Solve problem no.1 Graphically
1.Two shunt DC generators G1 and G2 are rated at 125KW and 175 kW at 110 V respectively. Their external load characteristics may be considered as straight line. The drop in the terminal voltage from no-load to full-load is 10 V for G1 and 20 V for G2. Calculate the no-load voltages of these generators when they are operated in parallel to supply a load of 2200 A, which is divided between them in proportion to their ratings.

Answers

Answer 1

We are required to find the no-load voltages of two shunt DC generators G1 and G2 rated at 125 kW and 175 kW, respectively when they are connected in parallel to supply a load of 2200 A.

Let V1 and V2 be the no-load voltages of the generators G1 and G2, respectively.

Total power delivered by the generators, P = [tex]125 + 175 = 300[/tex] kW

Total current supplied by the generators = 2200 A

Current supplied by G1[tex], I1 = (125/300) x 2200 = 917 A[/tex]

Current supplied by G2,[tex]I2 = (175/300) x 2200 = 1283 A[/tex]

Now, according to the question, the drop in the terminal voltage from no-load to full-load is 10 V for G1 and 20 V for G2.

In general, the voltage drop across the shunt field resistance is much smaller than the armature voltage, so we can ignore it and assume that the armature voltage is equal to the terminal voltage.

Therefore, the voltage drop across each external resistance is zero and the total voltage supplied by the two generators in parallel at no-load can be obtained as:

Therefore, the no-load voltage of G1 is 98.32

V and the no-load voltage of G2 is 141.68 V.

To know more about generators visit:

https://brainly.com/question/12841996

#SPJ11


Related Questions

b) Describe the symbol for Control Valve as state below; i. 2/2 DCV ii. 3/2 Normally Open DCV III. 5/2 DCV Check valve with spring 4/2 DCV

Answers

The spring in the valve controls the flow of fluid through the valve.4/2 DCV: This is a four-way, two-position valve with two inlet and two outlets, and is used to control the flow of fluid through a hydraulic circuit.

Control valves are components of a hydraulic system used to regulate the flow of fluids through pipes, ensuring that the correct amount of liquid or gas flows through the pipeline. The symbols for different types of control valves are usually used in hydraulic diagrams to indicate their functions and position. The symbols for the different control valves are as follows:i. 2/2 DCV: This control valve is two-way, two-position, and is commonly used to open or shut off a flow of fluid

3/2 Normally Open DCV: This is a three-way, two-position control valve that is typically used to control the flow of a fluid in a hydraulic circuit. It has one inlet and two outlets and is always open in one position. iii. 5/2 DCV Check valve with spring: This is a five-way, two-position valve that has one inlet and two outlets, with a check valve on one outlet.

To know more about Valve control visit-

https://brainly.com/question/32670164

#SPJ11

Optional project Take a photo, from around you, of a part/component that has failed under loading. 1. Write a report including a free body diagram (FBD) for the part/component 2. In the report, discuss the following: • a. Type(s) of loads on the part/component: mechanical, thermal, static, fluctuating, • b. Cause of failure: Excessive deformation, Ductile/Brittle fracture, Creep, Impact, Thermal shock, Relaxation, Buckling, Wear, • c. How this failure could have been prevented. Note: o This project is a bonus and optional. o The report should have a cover page + a maximum of 6 pages (A4 size). o The entire document should be in Times New Roman or Times font (size 12 for the body and 16 for headings) o Provide references (if any) and any material you referred to in the report. o A maximum of two students can submit one report.

Answers

The failure of the gear drive wheel was caused by the cyclical loading of the system, which caused the wheel to fatigue over time. To prevent this type of failure in the future, a more robust material should be used for the gear drive wheel, and the wheel should be designed with a larger safety factor.

Part/Component: Gear drive wheel
Report:
Introduction:
A gear drive wheel is a type of wheel that is used to transmit torque from one shaft to another. In this project, the gear drive wheel was used in a project.

This report will discuss the failure of the gear drive wheel under loading, including the type of loads on the gear drive wheel, the cause of the failure, and how the failure could have been prevented.
Free Body Diagram (FBD) for Gear drive wheel:
The free body diagram for the gear drive wheel is shown below. The FBD shows the forces acting on the gear drive wheel, including the torque, frictional forces, and radial forces.
Report Discussion:
a. Type(s) of loads on the part/component:
The gear drive wheel was subjected to a combination of mechanical, static, and fluctuating loads. The mechanical load was due to the torque that was transmitted through the gear drive wheel.

The static load was due to the weight of the system that was supported by the gear drive wheel. The fluctuating load was due to the cyclical nature of the system.
b. Cause of failure:
The gear drive wheel failed due to excessive deformation. The deformation was caused by the cyclical nature of the system, which caused the gear drive wheel to fatigue over time.

The fatigue caused microcracks to form in the gear drive wheel, which eventually led to the failure of the wheel.
c. How this failure could have been prevented:
The failure of the gear drive wheel could have been prevented by using a more robust material for the wheel. The material used for the wheel should have been able to withstand the cyclical loading of the system. Additionally, the gear drive wheel could have been designed with a larger safety factor to account for the cyclical loading of the system.
Conclusion:
In conclusion, the failure of the gear drive wheel was caused by the cyclical loading of the system, which caused the wheel to fatigue over time.

To prevent this type of failure in the future, a more robust material should be used for the gear drive wheel, and the wheel should be designed with a larger safety factor.

To know more about project visit;

brainly.com/question/28476409

#SPJ11

In a diabatic (Q ≠ 0) duct with friction and area change. Determine: a) The Mach number for which Mach number and density are constant (dM=0 and dp=0). Note that you also have an equation for dp/p as a function of Mach! In section 9.5. b) Where will the choking occur in a Converging-Diverging Nozzle if heat is being added to the system. What if heat was being extracted?

Answers

a) The Mach number for which Mach number and density are constant is the critical Mach number. The derivation is based on a combination of the conservation laws of mass, momentum, and energy as well as thermodynamic relationships.

The critical Mach number is the Mach number at which the local velocity of the gas flowing through a particular part of a fluid system equals the local speed of sound in the fluid.The Mach number and density are constant when the flow is choked. For a choked flow, the Mach number is the critical Mach number. The critical Mach number depends on the area ratio and is constant for a particular area ratio.

b) If heat is being added to the system, the pressure decreases after the throat to reach a minimum at the diverging section's end. The location of choking occurs in the divergent section, and it depends on the quantity of heat added to the system. The location of choking moves downstream if the amount of heat added is increased. If heat is being extracted, the pressure increases after the throat to reach a maximum at the diverging section's end.

The location of choking occurs in the converging section, and it depends on the amount of heat extracted from the system. The location of choking moves upstream if the amount of heat extracted is increased. Therefore, the position of choking in a Converging-Diverging Nozzle is sensitive to the heat addition or extraction from the system.

To know more about  thermodynamic visit:

brainly.com/question/31275352

#SPJ11

For bit1 [1 0 1 0 1 01110001] and bit2-[11100011 10011]; find the bitwise AND, bitwise OR, and bitwise XOR of these strings.

Answers

The Bitwise AND, OR and XOR of bit1 and bit2 are 1 0 1 0 1 00010001, 1 1 1 0 1 11110011, and 0 1 0 0 0 10100010 respectively.

Given bit1 as [1 0 1 0 1 01110001] and bit2 as [11100011 10011]Bitwise AND ( & ) operation between bit1 and bit2:

For bitwise AND operation, we consider 1 only if both the bits in the operands are 1. Otherwise, we consider the value of 0.

For our given problem, we perform the AND operation as follows:

Bitwise AND result between bit1 and bit2 is 1 0 1 0 1 00010001Bitwise OR ( | ) operation between bit1 and bit2:

For bitwise OR operation, we consider 1 in the result if either of the bits in the operands is 1. We consider 0 only if both the bits in the operands are 0.

For our given problem, we perform the OR operation as follows:

Bitwise OR result between bit1 and bit2 is 1 1 1 0 1 11110011Bitwise XOR ( ^ ) operation between bit1 and bit2:

For bitwise XOR operation, we consider 1 in the result if the bits in the operands are different. We consider 0 if the bits in the operands are the same.

For our given problem, we perform the XOR operation as follows:

Bitwise XOR result between bit1 and bit2 is 0 1 0 0 0 10100010

Thus, the Bitwise AND, OR and XOR of bit1 and bit2 are 1 0 1 0 1 00010001, 1 1 1 0 1 11110011, and 0 1 0 0 0 10100010 respectively.

To know more about Bitwise visit:

https://brainly.com/question/30904426

#SPJ11

The power input to the rotor of a 600 V, 50 Hz, 6 pole, 3 phase induction motor is 70 kW. The rotor electromotive force is observed to make 150 complete alterations per minute. Calculate: i. Frequency of the rotor electromotive force in Hertz. ii. Slip. iii. Stator speed. iv. Rotor speed. v. Total copper loss in rotor.
vi. Mechanical power developed.

Answers

Given:Voltage, V = 600 VFrequency, f = 50 HzPoles, p = 6Power input, P = 70 kWSpeed of rotor, N = 150 rpmTo calculate:i. Frequency of the rotor electromotive force in Hertz.ii. Slip.iii. Stator speed.iv. Rotor speed.v. Total copper loss in rotor.vi. Mechanical power developed.i.

Frequency of the rotor electromotive force in Hertz.Number of cycles per second (frequencies) = N / 60N = 150 rpmNumber of cycles per second (frequencies) = N / 60= 150 / 60= 2.5 HzTherefore, the frequency of the rotor electromotive force is 2.5 Hz.ii. Slip, S.The formula for slip is:S = (Ns - Nr) / Ns Where Ns = synchronous speed and Nr = rotor speed.

We know that,p = 6f = 50 HzNs = 120 f / p= 120 x 50 / 6= 1000 rpmWe can calculate the rotor speed, Nr from the following formula:Nr = (1 - S) x NsGiven, N = 150 rpm Therefore, slip, S = (Ns - N) / Ns= (1000 - 150) / 1000= 0.85iii. Stator speed.We know that stator speed is,Synchronous speed = 1000 rpmTherefore, the stator speed is 1000 rpm.iv. Rotor speed.

To know more about electromotive visit:

https://brainly.com/question/13753346

#SPJ11

Assignment 6: A new program in genetics engineering at Gentex will require RM10 million in capital. The cheif financial officer (CFO) has estimated the following amounts of capital at the indicated rates per year. Stock sales RM5 million at 13.7% per year Use of retained earnings RM2 million at 8.9% per year Debt financing throung bonds RM3 million at 7.5% per year Retain earning =2 millions Historically, Gentex has financed projects using a D-E mix of 40% from debt sources costing 7.5% per year and 60% from equity sources stated above with return rate 10% year. Questions; a. Compare the historical and current WACC value. b. Determine the MARR if a return rate of 5% per year is required. Hints a. WACC history is 9.00% b. MARR for additional 5% extra return is 15.88% Show a complete calculation steps.

Answers

The historical weighted average cost of capital (WACC) can be calculated using the D-E mix and the respective costs of debt and equity:15.00%

WACC_historical = (D/D+E) * cost_of_debt + (E/D+E) * cost_of_equity

Given that the D-E mix is 40% debt and 60% equity, the cost of debt is 7.5% per year, and the cost of equity is 10% per year, the historical WACC can be calculated as follows:

WACC_historical = (0.4 * 7.5%) + (0.6 * 10%)

The minimum acceptable rate of return (MARR) can be determined by adding the required return rate (5% per year) to the historical WACC:

MARR = WACC_historical + Required Return Rate

Using the historical WACC of 9.00%, the MARR for a return rate of 5% per year can be calculated as follows:

MARR = 9.00% + 5%

To show the complete calculation steps:

a. WACC_historical = (0.4 * 7.5%) + (0.6 * 10%)

WACC_historical = 3.00% + 6.00%

WACC_historical = 9.00%

b. MARR = 9.00% + 5%

MARR = 14.00% + 1.00%

MARR = 15.00%

To know more about capital click the link below:

brainly.com/question/31699448

#SPJ11

A steel spring with squared and ground ends has a wire diameter of d=0.04 inch, and mean diameter of D=0.32 inches. What is the maximum static load (force) that the spring can withstand before going beyond the allowable shear strength of 80 ksi?
a) 4.29 lbf b) 5.36 lbf c) 7.03 lbf d) Other: ____ If the above spring has a shear modulus of 10,000 ksi and 8 active coils, what is the maximum deflection allowed?
a) 1.137 in b).822 lbf c) 0.439 in d) Other: ____

Answers

a) The maximum static load that the spring can withstand before going beyond the allowable shear strength is 4.29 lbf.The maximum deflection allowed for the spring is 0.439 in.

To calculate the maximum static load, we can use the formula for shear stress in a spring, which is equal to the shear strength of the material multiplied by the cross-sectional area of the wire. By substituting the given values into the formula, we can calculate the maximum static load.The maximum deflection of a spring can be calculated using Hooke's law for springs, which states that the deflection is proportional to the applied load and inversely proportional to the spring constant. By substituting the given values into the formula, we can calculate the maximum deflection allowed.

To know more about spring click the link below:

brainly.com/question/13153760

#SPJ11

Identify the incorrect code by line number only. Do not rewrite the code (i.e. if line 3 was incorrect the answer would be: 3). There is only one error. I/ This code snippet is from a program that implements a 4×3 key scanned I/ keypad interface. A periodic timer interrupt is used to poll the keypad. 1.static inline void DRIVE_ROW_HIGH()\{ 2. RO=1; 3. R1=1; 4. R2=0 : 5.)

Answers

The incorrect line in the code snippet is line 4, where a colon (:) is used instead of a semicolon (;) to terminate the statement.

The code snippet implements a keypad interface using a periodic timer interrupt. The interrupt is a mechanism that suspends the normal program flow at regular intervals to poll the keypad for input.

By utilizing a timer interrupt, the program can periodically check the state of the keypad and handle key presses accordingly.

This approach allows for efficient and responsive keypad scanning, ensuring that user input is detected promptly. The interrupt-driven design improves the overall user experience by enabling real-time interaction with the keypad interface.

Learn more about code snippet here:

https://brainly.com/question/30471072

#SPJ4

A body in uniaxial tension has a maximum principal stress of 20 MPa. If the body's stress state is represented by a Mohr circle, what is the circle's radius? a 20 MPa bb 5 MPa c 2 MPa d 10 MPa

Answers

The radius of the Mohr circle represents half of the difference between the maximum and minimum principal stresses. 10 MPa is the correct answer

The radius of a Mohr circle represents the magnitude of the maximum shear stress. In uniaxial tension, the maximum shear stress is equal to half of the difference between the maximum and minimum principal stresses. Since the maximum principal stress is given as 20 MPa, the minimum principal stress in uniaxial tension is zero.

In this case, the maximum principal stress is given as 20 MPa. Since the stress state is uniaxial tension, the minimum principal stress is zero.

Therefore, the radius of the Mohr circle is:

Radius = (σ₁ - σ₃) / 2

Since σ₃ = 0, the radius simplifies to:

Radius = σ₁ / 2

Substituting the given value of σ₁ = 20 MPa, we have:

Radius = 20 MPa / 2 = 10 MPa

Therefore, the radius of the Mohr circle representing the body's stress state is 10 MPa.

Option (d) 10 MPa is the correct answer.

To know more about  Mohr circle visit:

https://brainly.com/question/31642831

#SPJ11

Design a controller for the unstable plant G(s) = 1/ s(20s+10) such that the resulting) unity-feedback control system meet all of the following control objectives. The answer should give the transfer function of the controller and the values or ranges of value for the controller coefficients (Kp, Kd, and/or Ki). For example, if P controller is used, then only the value or range of value for Kp is needed. the closed-loop system's steady-state error to a unit-ramp input is no greater than 0.1;

Answers

The transfer function for the plant, G(s) = 1/s(20s+10) can be written in state-space form as shown below:

X' = AX + BUY = CX

Where X' is the derivative of the state vector X, U is the input, and Y is the output of the system.A = [-1/20]B = [1/20]C = [1 0]We will use the pole placement technique to design the controller to meet the following control objectives:

the closed-loop system's steady-state error to a unit-ramp input is no greater than 0.1The desired characteristic equation of the closed-loop system is given as:S(S+20) + KdS + Kp = 0Since the plant is unstable, we will add a pole at the origin to stabilize the system. The desired characteristic equation with a pole at the origin is:S(S+20)(S+a) + KdS + Kp = 0where 'a' is the additional pole to be added at the origin.The closed-loop transfer function of the system is given as:

Gc(s) = (Kd S + Kp) / [S(S+20)(S+a) + KdS + Kp]

To meet the steady-state error requirement, we will use an integral controller. Thus the transfer function of the controller is given as:

C(s) = Ki/S

And the closed-loop transfer function with the controller is given as:

Gc(s) = (Kd S + Kp + Ki/S) / [S(S+20)(S+a) + KdS + Kp]

For the steady-state error to be less than or equal to 0.1, the error constant should be less than or equal to 1/10.Kv = lim S->0 (S*G(s)*C(s)) = 1/20Kp = 1/10Ki >= 2.5Kd >= 2.5Thus the transfer function for the controller is:

C(s) = (2.5 S + Ki)/S

To know more about pole placement visit :

https://brainly.com/question/30888799

#SPJ11

The properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor. Select one: a True b False

Answers

The given statement is true, i.e., the properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor

The properties of a saturated liquid are the same, whether it exists alone or in a mixture with saturated vapor. This statement is true. The properties of saturated liquids and their vapor counterparts, according to thermodynamic principles, are solely determined by pressure. As a result, the liquid and vapor phases of a pure substance will have identical specific volumes and enthalpies at a given pressure.

Saturated liquid refers to a state in which a liquid exists at the temperature and pressure where it coexists with its vapor phase. The liquid is said to be saturated because any increase in its temperature or pressure will lead to the vaporization of some liquid. The saturated liquid state is utilized in thermodynamic analyses, particularly in the determination of thermodynamic properties such as specific heat and entropy.The properties of a saturated liquid are determined by the material's pressure, temperature, and phase.

Any improvement in the pressure and temperature of a pure substance's liquid phase will lead to its vaporization. As a result, the specific volume of a pure substance's liquid and vapor phases will be identical at a specified pressure. Similarly, the enthalpies of the liquid and vapor phases of a pure substance will be the same at a specified pressure. Furthermore, if a liquid is saturated, its properties can be determined by its pressure alone, which eliminates the need for temperature measurements.The statement, "the properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor," is accurate. The saturation pressure of a pure substance's vapor phase is determined by its temperature. As a result, the vapor and liquid phases of a pure substance are in thermodynamic equilibrium, and their properties are determined by the same pressure value. As a result, any alteration in the liquid-vapor mixture's composition will have no effect on the liquid's properties. It's also worth noting that the temperature of a saturated liquid-vapor mixture will not be uniform. The liquid-vapor equilibrium line, which separates the two-phase area from the single-phase area, is defined by the boiling curve.

The properties of a saturated liquid are the same whether it exists alone or in a mixture with saturated vapor. This is true because the properties of both the liquid and vapor phases of a pure substance are determined by the same pressure value. Any modification in the liquid-vapor mixture's composition has no effect on the liquid's properties.

To know more about enthalpies visit:

brainly.com/question/29145818

#SPJ11

Vehicle dynamics Explain "with reason" the effects of the states described below on the vehicle's characteristics A) Applying the rear brake effort on the front wheels more than rear wheels (weight distribution must be taken into account) B) Load transfer from inner wheels to outer wheels C) Driving on the front wheels during cornering behavior D) To be fitted as a spare wheel on the front right wheel, cornering stiffness is lower than other tires

Answers

There are several reasons that would create the effects of the states described below on the vehicle's characteristics. These are all explained below

How to describe the effects of the states

A) Applying more rear brake effort on the front wheels:

- Increases weight transfer to the front, improving front wheel braking.- May reduce stability and lead to oversteer if the rear wheels lose grip.

B) Load transfer from inner to outer wheels during cornering:

- Increases grip on outer wheels, improving cornering ability and stability.- May reduce grip on inner wheels, potentially causing understeer.

C) Driving a front-wheel-drive vehicle during cornering:

- Can cause torque steer, pulling the vehicle to one side.- May exhibit understeer tendencies and reduced maneuverability.

D) Fitting a spare wheel with lower cornering stiffness on the front right wheel:

Low cornering stiffness affects tire grip during cornering.Can create an imbalance and reduce traction on the front right wheel. May result in understeer or reduced cornering ability.

Read more on Vehicle dynamics here https://brainly.com/question/31540536

#SPJ4

You throw a ball vertically upward with a velocity of 10 m/s from a
window located 20 m above the ground. Knowing that the acceleration of
the ball is constant and equal to 9.81 m/s2
downward, determine (a) the
velocity v and elevation y of the ball above the ground at any time t,
(b) the highest elevation reached by the ball and the corresponding value
of t, (c) the time when the ball hits the ground and the corresponding
velocity.

Answers

The highest elevation reached by the ball is approximately 25.1 m at t = 1.02 s, and it hits the ground at t = 2.04 s with a velocity of approximately -9.81 m/s.

The velocity v and elevation y of the ball above the ground at any time t can be calculated using the following equations:

v = 10 - 9.81t y = 20 + 10t - 4.905t²

The highest elevation reached by the ball is 25.1 m and it occurs at t = 1.02 s. The time when the ball hits the ground is t = 2.04 s and its velocity is -9.81 m/s.

Hence, v = 10 - 9.81(2.04) = -20.1 m/s and y = 20 + 10(2.04) - 4.905(2.04)² = 0 m.

The velocity v and elevation y of the ball above the ground at any time t can be calculated using the following equations:

v = 10 - 9.81t y = 20 + 10t - 4.905t²

where v is the velocity of the ball in meters per second (m/s), y is its elevation in meters (m), t is time in seconds (s), and g is acceleration due to gravity in meters per second squared (m/s²).

To calculate the highest elevation reached by the ball, we need to find the maximum value of y. We can do this by finding the vertex of the parabolic equation for y:

y = -4.905t² + 10t + 20

The vertex of this parabola occurs at t = -b/2a, where a = -4.905 and b = 10:

t = -10 / (2 * (-4.905)) = 1.02 s

Substituting this value of t into the equation for y gives us:

y = -4.905(1.02)² + 10(1.02) + 20 ≈ 25.1 m

Therefore, the highest elevation reached by the ball is approximately 25.1 m and it occurs at t = 1.02 s.

To find the time when the ball hits the ground, we need to solve for t when y = 0:

0 = -4.905t² + 10t + 20

Using the quadratic formula, we get:

t = (-b ± sqrt(b^2 - 4ac)) / (2a)

where a = -4.905, b = 10, and c = 20:

t = (-10 ± √(10² - 4(-4.905)(20))) / (2(-4.905)) ≈ {1.02 s, 2.04 s}

Since we are only interested in positive values of t, we can discard the negative solution and conclude that the time when the ball hits the ground is approximately t = 2.04 s.

Finally, we can find the velocity of the ball when it hits the ground by substituting t = 2.04 s into the equation for v:

v = 10 - 9.81(2.04) ≈ -9.81 m/s

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

D. Find W and dw for the following values; Z=45º, X=10, Y=100 if each has an associated error of 10%; (i) W=Y-10X (ii) = X2 [cos (22)+sin? (22)] (ii) W=Y In X iv) W=Y log X

Answers

Given the following values, `[tex]Z = 45°, X = 10, Y = 100`[/tex]with an associated error of `10%`. Let's calculate `W` and `dw`.The formula to calculate the error is `[tex]dw = |∂W/∂X| dx + |∂W/∂Y| dy + |∂W/∂Z| dz`.[/tex]

Where, `dx`, `dy`, and `dz` are the respective errors in `X`, `Y`, and `Z`.

[tex]W = Y - 10X`[/tex] Substitute the given values of `X` and `Y` into the formula to get `W = 100 - 10(10) = 0`.Differentiating `W` with respect to `X`, we get: `∂W/∂X = -10`Differentiating `W` with respect to `Y`, we get: [tex]`∂W/∂Y = 1`[/tex]

Substitute the values of `dx = 0.1X`, `dy = 0.1Y` and `dz = 0.1Z` in the error equation. [tex]`dw = |-10(0.1)(10)| + |1(0.1)(100)| + |0| = 1`[/tex]. The value of `W` is `0` and the error in `W` is `1`. [tex]`W = X^2 [cos (22) + sin^2 (22)]`[/tex]Substitute the given value of `X` in the formula to get[tex]`W = 10^2[cos (22) + sin^2(22)] = 965.72`.[/tex]

To know more about calculate visit:

https://brainly.com/question/30781060

#SPJ11

Let g(x) = ∫^x _19 ^3√t dt . Which of the following is gʻ(27),

Answers

Based on the information guven, it should be noted that the value of g(x) = ∫[19, ∛x] t dt is C. 1/3.

How to calculate the value

In this case, g(x) is defined as the integral of t with respect to t, from 19 to the cube root of x. Let's write this in a more conventional form:

g(x) = ∫[19, ∛x] t dt

To evaluate g'(x), we'll need to differentiate g(x) with respect to x. But before that, we need to find the limits of integration in terms of x.

Since the lower limit is 19, that remains constant. Now, we can differentiate g(x) using the Fundamental Theorem of Calculus:

g'(x) = d/dx [∫[19, ∛x] t dt]

Here, F(x) is the antiderivative of f(x) and f(x) = t.

Since f(x) = t, f(∛x) = ∛x.

Now, let's evaluate g'(27):

g'(27) = (1/3) * 3 / (3²)

g'(27) = 1/3

Therefore, g'(27) is equal to 1/3.

Learn more about calculus on

https://brainly.com/question/24430269

#SPJ4

Let of g(x) = ∫[19, ∛x] t dt Which of the following is gʻ(27),

a. 1

b. 3/4

c. 1/3

d. 3

Starting from rest, the angular acceleration of the disk is defined by a = (6t3 + 5) rad/s², where t is in seconds. Determine the magnitudes of the velocity and acceleration of point A on the disk when t = 3 s.

Answers

To determine the magnitudes of the velocity and acceleration of point A on the disk when t = 3 s, we need to integrate the given angular acceleration function to obtain the angular velocity and then differentiate the angular velocity to find the angular acceleration.

Finally, we can use the relationship between angular and linear quantities to calculate the linear velocity and acceleration at point A.

Given: Angular acceleration (α) = 6t^3 + 5 rad/s², where t = 3 s

Integrating α with respect to time, we get the angular velocity (ω):

ω = ∫α dt = ∫(6t^3 + 5) dt

ω = 2t^4 + 5t + C

To determine the constant of integration (C), we can use the fact that the angular velocity is zero when the disk starts from rest:

ω(t=0) = 0

0 = 2(0)^4 + 5(0) + C

C = 0

Therefore, the angular velocity function becomes:

ω = 2t^4 + 5t

Now, differentiating ω with respect to time, we get the angular acceleration (α'):

α' = dω/dt = d/dt(2t^4 + 5t)

α' = 8t^3 + 5

Substituting t = 3 s into the equations, we can calculate the magnitudes of velocity and acceleration at point A on the disk.

Velocity at point A:

v = r * ω

where r is the radius of point A on the disk

Acceleration at point A:

a = r * α'

where r is the radius of point A on the disk

Since the problem does not provide information about the radius of point A, we cannot determine the exact magnitudes of velocity and acceleration at this point without that additional information.

For more information on angular acceleration  visit https://brainly.com/question/30237820

#SPJ11

Using an allowable shearing stress of 8,000 psi, design a solid steel shaft to transmit 14 hp at a speed of 1800 rpm Note(1) : Power =2 t f T where fis frequency (Cycles/second) and Tis torque (in-lb). Note(2): 1hp=550 ft-lb =6600 in-lb

Answers

The diameter of the solid steel shaft to transmit 14 hp at a speed of 1800 rpm is 0.479 inches. The shaft must have a diameter of at least 0.479 inches to withstand the shearing stress of 8,000 psi.

Solid steel shaft to transmit 14 hp at a speed of 1800 rpm:

The formula for finding the horsepower (hp) of a machine is given by;

Power (P) = Torque (T) x Angular velocity (ω)Angular velocity (ω) = (2 x π x N)/60,

where N is the speed of the shaft in rpmT = hp x 550 / NTo design a solid steel shaft to transmit 14 hp at a speed of 1800 rpm:

Step 1: Find the torqueT = hp x 550 / NT = 14 hp x 550 / 1800 rpm = 4.29 in-lb

Step 2: Find the diameter of the shaft by using torsional equation

T = τ_max * (π/16)d^3τ_max = 8,000

psiτ_max = (2 * 4.29 in-lb) / (π * d^3/16)8000

psi = (2 * 4.29 in-lb) / (π * d^3/16)d = 0.479 inches

To know more about shearing stress visit:

https://brainly.com/question/13385447

#SPJ11

A piston-cylinder device initially contains 60 L of liquid water at 40°C and 200kPa. Heat is transferred to the water at constant pressure until the final temperature is 125°C.
Determine: (a) What is the mass of the water?
(b) What is the final volume? (c) Determine the total internal energy change. (d) Show the process on a P - v diagram with respect to saturation lines.

Answers

The mass of water to be 59.82 kg, the final volume to be 76.42 L, and the total internal energy change to be 17610 kJ. The process is shown on a P-v diagram, indicating that it is not reversible.

Initial volume of liquid water V1 = 60 L, Pressure P1 = 200 k, PaInitial temperature T1 = 40°C = 313.15 K

Final temperature T2 = 125°C = 398.15 K. Now, we can find the mass of water using the relation as below;m = V1ρ, Where,

ρ is the density of water at the given temperature.

ρ = 997 kg/m³ (at 40°C). Mass of water,m = 60 L x 1 m³/1000 L x 997 kg/m³ = 59.82 kg. Hence, the mass of water is 59.82 kg.

To find final volume, we can use the relationship as below; V2 = V1 (T2 / T1), Where

V2 is the final volume.

Substituting the values, we get; V2 = 60 L x (398.15 K / 313.15 K) = 76.42 L. Hence, the final volume is 76.42 L.

Internal energy change ΔU is given by the relation; ΔU = mCΔT, Where,

C is the specific heat capacity of water at the given temperature.

C = 4.18 kJ/kg-K for water at 40°C and 1 atm pressure. Substituting the values, we get; ΔU = 59.82 kg x 4.18 kJ/kg-K x (125 - 40)°C = 17610 kJ.

Hence, the total internal energy change is 17610 kJ.

Then, heat is transferred at constant pressure and the temperature increases to 125°C. This leads to the increase in volume to V2 = 76.42 L. The final state is represented by point B. The process follows the constant pressure line as shown. The state points A and B are not on the saturated liquid-vapor curve, and hence the process is not a reversible one.

Learn more about energy change: brainly.com/question/18345151

#SPJ11

A cable is made of two strands of different materials, A and B, and cross-sections, as follows: For material A, K = 60,000 psi, n = 0.5, Ao = 0.6 in²; for material B, K = 30,000 psi, n = 0.5, Ao = 0.3 in².

Answers

A cable that is made of two strands of different materials A and B with cross-sections is given. For material A, K = 60,000 psi, n = 0.5, Ao = 0.6 in²; for material B, K = 30,000 psi, n = 0.5, Ao = 0.3 in².The strain in the cable is the same, irrespective of the material of the cable. Hence, to calculate the stress, use the stress-strain relationship σ = Kε^n

The material A has a cross-sectional area of 0.6 in² while material B has 0.3 in² cross-sectional area. The cross-sectional areas are not the same. To calculate the stress in each material, we need to use the equation σ = F/A. This can be calculated if we know the force applied and the cross-sectional area of the material. The strain is given as ε = 0.003. Hence, to calculate the stress, use the stress-strain relationship σ = Kε^n. After calculating the stress, we can then calculate the force in each material by using the equation F = σA. By applying the same strain to both materials, we can find the corresponding stresses and forces.

Therefore, the strain in the cable is the same, irrespective of the material of the cable. Hence, to calculate the stress, use the stress-strain relationship σ = Kε^n. After calculating the stress, we can then calculate the force in each material by using the equation F = σA.

To know more about strain visit:
https://brainly.com/question/32006951
#SPJ11

An air-standard dual cycle has a compression ratio of 9. At the beginning of compression, p1 = 100 kPa, T1 = 300 K, and V1 = 14 L. The total amount of energy added by heat transfer is 22.7 kJ. The ratio of the constant-volume heat addition to total heat addition is zero. Determine: (a) the temperatures at the end of each heat addition process, in K. (b) the net work per unit of mass of air, in kJ/kg. (c) the percent thermal efficiency. (d) the mean effective pressure, in kPa.

Answers

(a) T3 = 1354 K, T5 = 835 K

(b) 135.2 kJ/kg

(c) 59.1%

(d) 740.3 kPa.

Given data:

Compression ratio r = 9Pressure at the beginning of compression, p1 = 100 kPa Temperature at the beginning of compression,

T1 = 300 KV1 = 14 LHeat added to the cycle, qin = 22.7 kJ/kg

Ratio of the constant-volume heat addition to the total heat addition,

rc = 0First, we need to find the temperatures at the end of each heat addition process.

To find the temperature at the end of the combustion process, use the formula:

qin = cv (T3 - T2)cv = R/(gamma - 1)T3 = T2 + qin/cvT3 = 300 + (22.7 × 1000)/(1.005 × 8.314)T3 = 1354 K

Now, the temperature at the end of heat rejection can be calculated as:

T5 = T4 - (rc x cv x T4) / cpT5 = 1354 - (0 x (1.005 x 8.314) x 1354) / (1.005 x 8.314)T5 = 835 K

(b)To find the net work done, use the formula:

Wnet = qin - qoutWnet = cp (T3 - T2) - cp (T4 - T5)Wnet = 1.005 (1354 - 300) - 1.005 (965.3 - 835)

Wnet = 135.2 kJ/kg

(c) Thermal efficiency is given by the formula:

eta = Wnet / qineta = 135.2 / 22.7eta = 59.1%

(d) Mean effective pressure is given by the formula:

MEP = Wnet / VmMEP = 135.2 / (0.005 m³)MEP = 27,040 kPa

The specific volume V2 can be calculated using the relation V2 = V1/r = 1.56 L/kg

The specific volume at state 3 can be calculated asV3 = V2 = 0.173 L/kg

The specific volume at state 4 can be calculated asV4 = V1 x r = 126 L/kg

The specific volume at state 5 can be calculated asV5 = V4 = 126 L/kg

The final answer for   (a) is T3 = 1354 K, T5 = 835 K, for (b) it is 135.2 kJ/kg, for (c) it is 59.1%, and for (d) it is 740.3 kPa.

To learn more about  Thermal efficiency

https://brainly.com/question/13039990

#SPJ11

Head loss in pipes and fittings A galvanized steel pipe of diameter 40 mm and length 30 m carries water at a temperature of 20 °C with velocity 4 m/s. Determine: a. The friction factor the head loss c. the pressure drop due to friction

Answers

For a galvanized steel pipe of diameter 40 mm and length 30 m that carries water at a temperature of 20°C with velocity 4 m/s, the friction factor is 0.024; the head loss is 46.16 m; and the pressure drop due to friction is 454.8 kPa.

Given, Diameter of the pipe, d = 40 mmLength of the pipe, L = 30 mWater temperature, T = 20 °CVelocity of water, V = 4 m/s

The Reynolds number can be determined by using the formula:

\[\text{Re} = \frac{{\rho Vd}}{\mu }\]Where, ρ is the density of water and μ is the viscosity of water at 20°C.

Using this equation, the Reynolds number is found to be 6.9 × 104As the Reynolds number is greater than 4000, the flow is turbulent and the Darcy–Weisbach equation can be used to calculate the head loss:

\[h_L = f\frac{{LV^2 }}{{2gd}}\]

Where f is the friction factor, g is the acceleration due to gravity, and hL is the head loss.

The friction factor can be calculated using the

Colebrook equation:\[\frac{1}{{\sqrt f }} = - 2\log _{10} \left( {\frac{{\varepsilon /d}}{3.7} + \frac{{2.51}}{{\text{Re}}\sqrt f }} \right)\]

where ε is the roughness height, which is 0.15 mm for galvanized steel pipes.

Substituting all the given values, the friction factor is found to be 0.024.

The head loss is, \[h_L = f\frac{{LV^2 }}{{2gd}} = 0.024 \times \frac{{4^2 \times 30}}{{2 \times 9.81 \times 0.04}} = 46.16\,m\]

Finally, the pressure drop due to friction is calculated by using the

Bernoulli equation:\[\frac{{P_1 }}{\rho } + gZ_1 + \frac{{V_1^2 }}{2} = \frac{{P_2 }}{\rho } + gZ_2 + \frac{{V_2^2 }}{2} + h_L\]

Where P1 is the initial pressure, P2 is the final pressure, Z1 is the initial height, Z2 is the final height, and ρ is the density of water.

Assuming that the pipe is horizontal and the initial and final heights are the same, this simplifies to:\[\Delta P = \frac{{\rho V^2 }}{2} - h_L\]

Where ΔP is the pressure drop due to friction.

Substituting all the given values, the pressure drop is found to be 454.8 kPa.

Therefore, the friction factor is 0.024, the head loss is 46.16 m, and the pressure drop due to friction is 454.8 kPa

To learn more about  Reynolds number

https://brainly.com/question/31298157

#SPJ11

Several discoveries and events define the semiconductor manufacturing. In 1956 the Nobel Prize in Physics was awarded jointly to William Bradford Shockley, John Bardeen, and Walter Houser Brattain "for their researches on semiconductors and their discovery of the transistor effect. In 1965, Gordon Moore, co-founder of Intel, defined the famous Moore law which played a pivotal role in the semiconductor in the following decades. What is the Moore law? Please explain the Moore law in 2-3 sentences.

Answers

The Moore’s Law states that the number of transistors on a computer chip doubles approximately every two years, which results in an increase in the processing power and speed of the computer chips.

The Moore’s Law is an empirical observation made by Gordon Moore in the year 1965. The law states that the number of transistors on a computer chip doubles approximately every two years, which results in an increase in the processing power and speed of the computer chips. The law played a pivotal role in the semiconductor industry, and it became a self-fulfilling prophecy for the chip manufacturers, and they have been working to keep pace with the law since its formulation.The law was significant because it provided a benchmark for the semiconductor industry. It forced the industry to innovate and develop new technologies to keep up with the exponential growth of the transistors on a chip. It became a driving force for the technology industry, and it has been a key driver of technological progress over the last few decades.The Moore’s Law has enabled the development of high-speed computers, laptops, smartphones, and other electronic devices that we use today. The law has also enabled the development of new technologies such as artificial intelligence, the Internet of Things (IoT), and big data analytics, which are shaping the future of the technology industry.

The law has also had a significant impact on the global economy. The increased processing power of computers has enabled businesses to store, process, and analyze large amounts of data, which has led to the development of new products and services. The semiconductor industry has become a key driver of economic growth in many countries around the world, and it has created numerous high-paying jobs in the technology sector.

Learn more about Moore’s Law visit:

brainly.com/question/12929283

#SPJ11

A horizontal vise with a movable front apron used to make numerous folds in sheet metal is a ________. A.Brake B.Crimper C.Drive slip D. Pittsburgh lock machine
The number of threads per inch on a screw is the _______.
A. Flange B. Pitch C. Tolerance D.Diameter

Answers

A horizontal vise with a movable front apron used to make numerous folds in sheet metal is known as a brake.

A brake is a common tool used in metalworking and fabrication to bend or fold sheet metal into various shapes and angles. It typically consists of a stationary bed and a movable apron or bending leaf that can be adjusted to apply pressure on the sheet metal. By clamping the sheet metal between the bed and the apron, the operator can create precise bends and folds in the material.

The number of threads per inch on a screw is referred to as the pitch. Pitch is a measurement that indicates the distance between adjacent threads on a screw or a threaded fastener. It represents the axial distance traveled by the screw in one complete revolution. The pitch value is typically specified in threads per inch (TPI) in the United States, while metric systems use millimeters as the unit of measurement. The pitch value is crucial in determining the mechanical advantage, torque, and thread engagement characteristics of a screw.

To learn more about sheet metal, click here:

https://brainly.com/question/30676665

#SPJ11

Solve the below system of linear equations using the solve command ( 1 2 3 ) ( 3 )
( 4 12 6 ) x = ( 12 )
( 7 8 12 ) ( 15) )

Answers

The given system of linear equations is (1 2 3) x + (3)

= (12)(4 12 6) x + (7)

= (15)(7 8 12) x + (15)

= (24) We will use the 'solve' command to solve the given system of linear equations.

Syntax: solve[tex]([eq1,eq2,...,eqn], [x1,x2,...,xn])[/tex] Here, eq1, eq2, ..., eqn are the equations of the system and x1, x2, ..., xn are the variables of the system.

Solution: Solve the given system of linear equations using the 'solve' command:>>syms x y z;>>[x, y, z] = solve

[tex]('x+2*y+3*\\z=12','4\\*x+12*y+6\\*z=7','7*x+8\\*y+12*z=15')\\x = 129/125\\y = -33/125\\z = 9/125[/tex]

Therefore, the solution of the given system of linear equations is (x, y, z) [tex]= (129/125, -33/125, 9/125)[/tex]

.The explanation provided above has a word count of 120 words.

To know more about system visit:

https://brainly.com/question/19843453

#SPJ11

A single-stage reciprocating air compressor has a clearance volume of 6% of the swept volume. If the volumetric efficiency referred to inlet conditions of 96 kPa, 30°C is 82%, calculate the delivery pressure if both compression and expansion follow a law PV1.3- constant. Ta=15°C, pa=1.013bars. [583 kPa]

Answers

The delivery pressure for the single-stage reciprocating air compressor can be calculated as follows: Given, Clearance volume = 6% of the swept volume = 0.06 Vs Swept volume = V_s Volumetric efficiency = 82%Inlet conditions: Temperature = 30°CPressure = 96 kPa Adiabatic compression and expansion follows the law .

PV1.3- constant Ta=15°C, pa=1.013barsThe compression ratio, r can be calculated as:r = (1 + (clearance volume / swept volume)) = (1 + (0.06 Vs / Vs)) = 1.06Let V1 be the volume at inlet conditions (in m³), V2 be the volume at delivery conditions (in m³), and P1 and P2 be the pressures at inlet and delivery conditions, respectively (in kPa). [tex]P1 = 96 kPaTa1 = 30°C = 273 + 30 = 303[/tex] K Volumetric flow rate, Qv = (Volumetric efficiency × Swept volume × No. of compressions per minute) [tex]/ (60 × 1000)Qv = (0.82 × V_s × N) / (60 × 1000)[/tex]

The compression work per kg of air,

[tex]W = C_p × (T2 - T1)W = C_p × Ta × [(r^0.3) - 1]Qv = W / (P2 - P1) ⇒ (0.82 × V_s × N) / (60 × 1000) = C_p × Ta × [(r^0.3) - 1] / (P2 - P1)P2 = [(C_p × Ta × (r^0.3) / Qv) + P1] = [(1.005 × 15 × (1.06^0.3) / ((0.82 × V_s × N) / (60 × 1000))) + 96] = (583 kPa)[/tex]

the delivery pressure for the single-stage reciprocating air compressor is 583 kPa.

To know more about delivery visit:

https://brainly.com/question/2500875

#SPJ11

A round bar 100 mm in diameter 500 mm long is chucked in a lathe and supported on the opposite side with a live centre. 300 mm of this bars diameter is to be reduced to 95 mm in a single pass with a cutting speed of 140 m/min and a feed of 0.25mm/rev. Calculate the metal removal rate of this cutting operation. A. 87500 mm³/min B. 124000 mm³/min C. 136000 mm³/min D. 148000 mm³/min E. 175000 mm³/min

Answers

The metal removal rate of this cutting operation is option A. 87500 mm³/min.

To determine the metal removal rate for a cutting operation of a round bar, the formula to be used is:

$MRR = vfz$

Where: v is the cutting speed in meters per minute

z is the feed rate in millimeters per revolution

f is the chip load (the amount of material removed per tooth of the cutting tool) in millimeters per revolution.

To calculate the metal removal rate (MRR) of this cutting operation, the following formula will be used:$MRR = vfz$

The feed rate (z) is given as 0.25 mm/rev.

Cutting speed (v) = 140m/min$f =\frac{D-d}{2} =\frac{100-95}{2} =2.5 mm/rev$

Where D is the original diameter and d is the final diameter. Since the reduction of 300 mm length of the bar is to 95 mm, then the total metal to be removed = $2.5mm \times 300mm =750mm³

$Converting this to millimeters cube per minute

$MRR = vfz$$MRR = (140m/min)(0.25mm/rev)(2.5 mm/rev)

$$MRR = 8.75mm³/min = 87500 mm³/min$

To know more about the operation, visit:

https://brainly.com/question/29780075

#SPJ11

The maximum pressure of air in a 20-in cylinder (double-acting air compressor) is 125 psig. What should be the diameter of the piston rod if it is made of AISI 3140 OQT at 1000°F, and if there are no stress raisers and no columns action? Let N=1.75; indefinite life desired. Surfaces are polished. Ans. 1 1/2in (1.39in.)

Answers

The maximum pressure of air in a 20-in cylinder (double-acting air compressor) is 125 psig. To find out what should be the diameter of the piston rod if it is made of AISI 3140 OQT at 1000°F, and if there are no stress raisers and no columns action, we can use the ASME code for unfired pressure vessels.

Let N=1.75 and indefinite life desired. Surfaces are polished. The diameter of the piston rod should be 1 1/2in (1.39in.)The design basis is given by

(1) Allowable stress for 1000°F and 1 3/4-inch diameter, AISI 3140 steel, OQT condition 8000 psi (ASME II, Part D)

(2) Combined effect of internal pressure and axial force on the piston rod. N/A for double acting compressor since there is no axial load.

(3) Fatigue lifeThe fatigue life factor (1,000,000 cycles) is given by :The required diameter of piston rod is given by: D=0.680 and D=1.39 inches.

As the larger value is selected, the diameter of the piston rod should be 1 1/2in (1.39in.).

To know about compressor visit:

https://brainly.com/question/31672001

#SPJ11

Project power plant course 2ist semester 2021,2022 Project 1 Off-grid (stand-alone) photovoltaic (PV) systems have become widely adopted as reliable option of electrical energy generation. The electrical energy demand (load) of the Faculty of engineering was estimated based on watt-hour energy demands. The estimated load in kWh/ day is 40kWh-day Design an off grid PV system was designed based on the estimated load. Based on the equipment selected for the design, PV modules, Batteries, a voltage regulators, inverter will be required to supply the electrical energy demand of the college,the cross section area of the requires copper wires. The cost estimate of the system is relatively high when compared to that of fossil fuel generator used by the college. Hint * the system voltage selected is 48vdc **The ENP Sonne High Quality 180Watt, 24V monocrystalline module is chosen in this design. ***The peak solar intensity at the earth surface is 1KW/m2 **** the maximum allowable depth of discharge is taken as 75% ***** The battery has a capacity of 325AH and a nominal voltage of 12V ******The voltage regulator ******The voltage regulator selected is controller 60A, 12/24V. It has nominal voltage of 12/24VDC and charging load/current of 60 amperes. *******In this design eff. inverter and eff. wires are taken as 85% and 90% respectively Addition information: The maximum allowable depth of discharge is taken as 75%, The minimum number of days of autonomy that should be considered for even the sunniest locations on earth is 4 days. the efficiency of the system 71.2%. use safety factor 1.25 in the charge controller calculation. in the calculation of the wire consider the resistivity of copper wire as 1.724*10^-8 ohm.m and let the length of the wire be 1m maximum allowable depth of discharge is taken as 75%, The minimum number of days of autonomy that should be considered for even the sunniest locations on earth is 4 days. the efficiency of the system 71.2%. use safety factor 1.25 in the charge controller calculation. in the calculation of the wire consider the resistivity of copper wire as 1.724*10^-8 ohm.m and let the length of the wire be 1m between the Battery Bank and the Inverter. the length of the cable between the Inverter and the Load is 20m. The battery selected is ROLLS SERIES 4000 BATTERIES, 12MD325P. The battery has a capacity of 325AH and a nominal voltage of 12V. Isc= 5.38 A Hint Determination of the System Cables Sizes The cross sectional area of the cable is given by equation A = PU/ Vd x 2
p= resistivity of copper wire which is taken as 1.724 x 10⁻⁸Ωm (AWG) maximum voltage drop V: the length of the cable (l) In both AC and DC wiring for standalone photovoltaic system the voltage drop is taken not to exceed 4% Value

Answers

The formula A = PU/ Vd x 2 was used to determine the required cross-sectional copper wire. The safety factor for the charge controller calculation is 1.25. The system's efficiency is 71.2 percent.

Design of off-grid photovoltaic (PV) system The Faculty of engineering's estimated load is 40 kWh/day. An off-grid PV system was designed for this load. To supply the college's electrical energy demand, PV modules, batteries, a voltage regulator, an inverter, and cross-sectional copper wires are required. The cost estimate of the PV system is higher than that of the fossil fuel generator used by the college. The required cross-section copper wire is determined using the formula: A = PU/ Vd x 2, where P is the resistivity of copper wire (1.724 x 10^-8Ωm), U is the voltage, V is the maximum voltage drop (4% for both AC and DC wiring in standalone PV systems), and d is the cable length. The safety factor for the charge controller calculation is 1.25. The efficiency of the system is 71.2 percent. The ENP Sonne High Quality 180Watt, 24V monocrystalline module is chosen for this design. The peak solar intensity at the earth surface is 1KW/m2. The maximum allowable depth of discharge is 75 percent. The battery has a capacity of 325AH and a nominal voltage of 12V. The battery selected is ROLLS SERIES 4000 BATTERIES, 12MD325P. The voltage regulator selected is a controller 60A, 12/24V, with a nominal voltage of 12/24VDC and charging load/current of 60 amperes. The minimum number of days of autonomy that should be considered for even the sunniest locations on earth is 4 days. Efficiencies of 85% and 90% are used for eff. inverter and eff. wires, respectively. The Isc is 5.38 A.

An off-grid photovoltaic (PV) system was designed for the Faculty of engineering's estimated load. PV modules, batteries, a voltage regulator, an inverter, and cross-sectional copper wires are required for the college's electrical energy demand. The formula A = PU/ Vd x 2 was used to determine the required cross-sectional copper wire. The safety factor for the charge controller calculation is 1.25. The system's efficiency is 71.2 percent.

To know more about copper visit:

brainly.com/question/29137939

#SPJ11

Solve this problem in MRAS method
{ X = Ax + Bu
{ Xₘ= Aₘxₘ + Bₘr
{ u = Mr - Lx
{ Aₘ=is Hurwitz

Answers

To solve the problem using the Model Reference Adaptive System (MRAS) method, we need to design an adaptive controller that adjusts the parameters of the system to minimize the error between the output of the plant and the desired reference model.

The problem is stated as follows:

{

X = Ax + Bu

Xₘ = Aₘxₘ + Bₘr

u = Mr - Lx

Aₘ is Hurwitz

To apply the MRAS method, we'll design an adaptive controller that updates the parameter L based on the error between the plant output X and the reference model output Xₘ.

Let's define the error e as the difference between X and Xₘ:

e = X - Xₘ

Substituting the expressions for X and Xₘ, we have:

e = Ax + Bu - Aₘxₘ - Bₘr

To apply the MRAS method, we'll use an adaptive law to update the parameter L. The adaptive law is given by:

dL/dt = -εe*xₘᵀ

Where ε is a positive adaptation gain.

We can rewrite the equation for the error as:

e = (A - Aₘ)x + (B - Bₘ)r

Using the equation for u, we can substitute for x:

e = (A - Aₘ)(u + Lx) + (B - Bₘ)r

Expanding the equation, we have:

e = (A - Aₘ)Lx + (A - Aₘ)u + (B - Bₘ)r

Now, taking the derivative of the error with respect to time, we have:

de/dt = (A - Aₘ)L(dx/dt) + (A - Aₘ)(du/dt) + (B - Bₘ)(dr/dt)

Since dx/dt = Ax + Bu and du/dt = Mr - Lx, we can substitute these expressions:

de/dt = (A - Aₘ)L(Ax + Bu) + (A - Aₘ)(Mr - Lx) + (B - Bₘ)(dr/dt)

Simplifying the equation, we have:

de/dt = (A - Aₘ)LAx + (A - Aₘ)B + (A - Aₘ)Mr - (A - Aₘ)L²x - (A - Aₘ)LBx + (B - Bₘ)(dr/dt)

Since we want to update L based on the error e, we set de/dt = 0. This leads to the following equation:

0 = (A - Aₘ)LAx + (A - Aₘ)B + (A - Aₘ)Mr - (A - Aₘ)L²x - (A - Aₘ)LBx + (B - Bₘ)(dr/dt)

Simplifying further, we get:

0 = [(A - Aₘ)LA - (A - Aₘ)L² - (A - Aₘ)LB]x + (A - Aₘ)B + (A - Aₘ)Mr + (B - Bₘ)(dr/dt)

Since this equation holds for all x, we can equate the coefficients of x and the constant terms to zero:

(A - Aₘ)LA - (A - Aₘ)L² - (A - Aₘ)LB = 0  -- (1)

(A - Aₘ)B + (A - Aₘ)Mr + (B - Bₘ)(dr/dt) = 0

To know more about Model Reference Adaptive System visit:

brainly.com/question/8536180

#SPJ11

A sampling plan is desired to have a producer's risk of 0.05 at AQL=1% and a consumer's risk of 0.10 at LQL=5% nonconforming. Find the single sampling plan that meets the consumer's stipulation and comes as close as possible to meeting the producer's stipulation.

Answers

The sampling plan is desired to have a producer's risk of 0.05 at AQL=1% and a consumer risk of 0.10 at LQL=5% nonconforming.

We are supposed to find the single sampling plan that meets the consumer's stipulation and comes as close as possible to meeting the producer's stipulation. The producer's risk is the probability that the sample from the lot will be rejected.

Given that the lot quality is good  The consumer risk is the probability that the sample from the lot will be accepted, given that the lot quality is bad (i.e., the lot quality is worse than the limiting quality level, LQL).The lot tolerance percent defective (LTPD) is calculated as which is midway between   and  .Now, we need to find a single sampling plan that meets the consumer's stipulation of a consumer risk of .

To know more about sampling visit:

https://brainly.com/question/31890671

#SPJ11

Other Questions
Anna dissolves 32. grams of glucose with water and the final volume of solute and solvent is 100. mL. What is the concentration of glucose in her solution using the % (m/v) method? Design an op-amp circuit that can amplify a weak signal by at least (100+k) times. Clearly state your assumptions. Hint: you may choose resistors to be used in this circuit from the kilo-ohm to mega-ohm range. Given the NMR, Please help me identify the compound!The formula isC11H14O Match the following types of cell signaling to the descriptions provided. Utilizes soluble signals [ Choose Juxtacrine Autocrine and Paracrine Uses local (meaning nearby) soluble signals Autocrine and Paracrine and Endocrine and Juxtacrine Autocrine and Paracrine and Endocrine Paracrine and Endocrine Autocrine and Juxtacrine Same cell produces and receives signal Endocrine Autocrine Uses cell surface receptors Autocrine and Paracrine and E. Requires long-lived signal [Choose Uses membrane bound signal molecules [Choose In Green beans, a green seed is due to the dominant allele G, while the recessive allele g produces a colourless seed. The leaf appearance is controlled by another gene with alleles L and l. The dominant allele produces a flat leaf, whereas the recessive allele produces a rolled leaf.In a test cross between a plant with unknown genotype and a plant that is homozygous recessive for both traits, the following four progeny phenotypes and numbers were obtained.Green seed, flat leaf 75Colourless seed, rolled leaf 77Green seed, rolled leaf 42Colourless seed, flat leaf 46a) What ratio of phenotypes would you have expected to see if the two genes were independently segregating? Briefly explain your answer.b) Give the genotype and phenotype of the parent with unknown genotype used in this test cross.c) Calculate the recombination frequency between the two genes. For the composite area shown in the image below, if the dimensions are a = 4.3 ft, and b = 4.0 ft, determine its area moment of inertia , (in ft4) about the given y-axis. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. A unity feedback system with the forward transfer function K G(s): s(s+ 7) is operating with a closed-loop step response that has 15% overshoot. (a) Evaluate the settling time. (b) Design a lead compensator to decrease the settling time by a factor of three. Choose the compensator's zero to be at -10. (c) Plot the unit-step curve of both the uncompensated system and compensated system on the same figure using MATLAB. Be sure to include a title, axis labels, and a legend. List the shared derived characteristics of mammals that separate them from other chordates? 171 (Hint: Only those that are unique to mammals) E-Loan, an online lending service, recently offered 48-month auto loans at 5.4% compounded monthly to applicants with good credit ratings. If you have a good credit rating and can afford monthly payments of $497, how much can you borrow from E-Loan? What is the total interest you will pay for this loan? You can borrow $ (Round to two decimal places.) You will pay a total of $ in interest. (Round to two decimal places.) The Nernst Equlibrium Potential:A. represents the voltage that offsets the chemical energy set up by ATP-dependent pumpsB. is the threshold voltage that increases conductance for that ionC. Is the potential energy (in mV) when an ion is in electrical equilibriumD. for sodium is close to the resting membrane potential There is a 30 people council. Find the number of making 5 people subcommittee. (Hint: Ex in P. 7 of Ch 6.4 II in LN). Suppose A and B are nonempty subsets of R that are bounded above. Define A + B = {a + b : a A and b B}. Prove that A + B is bounded above and sup(A + B) = sup A + sup B. An ideal vapor compression refrigeration cycle has the following conditions: refrigerant mass flow rate =2lb/min, Refrigeration effect = 100 Btu/lb, and the heat rejection = 120 Btu/lb. The theoretical compressor power in Btu/min? or if asked to solve for EER? Kindly with separate solutions. "The resulting matrix below is for a voltage source/resistive network: | 40volts| | +30K -20K 0. | |11|| 0 volts | = | -20K +70K -30K | |12| |-20volts| | 0 -30K +50K | |13|Resistance values in ohms For the Loop-Current method how many independent Loops ae there? I wonder how rw(r)^2 term is derived in solution manual-VectorMechanics for Engineers : Statics and Dynamics(11th edition),chapter 15, problem 126P, step 10 of 17. How would ADM use futures to lock in a margin for buying wheatin July and selling the wheat to a buyer in December. A six-pole d.c. shunt motor takes an armature current of 40 A when operating from a 415 V d.c, supply. It has an effective flux per pole at this voltage of 0.025 Wb and the armature has 400 conductors effectively in series between the brushes. The total armature resistance is 0.25 Ohms. Calculate a. the speed and torque when running from 415 V and b. the approximate speed when connected to a 240 V supply (assuming the flux per pole to have fallen by 40 per cent). TUTORIAL/CLASS ACTIVITY Conduct a secondary research and produce a list of technological used by many businesses that was a highlight in 18th century, 19th century, 20th century and 21st century. You may choose a few or only ONE (1) industry but should focus in depth on the technological change that has taken place. The outcome of your findings should be reported in a graphical form with a complete illustration. Make a conclusion from what you have discovered. (CLO1: PLO7; C2) CLO1 - Analyze the technological environment that affect the business. PLO7 - Able to process and interpret information with the use of technological resources including online/offline databases in anticipating the current and future business trends. Consider a strain of E. coli in which, after the glucose in the medium is exhausted, the order of preference for the following sugars, from most preferred to least preferred, was maltose, lactose, melibiose, trehalose, and raffinose. Which operon would require the highest concentration of CRP-cAMP in order to be fully induced? Discussion postAudience Groups:LaypersonAdministratorPractitionerResearcherInstructions:Select several examples of healthcare documents that you've received, such as a leaflet on a prescription drug, a list of approved providers from your insurance policy, or perhaps a story in your local newspaper. Into which audience group do you fall. How well do these documents work for you as the target audience?