Answer:
12pi(8-pi), or
183.158 to third decimal place
Step-by-step explanation:
The geometry is indicated in the attached figure.
A. by integration
We will find the volume of the solid by the method of shells, i.e. we will integrate strips parallel to the axis of rotation to form many thin shells, then integrate to get the sum of all these shells.
For each shell, of thickness dy, we integrate strips of length located at y
L(x) = y(x)
and area
L(x)dy
Each strip is at a distance of (4-y) from
for which the volume of each shell equals
dV = 2*pi*(4-y)*L(x)dy = 2*pi*(4-y)*y(x) dy
The total volume of the solid can be obtained by integrating y from 0 to pi
integral( dV ) from 0 to pi
= integral (2*pi*(4-y)*y(x) dy) for y from 0 to pi
= 12*pi(-sin(y)+y*cos(y)-4*cos(y)) for y from 0 to pi
=12(8-pi)*pi
= 183.158
B. Using Pappus theorem
Pappus theorem simplifies the calculation of volume of revolution by multiplying the area of the rotating region by 2pi times the distance between the centroid and the rotation axis.
Here the area of the figure is A=2*6=12, (2 is the area under the sine curve from 0 to pi), or
A = integral (6sin(x))dx, x from 0 to pi
= 6 cos(x), x from 0 to pi
= 6(1- (-1))
= 12
Distance from centroid to axis of rotation = (4-pi/2)
Volume = 2*pi*A*(4-pi/2) = 2*pi*12*(4-pi/2)
= 12pi(8-pi)
=183.158 as before
PLSSSSSSS HELP WILL MARK BRAINLIEST Doug owns a lawn mowing and landscaping business. The income from the business is given by the function f(x) = 2x + 54, where f(x) is the income in dollars and x is the area in square meters of lawn mowed. If he has earned {204, 344, 450, 482} dollars in the last four months, what are the corresponding areas of lawn he mowed?
Answer:
i think this person answered but idrk perseusharrison79
Step-by-step explanation:
For 2 parallelograms, the corresponding side lengths are 1 inch and x inches, and 2 inches and 6 inches.
Not drawn to scale
StartFraction 1 over x EndFraction = StartFraction 2 over 6 EndFraction
StartFraction 1 over x EndFraction = StartFraction 6 over 2 EndFraction
StartFraction 1 over 6 EndFraction = StartFraction 2 over x EndFraction
One-half = StartFraction 6 over x EndFraction
Step-by-step explanation:
PLEASE HELP!!!! Find the common difference
Answer:
The common difference is 1/2
Step-by-step explanation:
Data obtained from the question include:
3rd term (a3) = 0
Common difference (d) =.?
From the question given, we were told that the 7th term (a7) and the 4th term (a4) are related by the following equation:
a7 – 2a4 = 1
Recall:
a7 = a + 6d
a4 = a + 3d
a3 = a + 2d
Note: 'a' is the first term, 'd' is the common difference. a3, a4 and a7 are the 3rd, 4th and 7th term respectively.
But, a3 = 0
a3 = a + 2d
0 = a + 2d
Rearrange
a = – 2d
Now:
a7 – 2a4 = 1
Substituting the value of a7 and a4, we have
a + 6d – 2(a + 3d) = 1
Sustitute the value of 'a' i.e –2d into the above equation, we have:
–2d + 6d – 2(–2d + 3d) = 1
4d –2(d) = 1
4d –2d = 1
2d = 1
Divide both side by 2
d = 1/2
Therefore, the common difference is 1/2
***Check:
d = 1/2
a = –2d = –2 x 1/2 = –1
a3 = 0
a3 = a + 2d
0 = –1 + 2(1/2)
0 = –1 + 1
0 = 0
a7 = a + 6d = –1 + 6(1/2) = –1 + 3 = 2
a4 = a + 3d = –1 + 3(1/2) = –1 + 3/2
= (–2 + 3)/2 = 1/2
a7 – 2a4 = 1
2 – 2(1/2 = 1
2 – 1 = 1
1 = 1
The Ball Corporation's beverage can manufacturing plant in Fort Atkinson, Wisconsin, uses a metal supplier that provides metal with a known thickness standard deviation σ = .000586 mm. Assume a random sample of 59 sheets of metal resulted in an x¯ = .2905 mm. Calculate the 95 percent confidence interval for the true mean metal thickness.
Answer:
The 95 percent confidence interval for the true mean metal thickness is between 0.2903 mm and 0.2907 mm
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1-0.95}{2} = 0.025[/tex]
Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].
So it is z with a pvalue of [tex]1-0.025 = 0.975[/tex], so [tex]z = 1.96[/tex]
Now, find the margin of error M as such
[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 1.96\frac{0.000586}{\sqrt{59}} = 0.0002[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 0.2905 - 0.0002 = 0.2903 mm
The upper end of the interval is the sample mean added to M. So it is 0.2905 + 0.0002 = 0.2907 mm
The 95 percent confidence interval for the true mean metal thickness is between 0.2903 mm and 0.2907 mm
i-Ready
Sofia
The area of a rectangle is 7/9 square feet. The width of the rectangle is 2 1/3 feet. What is the length of the rectangle?
Answer:
1/3 feet.
Step-by-step explanation:
The length = area / width
= 7/9 / 2 1/3
= 7/9 / 7/3
= 7/9 * 3/7
= 3/9
= 1/3 feet,
Perform the indicated operation.
Answer:
√75 = 5√3 and √12 = 2√3 so √75 + √12 = 5√3 + 2√3 = 7√3.
Answer:
[tex] 7\sqrt{3} [/tex]
Step-by-step explanation:
[tex] \sqrt{12} \: can \: be \: simplified \: as \: 2 \sqrt{3} \: and \: \sqrt{75} \: canbe \: simplified \: as \: 5 \sqrt{3} \\ after \: simplifying \: we \: can \: add \: them \: up \\ 2 \sqrt{3} + 5 \sqrt{3} = 7 \sqrt{3} [/tex]
Which graph represents the function?
the answer is the bottom left option
The vector matrix[ 27 ]is dilated by a factor of 1.5 and then reflected across the X axis if the resulting matrix is a B then a equals an VE
Correct question:
The vector matrix [ [tex] \left[\begin{array}{ccc}2\\7\end{array}\right] [/tex] is dilated by a factor of 1.5 and then reflected across the x axis. If the resulting matrix is [a/b] then a=??? and b=???
Answer:
a = 3
b = 10.5
Step-by-step explanation:
Given:
Vector matrix = [tex] \left[\begin{array}{ccc}2\\7\end{array}\right] [/tex]
Dilation factor = 1.5
Since the vector matrix is dilated by 1.5, we have:
[tex] \left[\begin{array}{ccc}1.5 * 2\\1.5 * 7\end{array}\right] [/tex]
= [tex] \left[\begin{array}{ccc}3\\10.5\end{array}\right] [/tex]
Here, we are told the vector is reflected on the x axis.
Therefore,
a = 3
b = 10.5
Answer:
a = 3
b = -10.5
Step-by-step explanation:
got a 100% on PLATO
what is the gfc of 16 and 8
Answer:
Greatest common factor of 16 and 8 is 8 .....What is the measure of PSQ?
Answer:
Do you have an image because I'm a bit confused with you just asking the measure of PSQ.
Step-by-step explanation:
A child is 2 -1/2 feet tall. The child’s mother is twice as tall as the child. How tall is the child’s mother
Answer:
5 feet
Step-by-step explanation:
"Twice as tall" means "2 times as tall".
2 × (2 1/2 ft) = (2 × 2 ft) +(2 × (1/2 ft)) = 4 ft + 1 ft = 5 ft
The child's mother is 5 feet tall.
Answer:
The mother is 5ft tall
Step-by-step explanation:
2 1/2 + 2 1/2 = 5ft
2ft+2ft = 4ft
1/2+1/2= 1ft
4ft+1ft = 5ft
Help me with this problem, thank you<3
Answer:
1,050 workers
Step-by-step explanation:
25% = 0.25
0.25 × 1400 = 350
1400 - 350 = 1050
Hope this helps.
Find the fourth term in the expansion of the binomial
(4x + y)^4
a) 16xy^3
b) 256x^4
c) 64y^4
d) 4xy^3
Answer:
a) 16xy³
Step-by-step explanation:
For a binomial expansion (a + b)ⁿ, the r+1 term is:
nCr aⁿ⁻ʳ bʳ
Here, a = 4x, b = y, and n = 4.
For the fourth term, r = 3.
₄C₃ (4x)⁴⁻³ (y)³
4 (4x) (y)³
16xy³
HELP!! Im not sure what i did wrong!!
I'm not sure what exactly you did wrong, but I agree with you that the sample size is too small, so the correct answer will probably be the fourth options. Hope that this gives you some confidence, and 'm sorry not to be able to help you any further...
Select the correct answer from each drop-down menu.
The given equation has been solved in the table.
Answer: a) additive inverse (addition)
b) multiplicative inverse (division)
Step-by-step explanation:
Step 2: 6 is being added to both sides
Step 4: (3/4) is being divided from both sides
It is difficult to know what options are provided in the drop-down menu without seeing them. If I was to complete a proof and justify each step, then the following justifications would be used:
Step 2: Addition Property of Equality
Step 4: Division Property of Equality
A boat that can travel 18 mph in still water can travel 21 miles downstream in the same amount of time that it can travel 15 miles upstream. Find the speed (in mph) of the current in the river.
Hey there! I'm happy to help!
We see that if the river isn't moving at all the boat can move at 18 mph (most likely because it has an engine propelling it.)
We want to set up a proportion where our 21 miles downstream time is equal to our 15 miles upstream time so we can find the speed. A proportion is basically showing that two ratios are equal. Since our downstream distance and upstream distance can be done in the same amount of time, we will write it as a proportion.
We want to find the speed of the river. We will use r to represent the speed of the river. When going downstream, the boat will go faster, so it will have a higher mph. So, our speed going down is 18+r. When you are going upstream, it's the opposite, so it will be 18-r.
[tex]\frac{distance}{speed} =\frac{21}{18+r} = \frac{15}{18-r}[/tex]
So, how do we figure out what r is now? Well, one nice thing to know about proportions is that the product of the items diagonal from each other equals the product of the other items. Basically, that means that 15(18+r) is equal to 21(18-r). This is a very nice trick to solve proportions quickly. We see that we have made an equation and now we can solve it!
15(18+r)=21(18-r)
We use the distributive property to undo the parentheses.
270+15r=378-21r
We subtract 270 from both sides.
15r=108-21
We add 21 to both sides.
36r=108
We divide both sides by 36.
r=3
Therefore, the speed of the river is 3 mph.
You also could have noticed that 18mph to 21 mph is +3, and 18mph to 15 mph -3 in -3 mph, so the speed of the river is 3 mph. That would have been a quicker way to solve it XD!
Have a wonderful day!
find the third angle in a triangle when the other two angles are (2a-32)° and (3a+22)°
Answer:
(190-5a)°
Step-by-step explanation:
Sum of internal angles of a triangle equals to 180°
If the third angle is x, then we have:
(2a-32)°+(3a+22)° +x = 180°(5a- 10)° +x= 180°x= (180+10-5a)°x= (190-5a)°The third angle is: (190-5a)°
CAN SOMEONE HELP ME ASAP
A. 5
B. 53‾√53
C. 10
D. 103√3
Answer:
n = 5
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp/ adj
tan 30 = n/ 5 sqrt(3)
5 sqrt(3) tan 30 = n
5 sqrt(3) * 1/ sqrt(3) = n
5 = n
Please answer this correctly
Answer:
[tex] \frac{1}{6} [/tex]
Step-by-step explanation:
the ways of choosing 2 cards out of 4, is calculator by
[tex] \binom{4}{2} = 6[/tex]
so, 6 ways to select 2 cards.
but in only one way we can have 2 even cards. thus, the answer is
[tex] \frac{1}{6} [/tex]
The curvature of a plane parametric curve x = f(t), y = g(t) is $ \kappa = \dfrac{|\dot{x} \ddot{y} - \dot{y} \ddot{x}|}{[\dot{x}^2 + \dot{y}^2]^{3/2}}$ where the dots indicate derivatives with respect to t. Use the above formula to find the curvature. x = 6et cos(t), y = 6et sin(t)
Answer:
The curvature is modelled by [tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex].
Step-by-step explanation:
The equation of the curvature is:
[tex]\kappa = \frac{|\dot {x}\cdot \ddot {y}-\dot{y}\cdot \ddot{x}|}{[\dot{x}^{2}+\dot{y}^{2}]^{\frac{3}{2} }}[/tex]
The parametric componentes of the curve are:
[tex]x = 6\cdot e^{t} \cdot \cos t[/tex] and [tex]y = 6\cdot e^{t}\cdot \sin t[/tex]
The first and second derivative associated to each component are determined by differentiation rules:
First derivative
[tex]\dot{x} = 6\cdot e^{t}\cdot \cos t - 6\cdot e^{t}\cdot \sin t[/tex] and [tex]\dot {y} = 6\cdot e^{t}\cdot \sin t + 6\cdot e^{t} \cdot \cos t[/tex]
[tex]\dot x = 6\cdot e^{t} \cdot (\cos t - \sin t)[/tex] and [tex]\dot {y} = 6\cdot e^{t}\cdot (\sin t + \cos t)[/tex]
Second derivative
[tex]\ddot{x} = 6\cdot e^{t}\cdot (\cos t-\sin t)+6\cdot e^{t} \cdot (-\sin t -\cos t)[/tex]
[tex]\ddot x = -12\cdot e^{t}\cdot \sin t[/tex]
[tex]\ddot {y} = 6\cdot e^{t}\cdot (\sin t + \cos t) + 6\cdot e^{t}\cdot (\cos t - \sin t)[/tex]
[tex]\ddot{y} = 12\cdot e^{t}\cdot \cos t[/tex]
Now, each term is replaced in the the curvature equation:
[tex]\kappa = \frac{|6\cdot e^{t}\cdot (\cos t - \sin t)\cdot 12\cdot e^{t}\cdot \cos t-6\cdot e^{t}\cdot (\sin t + \cos t)\cdot (-12\cdot e^{t}\cdot \sin t)|}{\left\{\left[6\cdot e^{t}\cdot (\cos t - \sin t)\right]^{2}+\right[6\cdot e^{t}\cdot (\sin t + \cos t)\left]^{2}\right\}^{\frac{3}{2}}} }[/tex]
And the resulting expression is simplified by algebraic and trigonometric means:
[tex]\kappa = \frac{72\cdot e^{2\cdot t}\cdot \cos^{2}t-72\cdot e^{2\cdot t}\cdot \sin t\cdot \cos t + 72\cdot e^{2\cdot t}\cdot \sin^{2}t+72\cdot e^{2\cdot t}\cdot \sin t \cdot \cos t}{[36\cdot e^{2\cdot t}\cdot (\cos^{2}t -2\cdot \cos t \cdot \sin t +\sin^{2}t)+36\cdot e^{2\cdot t}\cdot (\sin^{2}t+2\cdot \cos t \cdot \sin t +\cos^{2} t)]^{\frac{3}{2} }}[/tex]
[tex]\kappa = \frac{72\cdot e^{2\cdot t}}{[72\cdot e^{2\cdot t}]^{\frac{3}{2} } }[/tex]
[tex]\kappa = [72\cdot e^{2\cdot t}]^{-\frac{1}{2} }[/tex]
[tex]\kappa = 72^{-\frac{1}{2} }\cdot e^{-t}[/tex]
[tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex]
The curvature is modelled by [tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex].
The tens digit in a two digit number is 4 greater than one’s digit. If we interchange the digits in the number, we obtain a new number that, when added to the original number, results in the sum of 88. Find this number
Answer:
The original digit is 62
Step-by-step explanation:
Let the Tens be represented with T
Let the Units be represented with U
Given:
Unknown Two digit number
Required:
Determine the number
Since, it's a two digit number, then the number can be represented as;
[tex]T * 10 + U[/tex]
From the first sentence, we have that;
[tex]T = 4 + U[/tex]
[tex]T = 4+U[/tex]
Interchanging the digit, we have the new digit to be [tex]U * 10 + T[/tex]
So;
[tex](U * 10 + T) + (T * 10+ U) = 88[/tex]
[tex]10U + T + 10T + U= 88[/tex]
Collect Like Terms
[tex]10U + U + T + 10T = 88[/tex]
[tex]11U + 11T = 88[/tex]
Divide through by 11
[tex]U + T = 8[/tex]
Recall that [tex]T = 4+U[/tex]
[tex]U + T = 8[/tex] becomes
[tex]U + 4 + U = 8[/tex]
Collect like terms
[tex]U + U = 8 - 4[/tex]
[tex]2U = 4[/tex]
Divide both sides by 2
[tex]U = 2[/tex]
Substitute 2 for U in [tex]T = 4+U[/tex]
[tex]T = 4 + 2[/tex]
[tex]T = 6[/tex]
Recall that the original digit is [tex]T * 10 + U[/tex]
Substitute 6 for T and 2 for U
[tex]T * 10 + U[/tex]
[tex]6 * 10 + 2[/tex]
[tex]60 + 2[/tex]
[tex]62[/tex]
Hence, the original digit is 62
Please answer this correctly
Step-by-step explanation:
pnotgrt8rthan4 = 3 ÷ 7 × 100
= 42.8571428571 / 43%
Question 15 A party rental company has chairs and tables for rent. The total cost to rent 8 chairs and 3 tables is $38 . The total cost to rent 2 chairs and 5 tables is $35 . What is the cost to rent each chair and each table?
Answer:
Each table is $6 and each chair is $2.50
Step-by-step explanation:
Explain the importance of factoring.
Answer:
Factoring is a useful skill in real life. Common applications include: dividing something into equal pieces, exchanging money, comparing prices, understanding time, and making calculations during travel.
Sorry if this is a little wordy, I can get carried away with this sort of thing
anyway, hope this helped and answered your question :)
An athletics coach states that the distribution of player run times (in seconds) for a 100-meter dash is normally distributed with a mean equal to 13.00 and a standard deviation equal to 0.2 seconds. What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster
Answer:
96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 13, \sigma = 0.2[/tex]
What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster
We have to find the pvalue of Z when X = 13.36.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{13.36 - 13}{0.2}[/tex]
[tex]Z = 1.8[/tex]
[tex]Z = 1.8[/tex] has a pvalue of 0.9641
96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster
PLEASE ANSWER FAST, THANKS! :)
Answer:
Step-by-step explanation:
k = 3 ; 2k + 2 = 2*3 + 2 = 6 + 2 = 8
k = 4; 2k + 2 = 2*4 + 2 = 8 +2 = 10
k =5; 2k + 2 = 2*5 +2 = 10+2 = 12
k=6; 2k +2 = 2*6 + 2 = 12+2 = 14
k = 7 ; 2k + 2 = 2*7 +2 = 14 +2 = 16
k = 8 ; 2k + 2 = 2*8 + 2 = 16 +2 = 18
∑ (2k + 2) = 8 + 10 + 12 + 14 + 16 + 18 = 78
Write 0000 using the am/pm clock.
Answer:
12am
Step-by-step explanation:
Answer:
12:00 am or midnight
Step-by-step explanation:
00 00 hrs in 12-hours clock is 12:00 am or 12:00 o'clock midnight.
Will give brainliest answer
Answer:
[tex]153.86 \: {units}^{2} [/tex]
Step-by-step explanation:
[tex]area = \pi {r}^{2} \\ = 3.14 \times 7 \times 7 \\ = 3.14 \times 49 \\ = 153.86 \: {units}^{2} [/tex]
Answer:
153.86 [tex]units^{2}[/tex]
Step-by-step explanation:
Areaof a circle = πr^2
[tex]\pi = 3.14[/tex](in this case)
[tex]r^{2} =7[/tex]
A = πr^2
= 49(3.14)
= 153.86
Which expression is equivalent to [tex]4^7*4^{-5}[/tex]? A. [tex]4^{12}[/tex] B. [tex]4^2[/tex] C. [tex]4^{-2}[/tex] D. [tex]4^{-35}[/tex]
Answer:
B. [tex]4^2[/tex]
Step-by-step explanation:
[tex]4^7 \times 4^{-5}[/tex]
Apply rule (if bases are same) : [tex]a^b \times a^c = a^{b + c}[/tex]
[tex]4^{7 + -5}[/tex]
Add exponents.
[tex]=4^2[/tex]
Answer:
[tex] {4}^{2} [/tex]Step by step explanation
[tex] {4}^{7} \times {4}^{ - 5} [/tex]
Use product law of indices
i.e
[tex] {x}^{m} \times {x}^{n} = {x}^{m + n} [/tex]
( powers are added in multiplication of same base)
[tex] = {4}^{7 + ( - 5)} [/tex]
[tex] = {4}^{7 - 5} [/tex]
[tex] = {4}^{2} [/tex]
Hope this helps...
Best regards!
Please answer this correctly
Answer:
1/5
Step-by-step explanation:
The number 5 or greater than 4 is 5.
1 number out of 5 total parts.
= 1/5
P(5 or greater than 4) = 1/5
I paid twice as much by not waiting for a sale and not ordering on line. Which ofthe following statements is also true?
(a) I paid 200% more than I could have online and on sale.
(b) I paid 100% of what I could have online and on sale.
(c) I paid 200% of what I could have online and on sale.
(d) I paid 3 times what I could have online and on sale.
Answer:
Option (c).
Step-by-step explanation:
It is given that, I paid twice as much by not waiting for a sale and not ordering online.
Let the cost of items ordering online be x.
So, now i am paying twice of x = 2x
Now, we have find 2x is what percent of x.
[tex]Percent =\dfrac{2x}{x}\times 100=200\%[/tex]
It means, I paid 200% of what I could have online and on sale.
Therefore, the correct option is (c).