 \times 2 + ( - 2) - 3 \\ = 6 + ( - 2) - 3 \\ = 6 - 2 - 3 \\ = 4 - 3 \\ = 1[/tex]
Hope this helps...
Good luck on your assignment..
Answer:
1
Step-by-step explanation:
3X+Y-Z
Where X = 2, Y = -2 amd Z = 3
=> 3(2)+(-2)-(3)
=> 6-2-3
=> 4-3
=> 1