Answer:
a) 26.66 volts , 266.2 mA
b) 0.458
c) 81%
Explanation:
load ( R ) = 100 Ω
voltage source = 24 volts DC
a) Calculate the rms voltage and current
Vrms = Vp / √ 2
where : Vp = (voltage source * [tex]\pi[/tex]) / 2 = ( 24 *
∴ Vrms = 12[tex]\pi[/tex] / √2 = 26.66 volts
Irms = Vrms / R = 26.66 / 100 = 0.2666 = 266.6 mA
b) Calculate the Ripple factor
Ripple factor for a bridge rectifier = √( 1.1^2 - 1 ) = 0.458
c) Calculate the efficiency of the rectifier
efficiency = ( output dc power ) / Input ac power
= ( 24 / 100 )^2 * 100) / ( 26.66 * 0.2666 )
= 0.0576 * 100 / 7.11 = 0.81 = 81%
FOR BRAINLIST HELP PLEASE IS A DCP
A- Causes of the 13t Amendment
B- Reasons for Women's Suffrage
C- Reasons for the Freedmen's Bureau
D- Causes of the Plantation System
Answer:
C
Explanation: Freedmens Bureau provided resources for southerners and newly freed slaves
An oil with density 900 kg/m3 and kinematic viscosity 0.0002 m2/s flows upward through an inclined pipe as shown in figure below. The pressure and elevation are known at sections 1 and 2, 10 m apart. Assuming steady laminar flow
Answer:
P=900KG/M3
U=0.0002 M2/S
RE=PV/U
=900*10/0.0002
=45000000
Explanation:
The Reynold number will be 4.5×10⁷. Reynold's number is found as the ratio of the inertial to the viscous force.
What is density?Density is defined as the mass per unit volume. It is an important parameter in order to understand the fluid and its properties. Its unit is kg/m³.
The mass and density relation is given as
mass = density × volume
The ratio of inertial to viscous force is known as Reynold's number.
[tex]\rm R_E= \frac{\rho u L}{\mu} \\\\ \rm R_E=\frac{900 \times 10}{0.0002} \\\\ R_E=45000000[/tex]
Hence, the Reynold number will be 4.5×10⁷.
To learn more about the density refers to the link;
brainly.com/question/952755
#SPJ2
Suppose we are given three boxes, Box A contains 20 light bulbs, of which 10 are defective, Box B contains 15 light bulbs, of which 7 are defective and Box C contains 10 light bulbs, of which 5 are defective. We select a box at random and then draw a light bulb from that box at random. (a) What is the probability that the bulb is defective? (b) What is the probability that the bulb is good?
Answer:
0.49
0.51
Explanation:
Probability that bulb is defective :
Let :
b1 = box 1 ; b2 = box 2 ; b3 = box 3
d = defective
P(defective bulb) = (p(b1) * (d|b1)) + (p(b2) * p(d|b2)) + (p(b3) * p(d|b3))
P(defective bulb) = (1/3 * 10/20) + (1/3 * 7/15) + (1/3 * 5/10))
P(defective bulb) = 10/60 + 7/45 + 5/30
P(defective bulb) = 1/6 + 7/45 + 1/6 = 0.4888
= 0.49
P(bulb is good) = 1 - P(defective bulb) = 1 - 0.49 = 0.51
A 0.06-m3 rigid tank initially contains refrigerant- 134a at 0.8 MPa and 100 percent quality. The tank is connected by a valve to a supply line that carries refrigerant- 134a at 1.2 MPa and 36°C. Now the valve is opened, and the refrigerant is allowed to enter the tank. The valve is closed when it is observed that the tank contains saturated liquid at 1.2 MPa. Determine (a) the mass of the refrigerant that has
entered the tank and (b) the amount of heat transfer.
Answer:
a) 0.50613
b) 22.639 kJ
Explanation:
From table A-11 , we will make use of the properties of Refrigerant R-13a at 24°C
first step : calculate the volume of R-13a ( values gotten from table A-11 )
V = m1 * v1 = 5 * 0.0008261 = 0.00413 m^3
next : calculate final specific volume ( v2 )
v2 = V / m2 = 0.00413 / 0.25 ≈ 0.01652 m^3/kg
a) Calculate the mass of refrigerant that entered the tank
v2 = Vf + x2 * Vfg
v2 = Vf + [ x2 * ( Vg - Vf ) ] ----- ( 1 )
where: Vf = 0.0008261 m^3/kg, V2 = 0.01652 m^3/kg , Vg = 0.031834 m^3/kg ( insert values into equation 1 above )
x2 = ( 0.01652 - 0.0008261 ) / 0.031834
= 0.50613 ( mass of refrigerant that entered tank )
b) Calculate the amount of heat transfer
Final specific internal energy = u2 = Uf + ( x2 + Ufg ) ----- ( 2 )
uf = 84.44 kj/kg , x2 = 0.50613 , Ufg = 158.65 Kj/kg
therefore U2 = 164.737 Kj/kg
The mass balance ( me ) = m1 - m2 --- ( 3 )
energy balance( Qin ) = ( m2 * u2 ) - ( m1 * u1 ) + ( m1 - m2 ) * he
therefore Qin = 41.184 - 422.2 + 403.655 = 22.639 kJ
Sarah is a site investigator for a large construction firm. She is considering Miguel, a former geology student with experience as an intern at an architecture firm, for an assistant site investigation position. Which of the following is most relevant to her decision?
Answer: A. whether his geology studies exposed him to principles of geotechnical engineering
Explanation:
The options include:
a. whether his geology studies exposed him to principles of geotechnical engineering
b. the size of the geology program he attended
c. the size of the architecture firm
d. whether the architecture firm was intending to offer Miguel a full-time position
Since Miguel, is a former geology student with experience as an intern at an architecture firm, and Sarah is considering him for an assistant site investigation position, the option that will be relevant for her to make a decision is to know whether his geology studies exposed him to principles of geotechnical engineering.
Geotechnical engineering, is a branch of engineering that makes use of principles of rock mechanics to solve engineering challenges. Since Sarah needs him for an assistant site investigation position, he'll need to investigate souls, rocks and evaluate them.