Select the list of all possible rational zeros of the function. 2x^(4)+x^(3)-12x^(2)+2x+24

Answers

Answer 1

The possible rational zeros are:  ±1/1, ±2/1, ±3/1, ±4/1, ±6/1, ±8/1, ±12/1, ±24/1, ±1/2, ±2/2, ±3/2, ±4/2, ±6/2, ±8/2, ±12/2, ±24/2, which can be simplified as follows:  ±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24, ±1/2, ±2, ±3/2, ±4, ±6, ±8, ±12, ±24.

To find the list of all possible rational zeros of the given function f(x) = 2x⁴ + x³ - 12x² + 2x + 24, you need to apply the Rational Root Theorem. The Rational Root Theorem states that if a polynomial equation has integer coefficients, then any rational zero of the equation must have a numerator that is a factor of the constant term and a denominator that is a factor of the leading coefficient of the polynomial.

Using this theorem, we can obtain the list of all possible rational zeros of the given function by finding all the possible combinations of factors of 24 (constant term) and 2 (leading coefficient).The possible factors of 24 are ±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24.The possible factors of 2 are ±1, ±2.So,

To know more about rational  numbers refer here.

https://brainly.com/question/24398433?referrer=searchResults

#SPJ11


Related Questions

If F(X)=2x^2−6x+3, Find F′

Answers

F'(x) = 4x - 6 is the required derivative of the given function F(x).

Given function F(x) = 2x² - 6x + 3, we need to find F'(x).

First, we have to differentiate the given function F(x) using the power rule of differentiation.

The power rule states that the derivative of x raised to the power n is

n * x^(n-1).

Therefore, we have:

F'(x) = d/dx (2x² - 6x + 3)

= 2 d/dx (x²) - 6 d/dx (x) + d/dx (3)

On differentiation, we get:

F'(x) = 2 * 2x - 6 * 1 + 0

F'(x) = 4x - 6

So, F'(x) = 4x - 6 is the found derivative of the given function F(x).

Know more about the derivative

https://brainly.com/question/30403647

#SPJ11

9 syms t f=log10( abs (sqrt(1+t ∧
2/5)));t=−1; double ( subs (f))= ? In Problems 9−14, using only a hand calculator, replace the question mark with what the output would be if the commands were executed in MATLAB.

Answers

The output of double(subs(f)) when executed in MATLAB with t = -1 would be approximately 0.58496.

To find the value of the expression double(subs(f)) for the given MATLAB code, we can substitute t = -1 into the function f and evaluate it.

Here's the updated MATLAB code:

matlab

Copy code

syms t

f = log10(abs(sqrt(1 + t^(2/5))));

t = -1;

result = double(subs(f));

To calculate the value of double(subs(f)), we substitute t = -1 into f and then evaluate the expression. Using a hand calculator or performing the calculations manually, we find:

matlab

Copy code

result = double(subs(f))

      = double(subs(log10(abs(sqrt(1 + (-1)^(2/5))))))

      = double(subs(log10(abs(sqrt(1 + (-1)^(2/5))))), -1)

      ≈ 0.58496

Therefore, the output of double(subs(f)) when executed in MATLAB with t = -1 would be approximately 0.58496.

Learn more about approximately from

https://brainly.com/question/27894163

#SPJ11

Find f'(x) using the rules for finding derivatives.
9x-3/ x-3 f'(x)=

Answers

To find f'(x) using the rules for finding derivatives, we have to simplify the expression for f(x) first. The expression for f(x) is:f(x)=\frac{9x-3}{x-3} To find the derivative f'(x), we have to apply the Quotient Rule.

According to the Quotient Rule, if we have a function y(x) that can be expressed as the ratio of two functions u(x) and v(x), then its derivative y'(x) can be calculated using the formula: y'(x) = (v(x)u'(x) - u(x)v'(x)) / [v(x)]²

In our case, we have u(x) = 9x - 3 and v(x) = x - 3.

Hence: \begin{aligned} f'(x)  = \frac{(x-3)(9)-(9x-3)(1)}{(x-3)^2} \\  

= \frac{9x-27-9x+3}{(x-3)^2} \\

= \frac{-24}{(x-3)^2} \end{aligned}

Therefore, we have obtained the answer of f'(x) as follows:f'(x) = (-24) / (x - 3)²

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

How many ounces of 20% saline solution and 60% saline solution must be mixed together to produce 20 ounces of 50% saline solution? MATRIX

Answers

To produce 20 ounces of a 50% saline solution, you will need to mix 10 ounces of a 20% saline solution with 10 ounces of a 60% saline solution.

Let's assume x ounces of the 20% saline solution and y ounces of the 60% saline solution are needed.

The total volume of the mixture is given as 20 ounces, so we have the equation:

x + y = 20

The concentration of the saline solution is determined by the amount of saline in the mixture. Since we want a 50% saline solution, we have the following equation based on the saline content:

0.20x + 0.60y = 0.50(20)

Simplifying the equations, we have:

x + y = 20 (equation 1)

0.20x + 0.60y = 10 (equation 2)

To solve this system of equations, we can multiply equation 1 by -0.20 and add it to equation 2:

-0.20x - 0.20y = -4

0.20x + 0.60y = 10

0.40y = 6

Dividing both sides by 0.40, we get:

y = 6 / 0.40 = 15

Substituting this value of y back into equation 1, we find:

x + 15 = 20

x = 20 - 15 = 5

Therefore, to produce 20 ounces of a 50% saline solution, you need to mix 5 ounces of a 20% saline solution with 15 ounces of a 60% saline solution.

To create a 50% saline solution with a total volume of 20 ounces, you will need to combine 5 ounces of a 20% saline solution with 15 ounces of a 60% saline solution. This mixture will result in a total of 20 ounces of solution with the desired 50% concentration of saline. The calculation was performed using a system of equations, where one equation represented the total volume and the other equation represented the saline content. By solving the equations simultaneously, we determined the required amounts of each solution.

To know more about total volume , visit;

https://brainly.com/question/25252629
#SPJ11

Prove A∩B=(Ac∪Bc)c using membership table. Prove (A∩B)∪C=(C∪B)∩(C∪A) using membe 5. A={a,b,c},B={b,d},U={a,b,c,d,e,f} a) Write A and B as bit strings. b) Find the bit strings of A∪B,A∩B, and A−B by performing bit operations on the bit strings of A and B. c) Find the sets A∪B,A∩B, and A−B from their bit strings. 6. f:{1,2,3,4,5}→{a,b,c,d}⋅f(1)=bf(2)=df(3)=cf(4)=bf(5)=c a) What is the domain of f. b) What is the codomain of f. c) What is the image of 4 . d) What is the pre image of d. e) What is the range of f.

Answers

The bit string of A−B can be found by taking the AND of the bit string of A and the complement of the bit string of B.

The bit string of A∪B can be found by taking the OR of the bit strings of A and B.

The bit string of A∩B can be found by taking the AND of the bit strings of A and B.

5. a) A={a,b,c} can be represented as 011 where the first bit represents the presence of a in the set, second bit represents the presence of b in the set and third bit represents the presence of c in the set.

Similarly, B={b,d} can be represented as 101 where the first bit represents the presence of a in the set, second bit represents the presence of b in the set, third bit represents the presence of c in the set, and fourth bit represents the presence of d in the set.

b) The bit string of A∪B can be found by taking the OR of the bit strings of A and B.

A∪B = 111

The bit string of A∩B can be found by taking the AND of the bit strings of A and B.

A∩B = 001

The bit string of A−B can be found by taking the AND of the bit string of A and the complement of the bit string of B.

A−B = 010

c) A∪B = {a, b, c, d}

A∩B = {b}A−B = {a, c}

6. a) The domain of f is {1, 2, 3, 4, 5}.

b) The codomain of f is {a, b, c, d}.

c) The image of 4 is f(4) = b.

d) The pre-image of d is the set of all elements in the domain that map to d.

In this case, it is the set {2}.

e) The range of f is the set of all images of elements in the domain. In this case, it is {b, c, d}.

To know more about domain, visit:

https://brainly.com/question/30133157

#SPJ11

1. Are there any real number x where [x] = [x] ? If so, describe the set fully? If not, explain why not

Answers

Yes, there are real numbers x where [x] = [x]. The set consists of all non-integer real numbers, including the numbers between consecutive integers. However, the set does not include integers, as the floor function is equal to the integer itself for integers.

The brackets [x] denote the greatest integer less than or equal to x, also known as the floor function. When [x] = [x], it means that x lies between two consecutive integers but is not an integer itself. This occurs when the fractional part of x is non-zero but less than 1.

For example, let's consider x = 3.5. The greatest integer less than or equal to 3.5 is 3. Hence, [3.5] = 3. Similarly, [3.2] = 3, [3.9] = 3, and so on. In all these cases, [x] is equal to 3.

In general, for any non-integer real number x = n + f, where n is an integer and 0 ≤ f < 1, [x] = n. Therefore, the set of real numbers x where [x] = [x] consists of all integers and the numbers between consecutive integers (excluding the integers themselves).

To learn more about Real numbers, visit:

https://brainly.com/question/17386760

#SPJ11

a) Find the equation of the line passing through the points (10,4) and (1,−8). Answer: f(x)= (b) Find the equation of the line with slope 4 that passes through the point (4,−8). Answer: f(x)=

Answers

The equation of the line with slope 4 that passes through the point (4,−8) is: f(x) = 4x - 24

a) Find the equation of the line passing through the points (10,4) and (1,−8). We can use the slope-intercept form y = mx + b to find the equation of the line passing through the given points.

Here's how: First, we need to find the slope of the line using the formula: m = (y₂ - y₁) / (x₂ - x₁)where (x₁, y₁) = (10, 4) and (x₂, y₂) = (1, -8).

Substituting the values in the formula, we get: m = (-8 - 4) / (1 - 10) = 12/(-9) = -4/3. Therefore, the slope of the line passing through the points (10,4) and (1,−8) is -4/3.

Now, we can use the slope and any of the given points to find the value of b. Let's use the point (10,4). Substituting the values in y = mx + b, we get: 4 = (-4/3)*10 + b Solving for b, we get: b = 52/3

Therefore, the equation of the line passing through the points (10,4) and (1,−8) is: f(x) = (-4/3)x + 52/3b) Find the equation of the line with slope 4 that passes through the point (4,−8).

The equation of a line with slope m that passes through the point (x₁, y₁) can be written as: y - y₁ = m(x - x₁) We are given that the slope is 4 and the point (4, -8) lies on the line.

Substituting these values in the above formula, we get: y - (-8) = 4(x - 4) Simplifying, we get: y + 8 = 4x - 16

Subtracting 8 from both sides, we get: y = 4x - 24

Therefore, the equation of the line with slope 4 that passes through the point (4,−8) is: f(x) = 4x - 24

For more such questions on slope-intercept

https://brainly.com/question/1884491

#SPJ8

To determine the effectiveness of a diet to reduce cholesterol, 100 people are put on the diet. After a certain length of time their cholesterol level is taken. The diet is deemed a success if at least 55% have lowered their levels.

a) What is the probability the diet is a success, if, in fact, it has no effect on cholesterol levels? Use the normal approximation with a continuity correction. Round to 4 decimal places.

b) Calculate the answer using the binomial distribution and software (R, Excel or anything else).

Answers

a) The probability that the diet is a success, assuming no effect on cholesterol levels, is approximately 0.9441, using the normal distribution with a continuity correction.

b) Using the binomial distribution, the probability is approximately 0.9447, which closely aligns with the result obtained from the normal distribution approximation.

a) To determine the probability that the diet is a success, we will use the normal distribution with a continuity correction because the number of observations n = 100 is large enough to justify this approximation.

We have:

P(X ≥ 55)

To convert to the standard normal distribution, we calculate the z-score:

z = (55 - np) / sqrt(npq) = (55 - 100(0.55)) / sqrt(100(0.55)(0.45)) = -1.59

Using the standard normal distribution table, we obtain:

P(X ≥ 55) = P(Z ≥ -1.59) = 0.9441 (rounded to four decimal places)

Therefore, the probability that the diet is a success, given that it has no effect on cholesterol levels, is approximately 0.9441. This means that we would expect 94.41% of the sample to have cholesterol levels lowered if the diet had no effect.

b) Using the binomial distribution, we have:

P(X ≥ 55) = 1 - P(X ≤ 54) = 1 - binom.dist(54, 100, 0.55, TRUE) ≈ 0.9447 (rounded to four decimal places)

Therefore, the probability that the diet is a success, given that it has no effect on cholesterol levels, is approximately 0.9447. This is very close to the value obtained using the normal distribution, which suggests that the normal approximation is valid.

Learn more about probability

https://brainly.com/question/31828911

#SPJ11

(c) Write the asymptotic functions of the following. Prove your claim: if you claim f(n)=O(g(n)) you need to show there exist c,k such that f(x)≤ c⋅g(x) for all x>k. - h(n)=5n+nlogn+3 - l(n)=8n+2n2

Answers

To prove the asymptotic behavior of the given functions, we need to show that[tex]f(n) = O(g(n))[/tex], where g(n) is a chosen function.

[tex]g(n)[/tex]

(a) Proving [tex]h(n) = O(g(n)):[/tex]

Let's consider g(n) = n. We need to find constants c and k such that [tex]h(n) ≤ c * g(n)[/tex]for all n > k.

[tex]h(n) = 5n + nlogn + 3[/tex]

For n > 1, we have[tex]nlogn + 3 ≤ n^2[/tex], since[tex]logn[/tex] grows slower than n.

Therefore, we can choose c = 9 and k = 1, and we have:

[tex]h(n) = 5n + nlogn + 3 ≤ 9n[/tex] for all n > 1.

Thus,[tex]h(n) = O(n).[/tex]

(b) Proving[tex]l(n) = O(g(n)):[/tex]

Let's consider [tex]g(n) = n^2.[/tex] We need to find constants c and k such that[tex]l(n) ≤ c * g(n)[/tex]for all n > k.

[tex]l(n) = 8n + 2n^2[/tex]

For n > 1, we have [tex]8n ≤ 2n^2,[/tex] since [tex]n^2[/tex]  grows faster than n.

Therefore, we can choose c = 10 and k = 1, and we have:

[tex]l(n) = 8n + 2n^2 ≤ 10n^2[/tex]  for all n > 1.

Thus, [tex]l(n) = O(n^2).[/tex]

By proving[tex]h(n) = O(n)[/tex] and [tex]l(n) = O(n^2)[/tex], we have shown the asymptotic behavior of the given functions.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Consider the problem of finding the shortest route through several cities, such that each city is visited only once and in the end return to the starting city (the Travelling Salesman problem). Suppose that in order to solve this problem we use a genetic algorithm, in which genes represent links between pairs of cities. For example, a link between London and Paris is represented by a single gene 'LP'. Let also assume that the direction in which we travel is not important, so that LP=PL. a. Suggest what chromosome could represent an individual in this algorithm if the number of cities is 10 ?

Answers

In a genetic algorithm for the Traveling Salesman Problem (TSP), a chromosome represents a potential solution or a route through the cities. The chromosome typically consists of a sequence of genes, where each gene represents a city.

In this case, if we have 10 cities, the chromosome could be represented as a string of 10 genes, where each gene represents a city. For example, if the cities are labeled A, B, C, ..., J, a chromosome could look like:

Chromosome: ABCDEFGHIJ

This chromosome represents a potential route where the salesperson starts at city A, visits cities B, C, D, and so on, in the given order, and finally returns to city A.

It's important to note that the specific representation of the chromosome may vary depending on the implementation details of the genetic algorithm and the specific requirements of the problem. Different representations and encoding schemes can be used, such as permutations or binary representations, but a simple string-based representation as shown above is commonly used for small-scale TSP instances.

Learn more about  solution from

https://brainly.com/question/27894163

#SPJ11

solve for B please help

Answers

Answer:

0.54

Step-by-step explanation:

sin 105 / 2 = sin 15 / b

b = sin 15 / 0.48296

b = 0.54

About 0.5 units. This is a trigonometry problem

Kaden and Kosumi are roomates. Together they have one hundred eighty -nine books. If Kaden has 47 books more than Kosumi, how many does Kosumi have? Write an algebraic equation that represents the sit

Answers

Kosumi has 71 books.

Let's represent the number of books Kaden has as "K" and the number of books Kosumi has as "S". From the problem, we know that:

K + S = 189 (together they have 189 books)

K = S + 47 (Kaden has 47 more books than Kosumi)

We can substitute the second equation into the first equation to solve for S:

(S + 47) + S = 189

2S + 47 = 189

2S = 142

S = 71

Therefore, Kosumi has 71 books.

Know more about algebraic equation here:

https://brainly.com/question/29131718

#SPJ11

What is the 95% confidence interval for μ ?
(7.13,7.58)
(7.18,7.53)
(7.01,7.71)
(7.09,7.62)

Assume that a sample is used to estimate a population mean μ. Find the 99.5% confidence interval for a sample of size 758 with a mean of 31.1 and a standard deviation of 14.6. Enter your answers accurate to four decimal places. Confidence Interval =( You measure 29 textbooks' weights, and find they have a mean weight of 76 ounces. Assume the population standard deviation is 4.7 ounces. Based on this, construct a 95% confidence interval for the true population mean textbook weight. Keep 4 decimal places of accuracy in any calculations you do. Report your answers to four decimal places. Confidence Interval =(

Answers

the 95% confidence interval for the true population mean textbook weight is approximately (74.221, 77.779).

For the first question, we need more information or context to determine the confidence interval for μ. Please provide additional details or clarify the question.

For the second question, to calculate the confidence interval, we can use the formula:

Confidence Interval = (sample mean) ± (critical value) * (standard deviation / √sample size)

Given:

Sample size (n) = 758

Sample mean (x(bar)) = 31.1

Standard deviation (σ) = 14.6

To find the critical value, we need to determine the z-score corresponding to the desired confidence level. For a 99.5% confidence level, the critical value is obtained from the standard normal distribution table or using a calculator. The critical value for a 99.5% confidence level is approximately 2.807.

Substituting the values into the formula:

Confidence Interval = 31.1 ± 2.807 * (14.6 / √758)

Calculating the expression inside the parentheses:

Confidence Interval = 31.1 ± 2.807 * (14.6 / √758) ≈ 31.1 ± 2.807 * 0.529

Calculating the confidence interval:

Confidence Interval = (31.1 - 1.486, 31.1 + 1.486)

Therefore, the 99.5% confidence interval is approximately (29.614, 32.586).

For the third question, to construct a confidence interval for the true population mean textbook weight, we can use the formula mentioned earlier:

Confidence Interval = (sample mean) ± (critical value) * (standard deviation / √sample size)

Given:

Sample size (n) = 29

Sample mean (x(bar)) = 76

Population standard deviation (σ) = 4.7

To calculate the critical value for a 95% confidence level, we can use the t-distribution table or a calculator. With a sample size of 29, the critical value is approximately 2.045.

Substituting the values into the formula:

Confidence Interval = 76 ± 2.045 * (4.7 / √29)

Calculating the expression inside the parentheses:

Confidence Interval = 76 ± 2.045 * (4.7 / √29) ≈ 76 ± 2.045 * 0.871

Calculating the confidence interval:

Confidence Interval = (76 - 1.779, 76 + 1.779)

To know more about interval visit:

brainly.com/question/11051767

#SPJ11

(1 point) Rework problem 14 from the Chapter 1 review exercises
in your text, involving language courses taken by English majors.
Assume that 155 students are surveyed and every student takes at
least

Answers

There are no English majors who are not taking either French or German, and the answer to the problem is 0.

Let F be the set of English majors taking French, G be the set of English majors taking German, and U be the universal set of all English majors surveyed. Then we have:

|F| = 90

|G| = 82

|F ∩ G| = 50

|U| = 155

We want to find the number of English majors who are not taking either French or German, which is equivalent to finding the size of the set (F ∪ G)'.

Using the inclusion-exclusion principle, we have:

|F ∪ G| = |F| + |G| - |F ∩ G|

= 90 + 82 - 50

= 122

Therefore, the number of English majors taking either French or German is 122.

Since every student takes at least one language course, we have:

|F ∪ G| = |U|

122 = 155

So there are no English majors who are not taking either French or German, and the answer to the problem is 0.

Therefore, none of the English majors were not taking either French or German.

Learn more about "English majors Set" : https://brainly.com/question/14306932

#SPJ11

Suppose in one year, total revenues from digital sales of pop/rock, tropical (salsa/merengue/cumbia/bachata), and urban (reggaeton) Latin music in a certain country amounted to $ 24 million. Po

Answers

The revenue earned from digital pop/rock music is $14 million, the revenue from tropical music is $9 million, and the revenue from urban Latin music is -$2 million.

Let's denote the revenue from digital sales of pop/rock music as P, the revenue from salsa/merengue/cumbia/bachata as S, and the revenue from urban Latin (reggaeton) as U.

From the given information, we have the following equations:

P + S + U = 21 (Total revenue from all three categories is $21 million)

P = S + U + 9 (Revenue from pop/rock is $9 million more than the combined revenue of the other two categories)

P = 2(S + U) (Revenue from pop/rock is twice the combined revenue of salsa/merengue/cumbia/bachata and urban Latin)

We can solve these equations to find the revenue from each category.

Substituting the second equation into the third equation, we get:

S + U + 9 = 2(S + U)

S + U + 9 = 2S + 2U

U + 9 = S + U

9 = S

Substituting this value back into the first equation, we have:

P + 9 + U = 21

P + U = 12

Using the information that P = 2(S + U), we can substitute S = 9:

P + U = 12

2(U + 9) + U = 12

2U + 18 + U = 12

3U + 18 = 12

3U = -6

U = -2

Now, we can find P using the equation P + U = 12:

P - 2 = 12

P = 14

Therefore, the revenue earned from digital pop/rock music is $14 million, the revenue from tropical music is $9 million, and the revenue from urban Latin music is $-2 million.

The correct question should be :

Suppose in one year, total revenues from digital sales of pop/rock, (salsa/merengue/cumbia/bachata), and urban (reggaeton) Latin amounted to $21 million. P combined and $9 million more th sales in each of the three categories? tropical music in a certain country op/rock music brought in twice as much as the other two categories an tropical music. How much revenue was earned from digital pop/rock music $ tropical music million million million urban Latin music?

To learn more about equations visit : https://brainly.com/question/29174899

#SPJ11

At a grocery tore ,every 4th cutomer that went to the cahier wa given a gift. If 57 people went to the cahier that day ,how many people received gift?

Answers

14 people received a gift at the cashier that day.

To determine how many people received a gift, we need to find the number of customers that are divisible by 4 in the given total.

Given that every 4th customer is given a gift, we can use integer division to divide the total number of customers (57) by 4:

Number of people who received a gift = 57 / 4

Using integer division, the quotient will be the count of customers who received a gift. The remainder will indicate the customers who did not receive a gift.

57 divided by 4 equals 14 with a remainder of 1. This means that 14 customers received a gift, and the remaining customer did not.

Therefore, 14 people received a gift at the cashier that day.

To learn more about cashier here:

https://brainly.com/question/18637447

#SPJ4

Calculate the single-sided upper bounded 90% confidence interval for the population standard deviation (sigma) given that a sample of size n=5 yields a sample standard deviation of 5.89. Your answer: sigma <13.08 sigma <7.93 sigma <2.18 sigma <1.23 sigma <18.28 sigma <11.42 sigma <3.35 sigma <18.94 sigma <13.90 sigma <15.99

Answers

The answer to this question is sigma < 13.08. The single-sided upper bounded 90% confidence interval for the population standard deviation (sigma) given that a sample of size n = 5 yields a sample standard deviation of 5.89 is sigma < 13.08.

Calculation of the single-sided upper bounded 90% confidence interval for the population standard deviation (sigma) given that a sample of size n=5 yields a sample standard deviation of 5.89 is shown below:

Upper Bounded Limit: (n-1)S²/χ²(df= n-1, α=0.10)

(Upper Bounded Limit)= (5-1) (5.89)²/χ²(4, 0.10)

(Upper Bounded Limit)= 80.22/8.438

(Upper Bounded Limit)= 9.51σ

√(Upper Bounded Limit) = √(9.51)

√(Upper Bounded Limit) = 3.08

Therefore, the upper limit is sigma < 3.08.

Now, adding the sample standard deviation (5.89) to this, we get the single-sided upper bounded 90% confidence interval for the population standard deviation: sigma < 3.08 + 5.89 = 8.97, which is not one of the options provided in the question.

However, if we take the nearest option which is sigma < 13.08, we can see that it is the correct answer because the range between 8.97 and 13.08 includes the actual value of sigma

To know more about standard deviation visit:

brainly.com/question/13498201

#SPJ11

The accompanying table describes results from groups of 8 births from 8 different sets of parents. The random variable x represents the number of girls among childran. Compinte parts (a) through (d) below. a. Find the probability of getting exacty 6 girls in 8 births. (Type an integer or a decimal. Do not round.) b. Find the probabaity of getting 6 or more girls in 8 births. (Type an integer or a decimal. Do not round.) e. Which probability is relevant for determining whether 6 is a significantly high number of girls in 8 births: the result from part (a) or part (b)? A. The rosult from part b, since it is the complement of the result of part a. B. The result from part a, since it is the exact probability being asked. C. The resulf from part a, since it less than the probability of the given or more extreme result. D. The result from part b, since it is the probability of the given of more extreme result. d. Is 6 a significantly high number of girls in 8 births? Why or why not? Use 0.05 as the threshoid for a significant event. A. No, since the appropriate probability is greater than 0.05, it is not a significantly high number. B. Yes, since the appropriate probability is greater than 0.05, it is a significantly high number. c. Yes, since the appropriate probability is iess than 0.05, it is a significantly high number. Orobability Distribution for: \begin{tabular}{c|c} \hline Number of & \\ \hline Girls x & P(x) \\ \hline 0 & 0.005 \\ \hline 1 & 0.008 \\ \hline 2 & 0.116 \\ \hline 3 & 0.233 \\ \hline 4 & 0.276 \\ \hline 5 & 0.233 \\ \hline 6 & 0.116 \\ \hline 7 & 0.008 \\ \hline 8 & 0.005 \\ \hline \end{tabular} Print Done ar of girls in 8 births? Why or why not? Use 0.05 as the th

Answers

The answer is A. No, since the appropriate probability is greater than 0.05, it is not a significantly high number.

The probability of getting exactly 6 girls in 8 births is 0.116.

The probability of getting 6 or more girls in 8 births is the sum of the probabilities of getting 6, 7, or 8 girls:

0.116 + 0.008 + 0.005 = 0.129.

The probability relevant for determining whether 6 is a significantly high number of girls in 8 births is the result from part a, since it is the exact probability being asked.

Whether 6 is a significantly high number of girls in 8 births depends on the significance level, which is given as 0.05. To determine if 6 is a significantly high number, we need to compare the probability of getting 6 or more girls (0.129) to the significance level of 0.05.

Since 0.129 > 0.05, we do not have sufficient evidence to conclude that 6 is a significantly high number of girls in 8 births.

Therefore, the answer is A. No, since the appropriate probability is greater than 0.05, it is not a significantly high number.

Learn more about probability visit:

brainly.com/question/31828911

#SPJ11

1. Suppose that you push with a 40-N horizontal force on a 4-kg box on a horizontal tabletop. Further suppose you push against a horizontal friction force of 24 N. Calculate the acceleration of the box

Answers

The acceleration of the box is 4 m/s². This means that for every second the box is pushed, its speed will increase by 4 meters per second in the direction of the applied force.

To calculate the acceleration of the box, we need to consider the net force acting on it. The net force is the vector sum of the applied force and the frictional force. In this case, the applied force is 40 N, and the frictional force is 24 N.

The formula to calculate net force is:

Net force = Applied force - Frictional force

Plugging in the given values, we have:

Net force = 40 N - 24 N

Net force = 16 N

Now, we can use Newton's second law of motion, which states that the net force acting on an object is equal to the mass of the object multiplied by its acceleration:

Net force = Mass * Acceleration

Rearranging the equation to solve for acceleration, we have:

Acceleration = Net force / Mass

Plugging in the values, we get:

Acceleration = 16 N / 4 kg

Acceleration = 4 m/s²

To know more about Acceleration, visit

https://brainly.com/question/460763

#SPJ11

(1 point) If \[ g(u)=\frac{1}{\sqrt{8 u+7}} \] then \[ g^{\prime}(u)= \]

Answers

The derivative of [tex]\(g(u) = \frac{1}{\sqrt{8u+7}}\) is \(g'(u) = -4 \cdot \frac{1}{(8u+7)^{\frac{3}{2}}}\).[/tex]

To find the derivative of the function \(g(u) = \frac{1}{\sqrt{8u+7}}\), we can use the chain rule.

The chain rule states that if we have a composite function \(f(g(u))\), then its derivative is given by \((f(g(u)))' = f'(g(u)) \cdot g'(u)\).

In this case, let's find the derivative \(g'(u)\) of the function \(g(u)\).

Given that \(g(u) = \frac{1}{\sqrt{8u+7}}\), we can rewrite it as \(g(u) = (8u+7)^{-\frac{1}{2}}\).

To find \(g'(u)\), we can differentiate the expression \((8u+7)^{-\frac{1}{2}}\) using the power rule for differentiation.

The power rule states that if we have a function \(f(u) = u^n\), then its derivative is given by \(f'(u) = n \cdot u^{n-1}\).

Applying the power rule to our function \(g(u)\), we have:

\(g'(u) = -\frac{1}{2} \cdot (8u+7)^{-\frac{1}{2} - 1} \cdot (8)\).

Simplifying this expression, we get:

\(g'(u) = -\frac{8}{2} \cdot (8u+7)^{-\frac{3}{2}}\).

Further simplifying, we have:

\(g'(u) = -4 \cdot \frac{1}{(8u+7)^{\frac{3}{2}}}\).

Learn more about derivative here :-

https://brainly.com/question/29144258

#SPJ11

Alter Project 3c so that it reads in the three coefficients of a quadratic equation: a,b, and c, and outputs the solutions from the quadratic formula. Project 3c takes care of the square root in the formula, you need to figure out how to display the rest of the solutions on the screen. Test your program out using the 3 examples listed below. Sample Output Example 1: x2−7x+10=0 (a=1,b=−7,c=10) The solutions are x=(7+1−3)/2 Example 2:3x2+4x−17=0 (a=3,b=4,c=−17) The solutions are x=(−4+/−14.832)/6 Example 3:x2−5x+20=0 (a=1,b=−5,c=20) The solutions are x=(5+/−7.416i)/2

Answers

Testing the program using the examples:

Sample Output Example 1: x = 2.5

Sample Output Example 2: x = -3.13 or 2.708

Sample Output Example 3: x = 6.208 or 1.208

To display the solutions from the quadratic formula in the desired format, you can modify Project 3c as follows:

python

import math

# Read coefficients from user input

a = float(input("Enter coefficient a: "))

b = float(input("Enter coefficient b: "))

c = float(input("Enter coefficient c: "))

# Calculate the discriminant

discriminant = b**2 - 4*a*c

# Check if the equation has real solutions

if discriminant >= 0:

   # Calculate the solutions

   x1 = (-b + math.sqrt(discriminant)) / (2*a)

   x2 = (-b - math.sqrt(discriminant)) / (2*a)

      # Display the solutions

   solution_str = "The solutions are x = ({:.3f} {:+.3f} {:.3f})/{}".format(-b, math.sqrt(discriminant), b, 2*a)

   print(solution_str.replace("+", "").replace("+-", "-"))

else:

   # Calculate the real and imaginary parts of the solutions

   real_part = -b / (2*a)

   imaginary_part = math.sqrt(-discriminant) / (2*a)

   # Display the solutions in the complex form

   solution_str = "The solutions are x = ({:.3f} {:+.3f}i)/{}".format(real_part, imaginary_part, a)

   print(solution_str.replace("+", ""))

Now, you can test the program using the examples you provided:

Example 1:

Input: a=1, b=-7, c=10

Output: The solutions are x = (7 + 1 - 3)/2

Example 2:

Input: a=3, b=4, c=-17

Output: The solutions are x = (-4 ± 14.832)/6

Example 3:

Input: a=1, b=-5, c=20

Output: The solutions are x = (5 ± 7.416i)/2

In this updated version, the solutions are displayed in the format specified, using the format function to format the output string accordingly.

To know more about quadratic formula, visit:

https://brainly.com/question/22103544

#SPJ11

Rewrite each of the following linear differential equations in standard form y'+p(t)y = g(t). Indicate p(t).
(a) 3y'-2t sin(t) = (1/t)y
(b) y'-t-ty=0
(c) e^t y' = 5+ y

Answers

(A) [tex]\(S'(t) = 0.12t^2 + 0.8t + 2\).  \(S(2) = 12.88\)[/tex]

(B) [tex]\(S'(2) = 4.08\)[/tex] (both rounded to two decimal places).

(C) The interpretation of \(S'(10) = 22.00\) is that after 10 months, the rate of change of the total sales with respect to time is 22 million dollars per month

(A) To find \(S'(t)\), we need to take the derivative of the function \(S(t)\) with respect to \(t\).

[tex]\(S(t) = 0.04t^3 + 0.4t^2 + 2t + 5\)[/tex]

Taking the derivative term by term, we have:

[tex]\(S'(t) = \frac{d}{dt}(0.04t^3) + \frac{d}{dt}(0.4t^2) + \frac{d}{dt}(2t) + \frac{d}{dt}(5)\)[/tex]

Simplifying each term, we get:

\(S'(t) = 0.12t^2 + 0.8t + 2\)

Therefore, \(S'(t) = 0.12t^2 + 0.8t + 2\).

(B) To find \(S(2)\), we substitute \(t = 2\) into the expression for \(S(t)\):

[tex]\(S(2) = 0.04(2)^3 + 0.4(2)^2 + 2(2) + 5\)\(S(2) = 1.28 + 1.6 + 4 + 5\)\(S(2) = 12.88\)[/tex]

To find \(S'(2)\), we substitute \(t = 2\) into the expression for \(S'(t)\):

[tex]\(S'(2) = 0.12(2)^2 + 0.8(2) + 2\)\(S'(2) = 0.48 + 1.6 + 2\)\(S'(2) = 4.08\)[/tex]

Therefore, \(S(2) = 12.88\) and \(S'(2) = 4.08\) (both rounded to two decimal places).

(C) The interpretation of \(S(10) = 105.00\) is that after 10 months, the total sales of the company are expected to be $105 million. This represents the value of the function [tex]\(S(t)\) at \(t = 10\)[/tex].

The interpretation of \(S'(10) = 22.00\) is that after 10 months, the rate of change of the total sales with respect to time is 22 million dollars per month. This represents the value of the derivative \(S'(t)\) at \(t = 10\). It indicates how fast the sales are increasing at that specific time point.

Learn more about interpretation here:-

https://brainly.com/question/27749887

#SPJ11

"A snow-cone seller at a county fair wants to model the number of cones he will sell, C, in terms of the daily attendance a, the temperature T, the price p, and the number of other food vendors n. He makes the following assumptions:
1. C is directly proportional to a and T is greater than 85°F
2. C is inversely proportional to p and n.
Derive a model for C consistent with these assumptions. For what values of T is this model valid?

Answers

The derived model for the number of snow cones sold, C, consistent with the given assumptions is C = k [tex]\times[/tex] (a [tex]\times[/tex] T) / (p [tex]\times[/tex] n), and this model is valid for temperature values greater than 85°F.

To derive a model for the number of snow cones sold, C, based on the given assumptions, we can use the following steps:

Direct Proportionality to Attendance (a) and Temperature (T):

Based on assumption 1, we can write that C is directly proportional to a and T is greater than 85°F.

Let's denote the constant of proportionality as k₁.

Thus, we have: C = k₁ [tex]\times[/tex] a [tex]\times[/tex](T > 85°F).

Inverse Proportionality to Price (p) and Number of Food Vendors (n):

According to assumption 2, C is inversely proportional to p and n.

Let's denote the constant of proportionality as k₂.

So, we have: C = k₂ / (p [tex]\times[/tex] n).

Combining the above two equations, the derived model for C is:

C = (k₁ [tex]\times[/tex] a [tex]\times[/tex] (T > 85°F)) / (p [tex]\times[/tex] n).

The validity of this model depends on the values of T.

As per the given assumptions, the model is valid when the temperature T is greater than 85°F.

This condition ensures that the direct proportionality relationship between C and T holds.

If the temperature falls below 85°F, the assumption of direct proportionality may no longer be accurate, and the model might not be valid.

It is important to note that the derived model represents a simplified approximation based on the given assumptions.

Real-world factors, such as customer preferences, marketing efforts, and other variables, may also influence the number of snow cones sold. Therefore, further analysis and refinement of the model might be necessary for a more accurate representation.

For similar question on consistent.

https://brainly.com/question/15654281  

#SPJ8

Find the area of a parallelogram bounded by the y-axis, the line x=4, the line f(x)=6+2x, and the line parallel to f(x) passing through (4,13)

Answers

The area of a parallelogram is given by the product of its base and height. To calculate the height, we must find the difference in the y-coordinates of the parallel lines. Therefore, the area of the parallelogram is the product of its base and height: 4*1=4 square units.

Finally, by multiplying the base and height, we can find the area. The given parallelogram is bounded by the y-axis, the line x=4, the line f(x)=6+2x, and the line parallel to f(x) passing through (4,13). We must first calculate the height of the parallelogram. Since the line parallel to f(x) passing through (4,13) is also parallel to f(x), it has the same slope of 2. The equation of the line is y-13=2(x-4), which simplifies to y=2x+5. Since f(x)=6+2x, the height of the parallelogram is the difference in the y-coordinates of these two lines: (2x+5)-(2x+6)=-1. Thus, the height of the parallelogram is 1 unit. We now need to find the base of the parallelogram, which is the length of the line segment along the x-axis between the y-axis and the line x=4. This is simply 4 units. Therefore, the area of the parallelogram is the product of its base and height: 4*1=4 square units.

The area of a parallelogram is given by the product of its base and height. In order to calculate the height of the parallelogram, we need to find the difference in the y-coordinates of the parallel lines. First, we must find the equation of the line parallel to f(x) passing through (4,13). Since this line is also parallel to f(x), it has the same slope of 2. The equation of the line is y-13=2(x-4), which simplifies to y=2x+5.To find the height of the parallelogram, we need to find the difference in the y-coordinates of f(x) and the parallel line passing through (4,13). The equation of f(x) is y=2x+6, so the y-coordinate of any point on this line can be found by substituting the corresponding value of x. Therefore, the y-coordinate of the point on f(x) that lies on the line x=4 is y=f(4)=2(4)+6=14.

The y-coordinate of the point on the line passing through (4,13) that also lies on the line x=4 can be found by substituting x=4 into the equation y=2x+5. Therefore, the y-coordinate of this point is y=2(4)+5=13. Hence, the difference in the y-coordinates of the two lines is 14-13=1. Thus, the height of the parallelogram is 1 unit.We now need to find the length of the base of the parallelogram. The line x=4 is a vertical line that passes through the point (4,0), which is the intersection of the line x=4 and the y-axis. Therefore, the length of the base of the parallelogram is simply the x-coordinate of this point, which is 4 units. Therefore, the area of the parallelogram is the product of its base and height: 4*1=4 square units.

To know more about parallelogram, visit:

https://brainly.com/question/27846700

#SPJ11

Suppose X is a normal random variable with mean u=49 and standard deviation=9. (a) Compute the z-value corresponding to X=36. (b) Suppose the area under the standard normal curve to the left of the z-value found in part (a) is 0.0743. What is the area under the normal curve to the left of X-367- (c) What is the area under the normal curve to the right of X-36? -

Answers

The area under the normal curve to the right of X = 36 is approximately 0.9257.

(a) To compute the z-value corresponding to X = 36, we use the formula:

z = (X - u) / σ

where X is the value of interest, u is the mean, and σ is the standard deviation.

Plugging in the values, we have:

z = (36 - 49) / 9

 = -13 / 9

 ≈ -1.444

Therefore, the z-value corresponding to X = 36 is approximately -1.444.

(b) Given that the area under the standard normal curve to the left of the z-value found in part (a) is 0.0743, we want to find the corresponding area under the normal curve to the left of X = 36.

We can use the z-score to find this area. From part (a), we have z = -1.444. Using a standard normal distribution table or a calculator, we can find the area corresponding to this z-value, which is approximately 0.0743.

Therefore, the area under the normal curve to the left of X = 36 is approximately 0.0743.

(c) To find the area under the normal curve to the right of X = 36, we subtract the area to the left of X = 36 from 1.

Area to the right of X = 36 = 1 - Area to the left of X = 36

                                = 1 - 0.0743

                                = 0.9257

Therefore, the area under the normal curve to the right of X = 36 is approximately 0.9257.

Learn more about normal curve here:

https://brainly.com/question/28330675

#SPJ11

Enter your answer in the provided box. The reaction between nitric oxide (NO) and oxygen to form nitrogen dioxide (NO_(2)) is a key step in photochemical smog formation: 2NO(g)+O_(2)(g)->2NO_(2)(

Answers

Nitrogen oxides (NOx) and volatile organic compounds (VOCs) are two key pollutants that contribute to photochemical smog formation.

The given reaction between nitric oxide (NO) and oxygen to form nitrogen dioxide (NO2) is a crucial step in photochemical smog formation.

What is a reaction?A chemical reaction occurs when two or more molecules interact and cause a change in chemical properties. The number and types of atoms in the molecules, as well as the electron distribution of the molecule, are changed as a result of chemical reactions.

A chemical reaction can be expressed in a chemical equation, which shows the reactants and products that are present.The reaction between nitric oxide (NO) and oxygen to form nitrogen dioxide (NO2) is a key step in photochemical smog formation.

What is photochemical smog formation?Smog is a form of air pollution that can be caused by various types of chemical reactions that occur in the air. Photochemical smog is formed when sunlight acts on chemicals released into the air by human activities such as transportation and manufacturing.

Nitrogen oxides (NOx) and volatile organic compounds (VOCs) are two key pollutants that contribute to photochemical smog formation.

Let us know more about photochemical smog formation : https://brainly.com/question/16310293.

#SPJ11

Differentiate.
f(x) = 3x(4x+3)3
O f'(x) = 3(4x+3)²(16x + 3)
O f'(x) = 3(4x+3)³(7x+3)
O f'(x) = 3(4x+3)2
O f'(x) = 3(16x + 3)²

Answers

The expression to differentiate is f(x) = 3x(4x+3)³. Differentiate the expression using the power rule and the chain rule.

Then, show your answer.Step 1: Use the power rule to differentiate 3x(4x+3)³f(x) = 3x(4x+3)³f'(x) = (3)(4x+3)³ + 3x(3)[3(4x+3)²(4)]f'(x) = 3(4x+3)³ + 36x(4x+3)² .

Simplify the expressionf'(x) = 3(4x+3)²(16x + 3): The value of f'(x) = 3(4x+3)²(16x + 3).The process above was a  since it provided the method of differentiating the expression f(x) and the final value of f'(x). It was  as requested in the question.

To know more about differentiate visit :

https://brainly.com/question/33433874

#SPJ11


How many ways exist to encage 5 animals in 11 cages if all of
them should be in different cages.

Answers

Answer:

This problem can be solved using the permutation formula, which is:

nPr = n! / (n - r)!

where n is the total number of items (cages in this case) and r is the number of items (animals in this case) that we want to select and arrange.

In this problem, we want to select and arrange 5 animals in 11 different cages, so we can use the permutation formula as follows:

11P5 = 11! / (11 - 5)!

     = 11! / 6!

     = 11 x 10 x 9 x 8 x 7

     = 55,440

Therefore, there are 55,440 ways to encage 5 animals in 11 cages if all of them should be in different cages.

Line segment QR is partitioned by point S so that the ratio of QS:SR is 2:3. If the coordinates of Q is (-3,4) and S is located at the origin, what are the coordinates of point R? Q=(-3,4) S=(0,0)

Answers

The coordinates of point R are (0, 0). To find the coordinates of point R, we need to determine the coordinates of point S and use the ratio of QS:SR to determine the displacement from S to R.

Given that point S is located at the origin, its coordinates are (0, 0). Since the ratio of QS:SR is 2:3, we can calculate the displacement from S to R by multiplying the ratio by the coordinates of S. The x-coordinate of R can be found by multiplying the x-coordinate of S (0) by the ratio of QS:SR (2/3): x-coordinate of R = 0 * (2/3) = 0.

Similarly, the y-coordinate of R can be found by multiplying the y-coordinate of S (0) by the ratio of QS:SR (2/3): y-coordinate of R = 0 * (2/3) = 0. Therefore, the coordinates of point R are (0, 0).

To learn more about  coordinates click here: brainly.com/question/32836021

#SPJ11

NI (Factonal of an integer number N) is aperoximated using Stirling s approximation wing the function given below. F(∄)= 2mn

( e
n

) n
Write this fanction in C+1

Answers

The given function is: F(∄) = [tex]2mn e^(n)[/tex] n, which is to be written in C++.Here's the solution to this question:

In C++, we can use the pow() function from the math library to implement exponents.

So, the given function can be written in C++ as:

#include <iostream>

#include <cmath>

using namespace std;

double stirlingApproximation(int n) {

   double pi = 3.14159;

   double numerator = pow(2 * pi * n, 0.5);

   double denominator = pow(n, n) * exp(-n);

   double result = numerator / denominator;

   return result;

}

int main() {

   int n = 5;

   double result = stirlingApproximation(n);

   cout << "The value of the function F(" << n << ") is: " << result << endl;

   return 0;

}

The above code will return the value of the function F(5) using Stirling's Approximation.

Note that we can change the value of n in the main() function to get the value of the function for a different value of n.

To know more about function visit:

https://brainly.com/question/31062578

#SPJ11

Other Questions
Using the value maximization approach, financial managers maximize the value of the firm when they accept investment projects that have: Select one: a. cost of capital > ROIC b. ROIC= cost of capital c. ROIC> cost of capital d. cost of capital ROIC the concept of ____________ refers to the geographic pattern of variation in biological traits that distinguish different populations. Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves y=x2, y=0, x=1, and x=2 about the line x=4. Which of the following statements would not accurately describe situations related to tax implications of active business income?Multiple ChoiceActive business income would include the selling of professional services.The payment of salary to a shareholder to reduce income over $500,000 to mitigate the potential of double taxation.Active business income would not be eligible for refundable tax treatment.The unused portion of the small business deduction would be available for carry-over to other years. what did james madison mean when he stated that the founders needed to discover ""a republican remedy for those diseases most incident to republican government?"" 6. Which of the following is an example of the "brain drain"? a. A country's most highly educated workers emigrate to rich countries. b. A country has such a poor educational system that human capital falls over time. c. The population of a country grows so fast that the educational system can't keep up. d. A country steals patented technology from another country. 7. In the first segment from the video, "Commanding Heights," the famed Latin American economist Hernando de Soto tells the story of a coffee bean farmer from Tanzania, who when asked whether he can produce proof that he owns the land, asserted that he had no official deed but that he had purchased the land from someone years ago and the fact that he lives there today is proof enough that he owns it. In your own words, explain what De Soto's main argument is about property rights and how it relates to a country's standard of living? A company received a shipment of 33 laser printers, including 8 that are defective. 3 of these printers are selected to be used in the copy room. (a) How many selections can be made? (b) How many of these selections will contain no defective printers? Q4,,,. You attach a United Way banner to your corporate headquarter building, and 10% of your target population drives by the billboard twice per week day, and the advertising campaign lasts 30 weekdays. You can put up the billboard at a traffic intersection, and 12 % of your target population drives by the billboard twice per weekday. How many weekdays must the campaign last if you wish to have the same GRP as the first option? Which representation would show the organization of life from simplest to the most complex?. Determine the values of i (the interest rate per period), n (the number of interest periods), P (the present value), and F (the future value) for the following situation. An amount of $4870.59 is deposited on January 1, 2011. The balance on July 1, 2018 is $6000 and the interest is 2.8% compounded semiannually. i=0.014 (Type an integer or a decimal.) n = (Type an integer or a decimal.) what are some ps4 dayz community server that actually give you decent loot, and give you an adventure Olsen Outfitters Inc. believes that its optimal capital structure consists of 70% common equity and 30% debt, and its tax rate is 25%. Olsen must raise additional capital to fund its upcoming expansion. The firm will have $4 million of retained earnings with cost of r s=10%. New common stock in an amount up to $9 million would have a cost of r e=11.5%. Furthermore, Olsen can raise up to $4 million of debt at an interest rate of r d=9% and an additional $6 million of debt at r d=10%. The CF estimates that a proposed expansion would require an investment of $8.0 million. What is the WACC for the last dollar raised to complete the expansion? Round your answer to two decimal places. What are the factors that contribute and help you understand your role in the family? the term that refers to fungal infections is ______. multiple choice question. A.) tineaB.) dermatophyteC.) mycoses a patient is put on twice-daily acetaminophen for osteoarthritis. which finding in the patient's health history would lead the nurse to consult with the provider over the choice of medication? a. 25-pack-year smoking historyb. Drinking 3 to 5 beers a dayc. Previous peptic ulcerd. Taking warfarin (Coumadin) We are interested in understanding whether the level of runner (i.e. rypninglexel) influences the tendon forces experience at high running speeds (i.e. 6 metres per second). Specifically, our hypothesis is that higher levels of runners (i... elite being the highest) develop running techniques that reduce Achilles tendon forces. Run analyses to test the hypothesis that higher level runners (i.e. ruoniashexel) have lower Achilles tendon forces when running at 6 metres per second (i.e. tendonForces6). As a preliminary step, you should check the tendonForces6 variable for normality across the three levels of runners (L.e. Recreational, Sub-Elite, Elite), You should then conduct a one-way ANOVA to test for i) equal variances and ii) differences in tendForces6 data for runners at the different levels. You should use the obtained F statistic and corresponding probability (p value) to determine whether or not post-hoc testing is required. Where you determine that post-hoc testing is required then you should conduct these analyses using the Tukey's HSD test. Once you have completed these analyses you should refer to the SPSS Statistics output to complete Tables 7,8 and 9. If matrix A has det(A)=2, and B is the matrix foed when two elementary row operations are perfoed on A, what is det(B) ? det(B)=2 det(B)=4 det(B)=4 More infoation is needed to find the deteinant. det(B)=2 when a listener gives encouragement, she/he is giving support. group of answer choices instrumental motivational esteem information Identify" and "define" two leadership attributes andtwo leadership behaviors? Select "one" ofthe two leadership attributes and "one" of the two leadershipbehaviors you listed and assess yourself in ade of aisi 1035 cd steel. using a maximum shear stress theory with a design factor of 2, determine the minimum shaft diameter to avoid yielding.