Show all work and receive brainliest!

Show All Work And Receive Brainliest!

Answers

Answer 1

Answer:

Lower Quartile: 62

Upper Quartile: 81

Interquartile Range: 19

Step-by-step explanation:

To find the lower quartile, you want to find the median from the minimum to the median.

49, 55, 62, 64, 67

The median of this is 62. Therefore, 62 is the lower quartile.

To find the upper quartile, you want to find the median from the median to the maximum.

76, 79, 81, 82, 83

The median of this is 81. Therefore, 81 is the upper quartile.

To find the interquartile range, you subtract the upper and lower quartile.

81-62=19

The difference is 19. Therefore, the interquartile range is 19.


Related Questions

find the solution set x^2+2x-15=0

Answers

Answer:

x = 3 or x = -5

Step-by-step explanation:

x² + 2x - 15 = 0

Factor left side of equation.

(x - 3)(x + 5) = 0

Set factors equal to 0

x - 3 = 0

x = 3

x + 5 = 0

x = -5

One of the solutions to x2 − 2x − 15 = 0 is x = −3. What is the other solution?
20 points if you can answer in under 30 minuets

Answers

Answer:

x=5  x=-3

Step-by-step explanation:

x^2 − 2x − 15 =0

Factor

What two numbers multiply to -15 and add to -2

-5*3 = -15

-5+3 =-2

(x-5) (x+3)=0

Using the zero product property

x-5 =0   x+3 =0

x=5  x=-3

Answer:

x^2 - 2x - 15 = 0

(x - 5) (x + 3) = 0

x - 5 = 0

x = 5

x + 3 = 0

x = -3

WWW
3.
The expression "5 FACTORIAL" equals
3-A
125
3-B
120
3-C
25
3-D
10
* Select Answer Below​

Answers

Answer:

5! = 120

Step-by-step explanation:

5! is basically 5(4)(3)(2)(1).

Create a transformation that is not a similarity transformation. Use coordinate notation .

Answers

Answer:

  (x, y) ⇒ (2x, y)

Step-by-step explanation:

Any rigid transformation or dilation will be a similarity transformation. A transformation that doesn't preserve similarity will be none of those, so may be non-linear or different in one direction than another.

Several possibilities come to mind:

  (x, y) ⇒ (2x, y) . . . . . . stretches x, but not y

  (x, y) ⇒ (x+y, y) . . . . . a "shear" transformation

  (x, y) ⇒ (x, y^(3/2)) . . . . . a non-linear transformation

These only transform one coordinate. Of course, different transforms or combinations can be used on the different coordinates.

__

The attachment shows the effect of each of these. The red figure is the original icosagon (20-gon). The blue figure shows the horizontal stretch of the first transformation. The green figure shows the diagonal stretch of the shear transformation. The purple figure shows the effect of a non-linear transformation.

Don’t understand this, if anyone can help that would be awesome. :)

Answers

Answer:

look up the basic rules for sin and cos

Step-by-step explanation:

About ____% of the area is between z= -2 and z= 2 (or within 2 standard deviations of the mean)

Answers

Answer:

The percentage of area is between Z =-2 and Z=2

P( -2 ≤Z ≤2) = 0.9544 or 95%

Step-by-step explanation:

Explanation:-

Given data Z = -2 and Z =2

The probability that

P( -2 ≤Z ≤2) = P( Z≤2) - P(Z≤-2)

                   = 0.5 + A(2) - ( 0.5 - A(-2))

                  = A (2) + A(-2)

                 = 2 × A(2)     (∵ A(-2) = A(2)

                = 2×0.4772

              = 0.9544

The percentage of area is between Z =-2 and Z=2

P( -2 ≤Z ≤2) = 0.9544 or 95%

the required condition for using an anova procedure on data from several populations for mean comparison is that the

Answers

Answer:

The sampled populations have equal variances

Step-by-step explanation:

ANOVA which is fully known as Analysis of variances can be defined as the collection of statistical models as well as their associated estimation procedures which enables easily and effectively analyzis of the differences among various group means in a sample reason been that ANOVA is a total variance in which the observed variance in a specific variable is been separated into components which are attributable to various sources of variation which is why ANOVA help to provides a statistical test to check whether two or more population means are equal.

Therefore the required condition for using an ANOVA procedure on data from several populations for mean comparison is that THE SAMPLED POPULATION HAVE EQUAL VARIANCE.

For the functions f(x)=3x−1 and g(x)=4x−3, find (f∘g)(x) and (g∘f)(x)

Answers

(f°g)(x)=12x-10

(g°f)(x)= 12x-7

Hope this helps

what is the solution for the inequality l2x-6l<4

Answers

Answer:

x < 5 or x > 1

Step-by-step explanation:

2x - 6 < 4

2x < 4 + 6

2x < 10

x < 10/2

x < 5

2x - 6 > - 4

2x > - 4 + 6

2x > 2

x > 2/2

x > 1

The mean height of women in a country (ages 20-29) is 63.5 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 inches? Assume the standard deviation equals 2.96.

Answers

Answer:

11.70% probability that the mean height for the sample is greater than 64 inches

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question:

[tex]\mu = 63.5, \sigma = 2.96, n = 50, s = \frac{2.96}{\sqrt{50}} = 0.4186[/tex]

What is the probability that the mean height for the sample is greater than 64 inches?

This is 1 subtracted by the pvalue of Z when X = 64.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{64 - 63.5}{0.4186}[/tex]

[tex]Z = 1.19[/tex]

[tex]Z = 1.19[/tex] has a pvalue of 0.8830

1 - 0.8830 = 0.1170

11.70% probability that the mean height for the sample is greater than 64 inches

Abigail and Liza Work as carpenters for different companies Abigail earns $20 Per hour at her company and Liza Word for a total of 30 hours in together earned a total of 690 how many hours did Liza work last week?

Answers

This question was not properly written, hence it is incomplete. The complete question is written below:

Complete Question:

Abigail and Liza work as carpenters for different companies. Abigail earns $20 per hour at her company and Liza earns $25 per hour at her company. Last week, Abigail and Liza worked for a total of 30 hours and together earned a total of $690. How many hours did Liza work last week?

Answer:

Lisa worked for 18 hours last week

Step-by-step explanation:

Let the number of hours Abigail worked last week = A

Let the number of hours Liza worked last week = B

Abigail earns = $20 per hour at her company

Liza earns = $25 per hour at her company

A + B = 30 ........... Equation 1

B = 30 - A

20 × A + 25 × B = 690

20A + 25B = 690 ............... Equation 2

Substitute 30 - A for B in Equation 2

Hence, we have:

20A + 25(30 - A) = 690

20A + 750 - 25A = 690

Collect like terms

20A - 25A = 690 - 750

-5A = -60

A = -60/-5

A = 12

Since A represents the number of hours Abigail worked, Abigail worked for 12 hours last week.

Substitute 12 for A in Equation 1

A + B = 30

12 + B = 30

B = 30 - 12

B = 18

Since B represents the number of hours Liza worked, therefore, Liza worked for 18 hours last week.

What is the equation of the line which passes through (-0.5,-5) and (2,5)

Answers

Answer:

by using distance formula

d=[tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]

by putting the values of coordinates

[tex]d=\sqrt{(2-(-0.5))^2+(5-(-5))^2}[/tex]

[tex]d=\sqrt{(2+0.5)^2+(5+5)^2}[/tex]

[tex]d=\sqrt{(2.5)^2+(10)^2}[/tex]

[tex]d=\sqrt{6.25+100}[/tex]

[tex]d=\sqrt{106.25}[/tex]

[tex]d=10.3[/tex]

Step-by-step explanation:

i hope this will help you :)

Solve the triangles with the given parts: a=103, c=159, m∠C=104º

Answers

Answer:

Sides:

[tex]a= 103[/tex].[tex]b \approx 99[/tex].[tex]c - 159[/tex].

Angles:

[tex]\angle A \approx 39^\circ[/tex].[tex]\angle B \approx 37^\circ[/tex].[tex]\angle C = 104^\circ[/tex].

Step-by-step explanation:

Angle A

Apply the law of sines to find the sine of [tex]\angle A[/tex]:

[tex]\displaystyle \frac{\sin{A}}{\sin{C}} = \frac{a}{c}[/tex].

[tex]\displaystyle\sin A = \frac{a}{c} \cdot \sin{C} = \frac{103}{159} \times \left(\sin{104^{\circ}}\right) \approx 0.628556[/tex].

Therefore:

[tex]\angle A = \displaystyle\arcsin (\sin A) \approx \arcsin(0.628556) \approx 38.9^\circ[/tex].

Angle B

The three internal angles of a triangle should add up to [tex]180^\circ[/tex]. In other words:

[tex]\angle A + \angle B + \angle C = 180^\circ[/tex].

The measures of both [tex]\angle A[/tex] and [tex]\angle C[/tex] are now available. Therefore:

[tex]\angle B = 180^\circ - \angle A - \angle C \approx 37.1^\circ[/tex].

Side b

Apply the law of sines (again) to find the length of side [tex]b[/tex]:

[tex]\displaystyle\frac{b}{c} = \frac{\sin \angle B}{\sin \angle C}[/tex].

[tex]\displaystyle b = c \cdot \left(\frac{\sin \angle B}{\sin \angle C}\right) \approx 159\times \frac{\sin \left(37.1^\circ\right)}{\sin\left(104^\circ\right)} \approx 98.8[/tex].

Please answer this correctly

Answers

Answer:

2/3

Step-by-step explanation:

There are 2 numbers out of 3 that fit the rule, 1 and 3. There is a 2/3 chance picking one of them.

Answer:

2/3

Step-by-step explanation:

This is the answer because one number that is select is one. A number greater than 2 is 3. SO it is 2/3.

which of the following has a value less than 0?
A.4
B. |4|
C. |-4|
D. -4


Answers

Answer:

D

Step-by-step explanation:

The numbers that are less than 0 are negative. Negative numbers have the "-" sign in front of them so the answer is D.

Answer:

d

Step-by-step explanation:

The other ones will always be positive four

7
х
45
Find x.
x=
V(14)
7
07/2

Answers

Answer:

7

Step-by-step explanation:

This a special 90° 45° 45° triangle and is an Isosceles triangle at the same time

Of one of the equal side is 7 than the other one too must be 7

x = ? ? ? ? ? ? ? ? ?

Answers

Answer:

7

Step-by-step explanation:

Answer:

x = 3

Step-by-step explanation:

Two secants drawn to a circle from an external point, then

The product of the measures of the external part and the whole of one secant is equal to the product of the external part and the whole of the other secant.

Thus

x × 12 = 4 × 9

12x = 36 ( divide both sides by 12 )

x = 3

Given the equation 4x - 3y = 12
1. Write the equation in slope-intercept form.

2. Identify the slope and y-intercept.

3. Graph the line.

4. Identify if it is a positive or negative slope.

Answers

Answer:

see below

Step-by-step explanation:

Slope intercept form is y = mx+b where m is the slope and b is the y intercept

4x - 3y = 12

Solve for y

Subtract 4x from each side

4x-4x - 3y =-4x+ 12

-3y = -4x+12

Divide by -3

-3y/-3 = -4x/-3 + 12/-3

y = 4/3x -4

The slope is 4/3 and the y intercept is -4

The slope is Positive

One common system for computing a grade point average (GPA) assigns 4 points to an A, 3 points to a B, 2 points to a C, 1 point to a D, and 0 points to an F. What is the GPA of a student who gets an A in a -credit course, a B in each of -credit courses, a C in a -credit course, and a D in a -credit course?

Answers

Question Correction

One common system for computing a grade point average​ (GPA) assigns 4 points to an​ A, 3 points to a​ B, 2 points to a​ C, 1 point to a​ D, and 0 points to an F. What is the GPA of a student who gets an A in a 3​-credit ​course, a B in each of three 4​-credit ​courses, a C in a 2​-credit ​course, and a D in a 3​-credit ​course?

Answer:

2.75

Step-by-step explanation:

We present the information in the table below.

[tex]\left|\begin{array}{c|c|c|c}$Course Grade&$Grade Point(x)&$Course Credit(y)&$Product(xy)\\---&---&---&---\\A&4&3&12\\B&3&4&12\\B&3&4&12\\B&3&4&12\\C&2&2&4\\D&1&3&3\\---&---&---&---\\$Total&&20&55\end{array}\right|[/tex]

Therefore, the GPA of the student is:

[tex]GPA=\dfrac{55}{20}\\\\ =2.75[/tex]

The height of a certain plant is determined by a dominant allele T corresponding to tall plants, and a recessive allele t corresponding to short (or
dwarf) plants. If both parent plants have genotype Tt, compute the probability that the offspring plants will be tall. Hint: Draw a Punnett square.
(Enter your probability as a fraction.)​

Answers

Answer:

The probability of the plants being tall is equal to P(TT) + P(Tt)= 1/4+1/2=3/4

Step-by-step explanation:

Hello!

The characteristic "height" of a plant is determined by the alleles "tall" T (dominant) and "short" a (recessive). If both parents are Tt, you have to calculate the probability of the offspring being tall (TT or Tt)

To construct the Punnet square you have to make a table, where the parental alleles will be in the margins, for example: the father's alleles in the columns and the mother's alleles in the rows.

Each parent will produce a haploid gamete that will carry one of the alleles, so the probability for the offspring receiving one of the alleles is 1/2

Father (Tt): gametes will carry either the dominant allele T or the recessive allele t with equal probability 1/2

Mother (Tt): gametes will also carry either the dominant allele T or the recessive allele t with equal probability 1/2

Then you have to cross each allele to determine all possible outcomes for the offsprings. For each cell, the probability of obtaining both alleles will be the product of the probability of each allele (See attachment)

First combination, the offspring will receive one dominant allele from his father and one dominant allele from his mother: TT, the probability of obtaining an offspring with this genotype will be P(T) * P(T) = 1/2*1/2=1/4

Second combination, the offspring will receive the recessive allele from the father and the dominant allele from the mother, then its genotype till be tT with probability: P(t)*P(T)= 1/2*1/2=1/4

Third combination, the offspring will receive one dominant allele from his father and one recessive allele from his mother, the resulting genotype will be Tt with probability: P(T)*P(t)= 1/2*1/2=1/4

Combination, the offspring will receive both recessive alleles from his parents, the resulting genotype will be tt with probability: P(t)*P(t)= 1/2*1/2=1/4

So there are three possible genotypes for the next generation:

TT with probability P(TT)= 1/4

Tt with probability: P(Tt)+P(tT)=1/4+1/4=1/2⇒ This genotype is observed twice so you have to add them.

tt with probability P(tt)= 1/4

Assuming this genotype shows complete dominance, you'll observe the characteristic "Tall" in individuals that carry the dominant allele "T", i.e. individuals with genotype "TT" and "Tt"

So the probability of the plants being tall is equal to P(TT) + P(Tt)= 1/4+1/2=3/4

I hope this helps!

When a frequency distribution is exhaustive, each individual, object, or measurement from a sample or population must appear in at least one category.

a. True
b. False

Answers

Answer:

a. True

Step-by-step explanation:

The frequency distribution is a summary of the gathered data set, in which the interval of values is divided into classes.

A requirement for a frequency distribution is for the classes to be mutually exclusive and exhaustive. That is, each individual, object, or measurement in the data set must belong to one and only one class.

Then, we can conclude that each individual, object, or measurement must appear in at least one (in fact, only in one) category or class.

Find the 61st term of the following arithmetic sequence.
15, 24, 33, 42,

Answers

Answer:

The answer is

555

Step-by-step explanation:

For an nth term in an arithmetic sequence

[tex]U(n) = a + (n - 1)d[/tex]

where n is the number of terms

a is the first term

d is the common difference

From the question

a = 15

d = 24 - 15 = 9

n = 61

So the 61st term of the arithmetic sequence is

U(61) = 15 + (61-1)9

= 15 + 9(60)

= 15 + 540

= 555

Hope this helps you.

Plz help ASAP I’ll give lots of points

Answers

Answer:

8

Step-by-step explanation:

Because it is equal to the 4 side

After scoring a touchdown, a football team may elect to attempt a two-point conversion, by running or passing the ball into the end zone. If successful, the team scores two points. For a certain football team, the probability that this play is successful is 0.40.

a.â Let X =1 if successful, X= 0 if not. Find the mean and variance of X.

b.â If the conversion is successful, the team scores 2 points; if not the team scores 0 points. Let Y be the number of points scored. Does Y have a Bernoulli distribution? If so, find the success probability. If not, explain why not.

c.â Find the mean and variance of Y.

Answers

Answer:

a) Mean of X = 0.40

Variance of X = 0.24

b) Y is a Bernoulli's distribution. Check Explanation for reasons.

c) Mean of Y = 0.80 points

Variance of Y = 0.96

Step-by-step explanation:

a) The probability that play is successful is 0.40. Hence, the probability that play isn't successful is then 1 - 0.40 = 0.60.

Random variable X represents when play is successful or not, X = 1 when play is successful and X = 0 when play isn't successful.

The probability mass function of X is then

X | Probability of X

0 | 0.60

1 | 0.40

The mean is given in terms of the expected value, which is expressed as

E(X) = Σ xᵢpᵢ

xᵢ = each variable

pᵢ = probability of each variable

Mean = E(X) = (0 × 0.60) + (1 × 0.40) = 0.40

Variance = Var(X) = Σx²p − μ²

μ = mean = E(X) = 0.40

Σx²p = (0² × 0.60) + (1² × 0.40) = 0.40

Variance = Var(X) = 0.40 - 0.40² = 0.24

b) If the conversion is successful, the team scores 2 points; if not the team scores 0 points. If Y ia the number of points that team scores.Y can take on values of 2 and 0 only.

A Bernoulli distribution is a discrete distribution with only two possible outcomes in which success occurs with probability of p and failure occurs with probability of (1 - p).

Since the probability of a successful conversion and subsequent 2 points is 0.40 and the probability of failure and subsequent 0 point is 0.60, it is evident that Y is a Bernoulli's distribution.

The probability mass function for Y is then

Y | Probability of Y

0 | 0.60

2 | 0.40

c) Mean and Variance of Y

Mean = E(Y)

E(Y) = Σ yᵢpᵢ

yᵢ = each variable

pᵢ = probability of each variable

E(Y) = (0 × 0.60) + (2 × 0.40) = 0.80 points

Variance = Var(Y) = Σy²p − μ²

μ = mean = E(Y) = 0.80

Σy²p = (0² × 0.60) + (2² × 0.40) = 1.60

Variance = Var(Y) = 1.60 - 0.80² = 0.96

Hope this Helps!!!

The weight of a chocolate bar is 4.4 ounces, but can vary. Let W be a random variable that represents the weight of a chocolate bar. The probability density function of Wis given below. If the shaded portion of the graph of the continuous probability density function below is 0.42739, what is the probability that a chocolate bar is at least 4 ounces, but no more than 7 ounces?

Answers

Answer:

Ans) 42.7%

Step-by-step explanation:

For a continuous probability distribution, a curve known as probability density function contains information about these probabilities.

in the given range -

The probability that a continuous random variable = equal to the area under the probability density function curve

The probability that the value of a random variable is equal to 'something' is 1.

As per the diagram,

Weight of chocolate bar between 4 ounces and 7 ounces is highlighted in the blue part. That area is said to be 0.42739 and the total area under the curve is 1.

Hence required probability

=0.42739/1=0.42739

Ans) 42.7%

Round to nearest tenth of a percent

The smaller of two numbers is one-half the larger, and their sum is 27. Find the
numbers.

Answers

Answer:

  9 and 18

Step-by-step explanation:

The numbers are in the ratio 1 : 2, so the ratio of the smaller to the total is ...

  1 : (1+2) = 1 : 3

1/3 of 27 is 9, the value of the smaller number. The larger number is double this, so is 18.

The numbers are 9 and 18.

Answer:

9 and 18

Step-by-step explanation:

you know the explanation since another guy put it

A courier service company wishes to estimate the proportion of people in various states that will use its services. Suppose the true proportion is 0.050.05. If 212212 are sampled, what is the probability that the sample proportion will differ from the population proportion by less than 0.030.03

Answers

Answer:

95.44% probability that the sample proportion will differ from the population proportion by less than 0.03.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

In this question:

[tex]p = 0.05, n = 212, \mu = 0.05, s = \sqrt{\frac{0.05*0.95}{212}} = 0.015[/tex]

What is the probability that the sample proportion will differ from the population proportion by less than 0.03?

This is the pvalue of Z when X = 0.03 + 0.05 = 0.08 subtracted by the pvalue of Z when X = 0.05 - 0.03 = 0.02. So

X = 0.08

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{0.08 - 0.05}{0.015}[/tex]

[tex]Z = 2[/tex]

[tex]Z = 2[/tex] has a pvalue of 0.9772

X = 0.02

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{0.02 - 0.05}{0.015}[/tex]

[tex]Z = -2[/tex]

[tex]Z = -2[/tex] has a pvalue of 0.0228

0.9772 - 0.0228 = 0.9544

95.44% probability that the sample proportion will differ from the population proportion by less than 0.03.

Question 15 A party rental company has chairs and tables for rent. The total cost to rent 8 chairs and 3 tables is $38 . The total cost to rent 2 chairs and 5 tables is $35 . What is the cost to rent each chair and each table?

Answers

Answer:

Each table is $6 and each chair is $2.50

Step-by-step explanation:

A veterinarian is enclosing a rectangular outdoor running area against his building for the dogs he cares for. He needs to maximize the area using 100 feet of fencing. The quadratic function A(x)=x(100−2x) gives the area, A, of the dog run for the length, x, of the building that will border the dog run. Find the length of the building that should border the dog run to give the maximum area, and then find the maximum area of the dog run.

Answers

Answer:

a) The length of the building that should border the dog run to give the maximum area = 25feet

b)    The maximum area of the dog run  = 1250 s q feet²

Step-by-step explanation:

Step(i):-

Given function

                       A(x) = x (100-2x)

                      A (x) = 100x - 2x²...(i)

Differentiating equation (i) with respective to 'x'

             [tex]\frac{dA}{dx} = 100 (1) - 2 (2x)[/tex]

     ⇒    [tex]\frac{dA}{dx} = 100 - 4 x[/tex]      ...(ii)

Equating  zero

         ⇒ 100 - 4x =0

         ⇒  100 = 4x

Dividing '4' on both sides , we get

             x = 25

Step(ii):-

Again differentiating equation (ii) with respective to 'x' , we get

    [tex]\frac{d^{2} A}{dx^{2} } = -4 (1) < 0[/tex]

Therefore The maximum value at x = 25

The length of the building that should border the dog run to give the maximum area = 25

Step(iii)

  Given  A (x) = x ( 100 -2 x)

substitute  'x' = 25 feet

             A(x) = 25 ( 100 - 2(25))

                    = 25(50)

                   = 1250

Conclusion:-

   The maximum area of the dog run  = 12 50  s q feet²

 

                       

A child is 2 -1/2 feet tall. The child’s mother is twice as tall as the child. How tall is the child’s mother

Answers

Answer:

  5 feet

Step-by-step explanation:

"Twice as tall" means "2 times as tall".

  2 × (2 1/2 ft) = (2 × 2 ft) +(2 × (1/2 ft)) = 4 ft + 1 ft = 5 ft

The child's mother is 5 feet tall.

Answer:

The mother is 5ft tall

Step-by-step explanation:

2 1/2 + 2 1/2 = 5ft

2ft+2ft = 4ft

1/2+1/2= 1ft

4ft+1ft = 5ft

Other Questions
Stacey wishes to make a hamburger which is lower in fat without having to give up the great taste. She purchases 5 pounds of ground beef which is 15% fat and combines it with 7 pounds of ground turkey which is only 3% fat. What is the percentage of fat in the mixture? what is traslocation Can someone help me solve this? Solve algebraically for x: -23(x + 12) + 23x = 54x + 2 Give 8 Differences each between immunization and immunityAnyone that answers I will mark the person as brilliant Which function represents g(x), a reflection of f(x) =(10)^x across the x-axis?g(x) = -2/5(10)^xg(x) = -2/5(1/10)^xg(x) =2/5(1/10)^-xg(x) = 2/5(10)^-x Brainliest to whoever gets this correct! Does this graph show a function? Explain how you know.A.No; there are y-values that have more than one x-value.B.No; the graph fails the vertical line test.C.Yes; the graph passes the vertical line test.D.Yes; there are no y-values that have more than one x-value. A tree casts a shadow 21m long. The angle of elevation of the sun is 55 degrees. What is the height of the tree? what is the molarity of a solution that contains 49.8 grams of nai and is dissolved in enough water to make 1.50 liters A culture is described as having polygynous marriages and patrilineal descent but data shows that fewer than twenty percent of the population is in a polygynous marriage. This illustrates what dichotomy How does Stalin compare the Soviets to Hitler?A. He says the Red Army and Hitler's army are evenly matched for thewar ahead.O B. He hails the USSR as a peace-loving country but depicts Hitler as atreacherous fiend.C. He depicts Hitler as a deceitful father while Soviets aretrustworthy brothers and sisters.D. He demonstrates Hitler's promise to care for the German people isthe same as his fatherly love for the Soviets.The answer is B. A population of fish exhibits multiple variations in color, size and mouth structure; however, there does not appear to be any selective advantage for these traits because all individuals are allowed to breed and survive! Which of the following is most likely occurring in this fish population? Please answer fast ASAPPPP Is the simplified form of 2 square root of 3 square root of 12 rational? Yes or No? A regio sudeste foi povoada devido primeiro ao processo de minerao que incentivou o povoamento em outros lugares,mais perifricos, em funo da necessidade de produo de alimentos Consider the following. x = 6 sin y , 0 y , x = 0; about y = 4 (a) Set up an integral for the volume V of the solid obtained by rotating the region bounded by the given curve about the specified axis. (b) Use your calculator to evaluate the integral correct to four decimal places. What is the area of rectangle ABCD given the information below? A bond is issued at par value when: Multiple Choice The bond is callable. Straight line amortization is used by the company. The market rate of interest is the same as the contract rate of interest. The bond pays no interest. The bond is not between interest payment dates. How do we write this as a power? [tex]4(\sqrt{7})x^{3[/tex] Which alternative offers you the highest effective rate of return? A) Investment A B) Investment B C) Investment C D) Investment