RHETORICAL ANALYSIS: How does Robinson use language in effective and engaging ways to develop his argument to his younger self-and, in the process, to young readers in the present? In your response, consider such techniques as metaphor, repetition, and sentence structure.

Answers

Answer 1

In "The Argonauts," Robinson effectively utilizes language techniques such as metaphor, repetition, and sentence structure to develop his argument to his younger self and engage young readers in the present. Through these techniques, Robinson creates a powerful and relatable narrative that resonates with his audience.

Robinson employs metaphors to convey complex ideas in a compelling and accessible manner. For instance, he compares his struggle with identity and gender to the mythical journey of the Argonauts, making it relatable and captivating for young readers. This metaphorical language enables readers to grasp the profound emotions and challenges he faced during his own personal journey.

Repetition is another technique Robinson employs to reinforce key ideas and create a rhythmic and memorable reading experience. By repeating certain phrases or concepts, he emphasizes their significance and invites readers to reflect on them. This repetition serves to engage young readers by encouraging them to contemplate their own experiences and perspectives.

Furthermore, Robinson carefully structures his sentences to create a sense of rhythm and flow, enhancing the overall readability and impact of his argument. Short, concise sentences create moments of clarity and emphasis, while longer, more descriptive sentences evoke a contemplative and introspective tone. This varied sentence structure adds depth and nuance to his narrative, captivating young readers and keeping them engaged throughout.

In conclusion, through the effective use of metaphor, repetition, and sentence structure, Robinson engages and captivates young readers, inviting them to reflect on their own identities and experiences. His language choices not only develop his argument to his younger self but also establish a connection with present-day young readers, making his work both impactful and relatable.

for such more questions on techniques

https://brainly.com/question/12601776

#SPJ8


Related Questions

Question 1 of 10
What is the slope of the line plotted below?
B. 2
5
10
C. 1
O A. 0.5
о
9
OD. -0.5
5

Answers

The answer is B. 2


Explanation

Two blocks, M1 and M2, are connected by a massless string that passes over a massless pulley as shown in the figure. M2, which has a mass of 19.0 kg,
rests on a long ramp of angle theta=25.0∘.
Ignore friction, and let up the ramp define the positive direction.
If the actual mass of M1 is 5.00 kg and the system is allowed to move, what is the acceleration of the two blocks?
What distance does block M2 move in 2.00 s?

Answers

The acceleration of the two blocks is[tex]2.14 m/s^{2[/tex]} and the distance does block M2 move in 2.00 s is 4.27 m.

Now we need to find the acceleration of the two blocks and the distance does block M2 move in 2.00 s.

We know that: mass of M1, m1 = 5.00 kg mass of M2, m2 = 19.0 kgθ = 25.0°Taking upward direction as positive for block M1 and downwards as positive for block M2.

Therefore, we can write the following equation of motion for the two blocks:

For M2: m2g - T = m2a ...(1)

For M1: T - m1g = m1a ...(2)

We can see from the figure that M2 is on an inclined plane making an angle θ with the horizontal.

We can resolve the weight of M2 into two components:

Perpendicular to the plane = m2gcosθParallel to the plane = m2gsinθ

The component parallel to the plane will tend to make the block move downwards.

Therefore, the effective weight will be:

mg = m2gsinθ ...(3)

From equation (1) we can write:

T = m2g - m2a ...(4)

Substituting equation (4) in equation (2), we get:

m2g - m2a - m1g = m1a ...(5)

On solving equation (5), we get the acceleration as:

a = g(m2sinθ - m1) / (m1 + m2)

On substituting the given values, we get:

[tex]a = 2.14 m/s^{2}[/tex]

The distance moved by M2 in 2 seconds can be found out using the formula:[tex]s = ut + \frac{1}{2} at^{2}[/tex]

Here, initial velocity, u = 0m/s Time, t = 2s Acceleration, [tex]a = 2.14 m/s^{2}[/tex]

On substituting these values, we get the distance travelled by M2 as: s = 4.27 m

Therefore, the acceleration of the two blocks is [tex]2.14 m/s^{2}[/tex]. And the distance does block M2 move in 2.00 s is 4.27 m.

For more questions on acceleration

https://brainly.com/question/460763

#SPJ8

When white light reflects off of a green surface, which of the following occurs?

1. All wavelengths of light are absorbed.
2. Only the green wavelengths of light are absorbed.
3. Only the green wavelengths of light are reflected.
4. All wavelengths of light are reflected.

Answers

When white light reflects off of a green surface, only the green wavelengths of light are reflected (option d).

1. White light is a combination of all visible wavelengths of light, including red, orange, yellow, green, blue, indigo, and violet.

2. When white light hits a green surface, the surface absorbs some wavelengths of light and reflects others.

3. The color we perceive as "green" is the result of the green wavelengths of light being reflected by the surface.

4. In this case, the green surface absorbs all the wavelengths of light except for the green wavelengths, which are reflected back.

5. As a result, our eyes detect the reflected green light and interpret it as the color green.

6. This phenomenon occurs because the green surface selectively absorbs and reflects different wavelengths of light based on its molecular structure and the interactions between light and matter.

7. The absorption and reflection of specific wavelengths of light give objects their perceived color.

8. Therefore, when white light reflects off of a green surface, only the green wavelengths of light are reflected, while the other wavelengths are absorbed by the surface.

For more such questions on light, click on:

https://brainly.com/question/10728818

#SPJ8

deduce an expression, in terms of m, c, and V, for the contribution of P to the pressure exerted on W. Refer to appropriate Newton’s laws of motion.

Answers

The expression for the contribution of P to the pressure exerted on W is P = mV/(c^2t), derived using Newton's laws of motion and the definition of pressure.

In order to deduce an expression, in terms of m, c, and V, for the contribution of P to the pressure exerted on W, we can use the appropriate Newton’s laws of motion. Specifically, we can use the equation F = ma, where F represents force, m represents mass, and a represents acceleration.We know that pressure (P) is defined as force per unit area, or P = F/A. Rearranging this equation, we can solve for force: F = PA.Substituting this into the equation F = ma, we get PA = ma. Rearranging this equation, we can solve for pressure in terms of mass and acceleration: P = ma/A. Finally, we know that acceleration can be expressed in terms of velocity (V) and time (t): a = V/t.Substituting this into our equation for pressure, we get P = mV/(At). Since c represents the speed of sound, we can express A as [tex]A = c^2[/tex]. Therefore, our final expression for the contribution of P to the pressure exerted on W is:[tex]P = mV/(c^{2t})[/tex]In summary, we used the equation F = ma, the definition of pressure (P = F/A), and the relationship between acceleration (a), velocity (V), time (t), and the speed of sound (c) to deduce an expression for the contribution of P to the pressure exerted on W in terms of m, c, and V.

For more questions on pressure

https://brainly.com/question/28012687

#SPJ8

The obliquity of the rotation of Uranus is over 90 degrees. Compared to the plane of the solar system, it rotates on its "side", unlike any other planet. It is surmised that this angle of rotation was caused by:

Answers

The impact of a large body early in the history of the solar system.

WHOEVER ANSWERS IS THE BRAINLIEST!!! PLS HELP!!

Answers

Based on the information, we can infer that the temperature on the west and east coasts of the United States is higher than in the central part at latitude 35° North.

What do we see in the image?

In the image you can see the map of the United States and two latitudinal lines of 35° and 45° North. Additionally we see the different temperatures that exist in various cities or locations in the United States.

Based on this information, we can infer that the temperatures on the east and west coasts are higher than the temperatures recorded in the central part. For example, at 35° latitude, the coasts register temperatures of more than 60°F while the central zone registers lower temperatures between 36 and 59°F.

Learn more about temperature in: https://brainly.com/question/7510619

#SPJ1

Explain the function of power supply, readout, peripheral, microcomputer, transducer and processor​

Answers

The function of the power supply is to provide electrical energy to the device or system that needs it. The power supply converts the incoming voltage from the power source into a form that is usable by the device, such as DC voltage.

The readout is a device or component that displays data or information to the user. The readout could be a simple LED display or a complex graphical display.

A peripheral is a device or component that connects to a computer or other electronic device to provide additional functionality. Examples of peripherals include printers, scanners, and external hard drives.

A microcomputer is a type of computer that is designed to fit on a single microchip. Microcomputers are found in a wide range of devices, including smart phones, tablets, and embedded systems.

A transducer is a device that converts one form of energy to another. In electronics, transducers are commonly used to convert electrical energy into mechanical energy, or vice versa.

The processor is the central component of a computer or electronic device. The processor is responsible for executing instructions and controlling the other components of the system. The performance and capabilities of a device are largely determined by the speed and power of the processor.

Which statement best describes the refraction of light as it moves from air to glass?

A. Light bends due to the difference in the speed of light in air and glass.

B. Although the light bends, its speed remains the same as before.

C. Although the light changes speed, it continues in the same direction as before.

D. Light undergoes diffraction due to the difference in the speed of light in air and glass.

Answers

A. Light bends due to the difference in the speed of light in air and glass.

Look at this graphic organizer of requirements to apply to become an astronaut.
Requirements for Astronauts
What does the graphic organizer most suggest about the job of an astronaut?
It is technical and potentially tedious.
It is detailed and potentially exhausting.
It is confidential and potentially exciting.
○ It is complex, demanding, and involves flight.
Save and Exit
Next

Answers

The graphic organizer suggests that the job of an astronaut is complex, demanding, and involves flight.

This conclusion can be drawn by examining the nature of the requirements listed in the graphic organizer. Firstly, the requirements listed in the organizer are numerous and encompass various aspects. They include educational qualifications, such as having a bachelor's degree in a relevant field, as well as specific experience, like piloting an aircraft.

These requirements highlight the complexity of the job and indicate that astronauts need to possess a diverse set of skills and knowledge. Additionally, the requirements for physical fitness and health demonstrate the demanding nature of the job.

Astronauts are expected to undergo rigorous physical training to ensure they can handle the physical stresses associated with space travel and the conditions they will encounter in space. This indicates that the job can be physically exhausting and requires individuals to be in excellent health.

Lastly, the inclusion of flight-related requirements, such as the need to pass a long-duration spaceflight physical and participate in aircraft flights, implies that the job of an astronaut involves actual flight experiences. This indicates that astronauts are directly involved in piloting spacecraft and are expected to have practical experience in flying.

know more about astronaut here:

https://brainly.com/question/30733605

#SPJ8

7. Name the type of mirror used:-
(i) as a reflector in search light (iii) by the dentist
(ii) as side view mirror in vehicles. (iv) as a shaving mirror

Answers

Answer:

1. Concave mirror

2. Convex mirror

3. Concave mirror

4. Concave mirror

Explanation:

Concave mirror is placed near on an object it displays a virtual image

.An electron of charge 1.6 x 10-19is situated in a uniform electric filed strength of 120 vm-1 Calculate the force acting on it​

Answers

The force acting on the electron is 1.92 x 10^-17 N.

The problem states that an electron of charge 1.6 x 10^-19 is located in a uniform electric field of 120 Vm^-1, and it asks us to determine the force acting on it.

We can use Coulomb's law, which states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them. If the charges are of opposite signs, the force is attractive, while if the charges are of the same sign, the force is repulsive.

The formula for Coulomb's law is F = kq1q2/r^2, where F is the force between the charges, k is Coulomb's constant, q1 and q2 are the magnitudes of the charges, and r is the distance between them.

Since the electron has a charge of 1.6 x 10^-19 C, and the electric field strength is 120 Vm^-1, we can use the equation F = qE to find the force acting on it.

F = qE = (1.6 x 10^-19 C)(120 Vm^-1) = 1.92 x 10^-17 N.

Therefore, the force acting on the electron is 1.92 x 10^-17 N.

For more such questions on force, click on:

https://brainly.com/question/12785175

#SPJ8

A ball is thrown vertically upward with a speed of 15.0 m/s. Find a - How high does it rise? in meters, find b - How long does it take to reach its highest point? in seconds, find c - How long does the ball take to hit the ground after it reaches its highest point? in seconds, find d - What is its velocity when it returns to the level from which it started? in m/s.

Answers

Given that the initial velocity at which the ball is thrown vertically upward is 15m/s. Let us also assume that the value of acceleration due to gravity (g) = 9.8m/s² and in this case, the value will be -9.8m/s² as the ball is moving against gravity.

a) To calculate how high the ball rises, we can use the kinematic equation:

v² = u² + 2gs......(i)

where v ⇒ final velocity

u ⇒ initial velocity

g ⇒ acceleration and,

s ⇒ displacement (the height)

The final velocity will be 0 when the ball reaches its maximum height.

Substituting the values in equation (i), we get

0² = 15² + (2*-9.8*s)

0 = 225 - 19.6s

Thus, s = 225/19.6 = 11.48 m.

Therefore, the ball rises approximately 11.48 meters.

b) To find the time taken to reach the highest point, we can use the kinematic equation,

v = u + gt......(ii)

where t = time

Substituting the values in equation (ii)

0 = 15 - 9.8*t

t = -15/ -9.8 = 1.53 seconds

Thus, the time taken to reach the highest point = 1.53 seconds.

c) To find the time taken for the ball to hit the ground after it reaches its highest point, we can use the equation,

s = ut +1/2gt².....(iii)

As the ball is moving downwards, the initial velocity, u will be 0m/s.

Thus, substituting the values in equation (iii), we get

11.48 = 0*t + 1/2*9.8*t²

11.48 = 4.9t²

t² = 2.34

Therefore t = 1.53 seconds

Thus, the time taken for the ball to hit the ground is 1.53 seconds.

d)  To find the velocity at which the ball returns to the level from which it started, we can use the equation

v = u+ gt.....(iv)

v = 0 + 9.8*1.53

Thus, v = 14.99 ≅ 15 m/s

Therefore, the velocity when it returns to the level from which it started is 15m/s.

Learn more about Velocity, here:

https://brainly.com/question/24824545

One strategy in a snowball fight is to throw a snowball at a high angle over level ground. Then, while your opponent is watching that snowball, you throw a second one at a low angle timed to arrive before or at the same time as the first one. Assume both snowballs are thrown with a speed of 26.5 m/s. The first one is thrown at an angle of 58.0° with respect to the horizontal. Find a - At what angle should the second snowball be thrown to arrive at the same point as the first?, find b - How many seconds later should the second snowball be thrown after the first in order for both to arrive at the same time?

Answers

The second snowball should be thrown at an angle of approximately 48.196° with respect to the horizontal to arrive at the same point as the first snowball.

the second snowball should be thrown 4.582 seconds later in order for both to arrive at the same time.

To find the angle at which the second snowball should be thrown, we can use the fact that the horizontal displacement of both snowballs must be the same.

Let's first find the horizontal and vertical components of the velocity for the first snowball. The initial speed is 26.5 m/s, and the angle is 58.0° with respect to the horizontal.

The horizontal component of the velocity for the first snowball is given by:

V1x = V1 * cos(angle1)

    = 26.5 m/s * cos(58.0°)

    = 26.5 m/s * 0.530

    = 14.045 m/s

Now, let's find the vertical component of the velocity for the first snowball:

V1y = V1 * sin(angle1)

    = 26.5 m/s * sin(58.0°)

    = 26.5 m/s * 0.848

    = 22.472 m/s

Since the vertical acceleration is the same for both snowballs (gravity), the time it takes for both to arrive at the same point is the same. Therefore, we can use the time of flight of the first snowball to calculate the vertical displacement for the second snowball.

The time of flight for the first snowball can be calculated using the vertical component of velocity and the acceleration due to gravity:

t = (2 * V1y) / g

  = (2 * 22.472 m/s) / 9.8 m/s²

  ≈ 4.582 s

Now, let's find the vertical displacement for the second snowball:

Δy = V1y * t - (0.5 * g * t²)

    = 22.472 m/s * 4.582 s - (0.5 * 9.8 m/s² * (4.582 s)²)

    ≈ 103.049 m

To find the angle at which the second snowball should be thrown, we can use the horizontal displacement and the vertical displacement:

tan(angle2) = Δy / Δx

           = 103.049 m / (2 * 14.045 m/s * t)

           = 103.049 m / (2 * 14.045 m/s * 4.582 s)

           ≈ 1.085

Now, we can find the angle2 by taking the arctan of both sides:

angle2 ≈ arctan(1.085)

angle2 ≈ 48.196°

Therefore,

To find how many seconds later the second snowball should be thrown, we can simply use the time of flight of the first snowball, which is approximately 4.582 seconds.

for more such questions on horizontal

https://brainly.com/question/25825784

#SPJ8

Particles q₁ = -66.3 μC, q2 = +108 μC, and
q3 = -43.2 μC are in a line. Particles q₁ and q2 are
separated by 0.550 m and particles q2 and q3 are
separated by 0.550 m. What is the net force on
particle q₂?
Remember: Negative forces (-F) will point Left
Positive forces (+F) will point Right

Answers

To calculate the net force on particle q₂, we need to consider the forces exerted by the other particles. The force between charged particles can be calculated using Coulomb's law:

F = (k * |q₁ * q₂|) / r²

Where:
F is the force between the particles,
k is the electrostatic constant (approximately 9 × 10^9 N m²/C²),
q₁ and q₂ are the magnitudes of the charges on the two particles, and
r is the separation between the particles.

Let's calculate the forces between q₁ and q₂ as well as q₂ and q₃ using the given values:

For q₁ and q₂:
F₁₂ = (9 × 10^9 N m²/C² * |-66.3 μC * 108 μC|) / (0.550 m)²

For q₂ and q₃:
F₂₃ = (9 × 10^9 N m²/C² * |108 μC * -43.2 μC|) / (0.550 m)²

To find the net force on q₂, we need to consider the direction of each force and add them up. Since q₁ and q₂ have opposite charges, the force F₁₂ will be negative (pointing left), and the force F₂₃ will be positive (pointing right).

Net force on q₂ = F₁₂ + F₂₃

Let's calculate the values:
Other Questions
List three things you could do or suggest to a friend to end an unhealthy relationship. solve the Propagation of Error problemshave to report the volume as V = (7.50.2) x 102 c error/uncertainty was rounded to one digit and the mean/best-value was rou (the tens place).I Now that you have had a brief refresher and some examples, it is your turn to1. Show that for f(x,y)=x+y, or = o+of2. Show that for f(x,y)=x-y, or =o+a3. Show that for f(x,y)=y-x, or = +034. Show that for f(x,y,z)=xyz,-+*+5. Show that for f(x, y) =6. Show that for f(x,y) = ?, (x+(73)*+7. Use the h's given in the first example to compute the mean, standard de error. Do this by making a table:h(cm)h-h(cm) Hoover Dam on the Colorado River is the highest dam in the United States at 221 m, with an output of 1300MW. The dam generates electricity with water taken from a depth of 151 m and an average flow rate of 620 m 3/s. (a) Calculate the power in this flow. Report your answer in Megawatts 1,000,000 W =1MW 25. Hoover Dam on the Colorado River is the highest dam in the United States at 221 m, with an output of 1300MW. The dam generates electricity with water taken from a depth of 150 m and an average flow rate of 650 m 3/s. (a) Calculate the power in this flow. (b) What is the ratio of this power to the facility's average of 680 MW? (These are the same values as the regular homework assignment) The ratio is 2.12 The ratio is 1.41 The ratio is 0.71 The ratio is 0.47 An object of mass 0.2 kg is hung from a spring whose spring constant is 80 N/m. The object is subject to a resistive force given by - b, where is its velocity in meters per second and b = 4 Nm-sec. (a) Set up differnetial equation of motion for free oscillations of the system and find the period of such oscillations. (b)The object is subjected to a sinusoidal driving force given by F(t) = Fosin(wt), where Fo = 2 N and w = 30 sec-1. In the steady state, what is the amplitude of the forced oscillation? (c) Find Q for the system - is the system underdamped, overdamped or critically damped? (d) What is the mean power input? (e) What is the energy An initially-stationary electric dipole of dipole moment=(5.001010Cm)1placed in an electric field=(2.00106N/C)I+(2.00106N/C)j. What is the magnitude of the maximum torque that the electric field exerts on the dipole in units of103Nnm?1.402.800.001.00 What is the expected return on a portfolio that will decline in value by 10% in a recession, will increase by 15% in normal times, and will increase by 20% during boom times? Each scenario has an equal likelihood of occurrence. 8.33% 3.38% 11.00% 18.33% How do the vibrational and rotational levels of heavy hydrogen (D) molecules compare with those of H molecules? A login password consists of 4 letters followed by 2 numbers.Assume that the password is not case-sensitive. (a) How manydifferent passwords are there that end with 2? (b) How manydifferent passwor Astronomers measure the distance to a particular star tobe 6.0 light-years (1 ly = distance light travels in 1 year). A spaceship travels from Earth to the vicinity of this star at steady speed, arriving in 3.50 years as measured by clocks on the spaceship. (a) How long does the trip take as measured by clocks in Earth's reference frame? (b) What distance does the spaceship travel as measured in its ownreference frame? Oliguria is a sign of a small amount of remaining kidneyfunction. When the kidneys no longer function at all, what amountof urine output would be expected? QUESTION 1: ACADEMIC WRITING - INTRODUCTIONS Read the essay introduction below and then answer the questions that follow: This essay discusses the importance of preparing for job interviews. Effective preparation allows the interviewer to find out what the organisation gains from the placement. In particular, preparation of an interview enables the interviewee's competencies and knowledge about the company to be revealed. Firstly, this essay describes effective preparation practices for interviews. Secondly, question - answering techniques and typical questions asked are discussed. The essay concludes by explaining the importance of the email follow up. 1.1. Provide the title of this essay. (2) 1.2. Explain the purpose of this essay (2) 1.3. Identify and write down the instruction word. (2) 1.4. Identify and write down the content words. (1) 1.5. Identify and write down the limitation words. (1) 1.6. Quote the key ideas for the second paragraph of the essay. (2) 1.7. Identify the type of linking words in the paragraph and give one example. (2) [12] Patients with Factor V Leiden mutations are at increased risk for deep vein thrombosis. True False Potentially unproblematic sources for embryonic stem cells include 1) miscarriages 2) fertilized embryos or aborted fetuses 3) parthenogenesis 4) blastomeres 5) a., b., and c. 6) b., c., and d. 7) a., Find the values of x, y, and z in the triangle to the right. X= 4 11 N (3x+4)0 K to (3x-4) A small company wants to deploy a new system in the aws cloud but does not have anyone with the required aws skill set to perform the deployment. which aws service can help with this? Que: (Corporate Bond Quote)Consider a Corporate Bond issued from any Country and discuss the following points in brief with the Name/figures/symbols.Issuer name: Symbol: Coupon:Maturity Date:Bond rating by the major ratings agency: High Price: Low Price: Last price: Changes: Yield %: what is the average annual rainfall in new york city Describe the role of the T helper type 2 (Th2) cell polarisationin the pathogenesis of allergic asthma?250 wordsINCLUDE reputable reference Find the general solution of the differential equation. y^(5) 8y^(4) +16y 8y +15y =0. NOTE: Use c1, c2. c3. c4, and c5 for the arbitrary constants. y(t)= ___ Imagine you had a device to use for this experiment. The device would shoot a series of 2. 0 g balls along the surface at the box, each with a velocity of 30 cm/s [E60N]. In 2. 0 s it shoots 10 successive 2. 0 balls, all of which collide and rebound off the 100g box, as with the first ball. What would be the total impulse delivered to the box by the 10 collisions?What would be the total change in momentum of the 100g box?What would be the total change in velocity of the 100g box after these 10 collisions?