reposo. Carro M(Kg) Vinicial(m/s) Vfinal (m/s) 1 0 0.522 0.37 2 0.522 0 0.38 Photogate 1 Photogate 2 [[ m2

Answers

Answer 1

The velocity of the object when it was in motion is -1.37 m/s.The negative sign indicates that the object is moving in the opposite direction, the object is decelerating.

In the given table, the values of initial velocity (vinicial) and final velocity (vfinal) of an object are given along with their mass (M) and two photogates. The photogates are the sensors that detect the presence or absence of an object passing through them. These photogates are used to measure the time taken by the object to pass through the given distance.

Using these values, we can calculate the velocity of the object for both the cases.Case 1: When the object is at restInitially, the object is at rest. Hence, the initial velocity is zero. The final velocity of the object is given as 0.522 m/s. The time taken to pass through the distance between the two photogates is given as 0.37 seconds.Using the formula for velocity, we can calculate the velocity of the object as:v = (0.522 - 0)/0.37v = 1.41 m/s

Therefore, the velocity of the object when it was at rest is 1.41 m/s.Case 2: When the object is in motionInitially, the object has a velocity of 0.522 m/s. The final velocity of the object is zero. The time taken to pass through the distance between the two photogates is given as 0.38 seconds.Using the formula for velocity, we can calculate the velocity of the object as:v = (0 - 0.522)/0.38v = -1.37 m/s.

To know more about photogates visit :

https://brainly.com/question/28202226

#SPJ11


Related Questions

Part A An RLC circuit with R=23.4 2. L=352 mH and C 42.3 uF is connected to an ac generator with an rms voltage of 24.0 V Determine the average power delivered to this circuit when the frequency of the generator is equal to the resonance frequency Express your answer using two significant figures. VoAd ? P W Submit Request Answer Part B Determine the average power delivered to this circuit when the frequency of the generator is twice the resonance frequency Express your answer using two significant figures. VO | ΑΣΦ ? P = w Submit Request Answer Part C Determine the average power delivered to this circuit when the frequency of the generator is half the resonance frequency Express your answer using two significant figures. IVO AO ? P= w Submit Request Answer

Answers

Part A: The average power delivered to the circuit when the frequency of the generator is equal to the resonance frequency is 24.7 W.

Part B: The average power delivered to the circuit when the frequency of the generator is twice the resonance frequency is 6.03 W.

Part C: The average power delivered to the circuit when the frequency of the generator is half the resonance frequency is 0.38 W.

Part A:

The average power delivered to an RLC circuit is given by the following formula:

P = I^2 R

The current in an RLC circuit can be calculated using the following formula:

I = V / Z

The impedance of an RLC circuit can be calculated using the following formula:

Z = R^2 + (2πf L)^2

The resonance frequency of an RLC circuit is given by the following formula:

f_r = 1 / (2π√LC)

Plugging in the values for R, L, and C, we get:

f_r = 1 / (2π√(352 mH)(42.3 uF)) = 3.64 kHz

When the frequency of the generator is equal to the resonance frequency, the impedance of the circuit is equal to the resistance. This means that the current in the circuit is equal to the rms voltage divided by the resistance.

Plugging in the values, we get:

I = V / R = 24.0 V / 23.4 Ω = 1.03 A

The average power delivered to the circuit is then:

P = I^2 R = (1.03 A)^2 (23.4 Ω) = 24.7 W

Part B

When the frequency of the generator is twice the resonance frequency, the impedance of the circuit is equal to 2R. This means that the current in the circuit is equal to half the rms voltage divided by the resistance.

I = V / 2R = 24.0 V / (2)(23.4 Ω) = 0.515 A

The average power delivered to the circuit is then:

P = I^2 R = (0.515 A)^2 (23.4 Ω) = 6.03 W

Part C

When the frequency of the generator is half the resonance frequency, the impedance of the circuit is equal to 4R. This means that the current in the circuit is equal to one-fourth the rms voltage divided by the resistance.

I = V / 4R = 24.0 V / (4)(23.4 Ω) = 0.129 A

The average power delivered to the circuit is then:

P = I^2 R = (0.129 A)^2 (23.4 Ω) = 0.38 W

To learn more about resonance frequency: https://brainly.com/question/28168823

#SPJ11

For an RLC series circuit, the voltage amplitude and frequency of the source are 110 V and 350 Hz, respectively. The resistance and inductance are fixed at R = 500N and L = 0.1 H. Find the average power dissipated in the resistor for the following values for the capacitance: (a) C = 130uF and (b) C = 13uF.

Answers

Answer:

a) Average power dissipated in the resistor for C = 130μF: Calculations required. b) Average power dissipated in the resistor for C = 13μF: Calculations required.

Explanation:

a) For C = 130 μF:

The angular frequency (ω) can be calculated using the formula:

ω = 2πf

Plugging in the values:

ω = 2π * 350 = 2200π rad/s

The impedance (Z) of the circuit can be determined using the formula:

Z = √(R² + (ωL - 1/(ωC))²)

Plugging in the values:

Z = √(500² + (2200π * 0.1 - 1/(2200π * 130 * 10^(-6)))²)

The average power (P) dissipated in the resistor can be calculated using the formula:

P = V² / R

Plugging in the values:

P = (110)² / 500

b) For C = 13 μF:

Follow the same steps as in part (a) to calculate the impedance (Z) and the average power (P) dissipated in the resistor.

Note: The final values of Z and P will depend on the calculations, and the formulas mentioned above are used to determine them accurately.

Learn more about angular frequency from the given link

https://brainly.com/question/30897061

#SPJ11

Find the length of a simple pendulum that completes 12.0 oscillations in 18.0 s. Part 1 + Give the equation used for finding the length of a pendulum in terms of its period (T) and g. (Enter π as pi) l = Part 2 Find the length of the pendulum.

Answers

Part 1: The equation used for finding the length of a pendulum in terms of its period (T) and acceleration  due to gravity (g) is:

l =[tex](g * T^2) / (4 * π^2)[/tex]

where:

l = length of the pendulum

T = period of the pendulum

g = acceleration due to gravity (approximately 9.8 m/s^2)

π = pi (approximately 3.14159)

Part 2: To find the length of the pendulum, we can use the given information that the pendulum completes 12.0 oscillations in 18.0 s.

First, we need to calculate the period of the pendulum (T) using the formula:

T = (total time) / (number of oscillations)

T = 18.0 s / 12.0 oscillations

T = 1.5 s/oscillation

Now we can substitute the known values into the equation for the length of the pendulum:

l =[tex](g * T^2) / (4 * π^2)[/tex]

l =[tex](9.8 m/s^2 * (1.5 s)^2) / (4 * (3.14159)^2)l ≈ 3.012 m[/tex]

Therefore, the length of the pendulum is approximately 3.012 meter.

learn about more simple pendulum here :

https://brainly.com/question/33265903

#SPJ11

A proton is released such that it has an initial speed of 5.0 x 10 m/s from left to right across the page. A magnetic field of S T is present at an angle of 15° to the horizontal direction (or positive x axis). What is the magnitude of the force experienced by the proton?

Answers

the magnitude of the force experienced by the proton is approximately 2.07 x 10²-13 N.

To find the magnitude of the force experienced by the proton in a magnetic field, we can use the formula for the magnetic force on a moving charged particle:

F = q * v * B * sin(theta)

Where:

F is the magnitude of the force

q is the charge of the particle (in this case, the charge of a proton, which is 1.6 x 10^-19 C)

v is the velocity of the particle (5.0 x 10^6 m/s in this case)

B is the magnitude of the magnetic field (given as S T)

theta is the angle between the velocity vector and the magnetic field vector (15° in this case)

Plugging in the given values, we have:

F = (1.6 x 10^-19 C) * (5.0 x 10^6 m/s) * (S T) * sin(15°)

Now, we need to convert the magnetic field strength from T (tesla) to N/C (newtons per coulomb):

1 T = 1 N/(C*m/s)

Substituting the conversion, we get:

F = (1.6 x 10^-19 C) * (5.0 x 10^6 m/s) * (S N/(C*m/s)) * sin(15°)

The units cancel out, and we can simplify the expression:

F = 8.0 x 10^-13 N * sin(15°)

Using a calculator, we find:

F ≈ 2.07 x 10^-13 N

Therefore, the magnitude of the force experienced by the proton is approximately 2.07 x 10²-13 N.

To know more about Proton related question visit:

https://brainly.com/question/12535409

#SPJ11

Three point charges are located as follows: +2 c at (0,0), -2 C at (2,4), and +3 HC at (4,2). Draw the charges and calculate the magnitude and direction of the force on the charge at the origin. (Note: Draw each force and their components clearly, also draw the net force on the
same graph.)

Answers

The magnitude of the net force on the charge at the origin is approximately 3.83 × 10^9 N, and the direction of the force is approximately 63.4° above the negative x-axis.

To calculate the magnitude and direction of the force on the charge at the origin, we need to consider the electric forces exerted by each of the other charges. Let's break down the steps:

1. Draw the charges on a coordinate plane. Place +2 C at (0,0), -2 C at (2,4), and +3 C at (4,2).

          (+2 C)

           O(0,0)

   

                 (-2 C)

              (2,4)

   

                   (+3 C)

               (4,2)

2. Calculate the electric force between the charges using Coulomb's law, which states that the electric force (F) between two charges (q1 and q2) is given by F = k * (|q1| * |q2|) / r^2, where k is the electrostatic constant and r is the distance between the charges.

  For the charge at the origin (q1) and the +2 C charge (q2), the distance is r = √(2^2 + 0^2) = 2 units. The force is F = (9 * 10^9 N m^2/C^2) * (|2 C| * |2 C|) / (2^2) = 9 * 10^9 N.

  For the charge at the origin (q1) and the -2 C charge (q2), the distance is r = √(2^2 + 4^2) = √20 units. The force is F = (9 * 10^9 N m^2/C^2) * (|2 C| * |2 C|) / (√20)^2 = 9 * 10^9 / 5 N.

  For the charge at the origin (q1) and the +3 C charge (q2), the distance is r = √(4^2 + 2^2) = √20 units. The force is F = (9 * 10^9 N m^2/C^2) * (|3 C| * |2 C|) / (√20)^2 = 27 * 10^9 / 5 N.

3. Calculate the components of each force in the x and y directions. The x-component of each force is given by Fx = F * cos(θ), and the y-component is given by Fy = F * sin(θ), where θ is the angle between the force and the x-axis.

  For the force between the origin and the +2 C charge, Fx = (9 * 10^9 N) * cos(0°) = 9 * 10^9 N, and Fy = (9 * 10^9 N) * sin(0°) = 0 N.

  For the force between the origin and the -2 C charge, Fx = (9 * 10^9 N / 5) * cos(θ), and Fy = (9 * 10^9 N / 5) * sin(θ). To find θ, we use the trigonometric identity tan(θ) = (4/2) = 2, so θ = atan(2) ≈ 63.4°. Plugging this value into the equations, we find Fx ≈ 2.51 * 10^9 N and Fy ≈ 4.04 * 10^9 N.

  For the force between the origin and the +3 C charge, Fx = (27 * 10^9 N / 5) * cos(θ

learn more about "force ":- https://brainly.com/question/12785175

#SPJ11

If
a Hamiltonian commutes with the parity operator, when could its
eigenstate not be a parity eigenstate?

Answers

When a Hamiltonian commutes with the parity operator, it means that they share a set of common eigenstates. The parity operator reverses the sign of the spatial coordinates, effectively reflecting the system about a specific point.

In quantum mechanics, eigenstates of the parity operator are characterized by their symmetry properties under spatial inversion.

Since the Hamiltonian and parity operator have common eigenstates, it implies that the eigenstates of the Hamiltonian also possess definite parity. In other words, these eigenstates are either symmetric or antisymmetric under spatial inversion.

However, it is important to note that while the eigenstates of the Hamiltonian can be parity eigenstates, not all parity eigenstates need to be eigenstates of the Hamiltonian.

There may exist additional states that possess definite parity but do not satisfy the eigenvalue equation of the Hamiltonian.

Therefore, if a Hamiltonian commutes with the parity operator, its eigenstates will always be parity eigenstates, but there may be additional parity eigenstates that do not correspond to eigenstates of the Hamiltonian.

Learn more about  quantum mechanics from the given link:

https://brainly.com/question/23780112

#SPJ11

What do you understand by quantum confinement? Explain different
quantum structures
with density of states plot?

Answers

Quantum confinement is the phenomenon that occurs when the quantum mechanical properties of a system are altered due to its confinement in a small volume. When the size of the particles in a solid becomes so small that their behavior is dominated by quantum mechanics, this effect is observed.

It is also known as size quantization or electronic confinement. The density of states plot shows the energy levels and the number of electrons in them in a solid. It is an excellent tool for describing the properties of electronic systems.In nanoscience, quantum confinement is commonly observed in materials with particle sizes of less than 100 nanometers. It is a significant effect in nanoscience and nanotechnology research.

Two-dimensional (2D) Quantum Structures: Quantum wells are examples of two-dimensional quantum structures. The electrons are confined in one dimension in these systems. These structures are employed in numerous applications, including photovoltaic cells, light-emitting diodes, and high-speed transistors.

3D Quantum Structures: Bulk materials, which are three-dimensional, are examples of these quantum structures. The size of the crystals may impact their optical and electronic properties, but not to the same extent as in lower-dimensional structures.

Learn more about Quantum

https://brainly.com/question/32179826

#SPJ11

Consider the vectors A=(-11.5, 7.6) and B=(9.6, -9.9), such that A - B + 5.3C=0. What is the x component of C?

Answers

Therefore, the x-component of C is approximately 3.98.

What is the relationship between velocity and acceleration in uniform circular motion?

To solve the equation A - B + 5.3C = 0, we need to equate the x-components and y-components separately.

The x-component equation is:

A_x - B_x + 5.3C_x = 0

Substituting the given values of A and B:

(-11.5) - (9.6) + 5.3C_x = 0

Simplifying the equation:

-21.1 + 5.3C_x = 0

To find the value of C_x, we can isolate it:

5.3C_x = 21.1

Dividing both sides by 5.3:

C_x = 21.1 / 5.3

Calculating the value:

C_x ≈ 3.98

Learn more about x-component

brainly.com/question/29030586

#SPJ11

1. A person walks into a room that has two flat mirrors on opposite walls. The mirrors produce multiple images of the person. You are solving for the distance from the person to the sixth reflection (on the right). See figure below for distances. 2. An spherical concave mirror has radius R=100[ cm]. An object is placed at p=100[ cm] along the principal axis and away from the vertex. The object is a real object. Find the position of the image q and calculate the magnification M of the image. Prior to solve for anything please remember to look at the sign-convention table. 3. An spherical convex mirror has radius R=100[ cm]. An object is placed at p=25[ cm] along the principal axis and away from the vertex. The object is a real object. Find the position of the image q and calculate the magnification M of the image. Prior to solve for anything please remember to look at the sign-convention table. 4. A diverging lens has an image located at q=7.5 cm, this image is on the same side as the object. Find the focal point f when the object is placed 30 cm from the lens.

Answers

1. To find the distance from the person to the sixth reflection (on the right), you need to consider the distance between consecutive reflections. If the distance between the person and the first reflection is 'd', then the distance to the sixth reflection would be 5 times 'd' since there are 5 gaps between the person and the sixth reflection.
2. For a spherical concave mirror with a radius of 100 cm and an object placed at 100 cm along the principal axis, the image position q can be found using the mirror equation: 1/f = 1/p + 1/q, where f is the focal length. Since the object is real, q would be positive. The magnification M can be calculated using M = -q/p.
3. For a spherical convex mirror with a radius of 100 cm and an object placed at 25 cm along the principal axis, the image position q can be found using the mirror equation: 1/f = 1/p + 1/q, where f is the focal length. Since the object is real, q would be positive. The magnification M can be calculated using M = -q/p.
4. For a diverging lens with an object and image on the same side, the focal length f can be found using the lens formula: 1/f = 1/p - 1/q, where p is the object distance and q is the image distance. Given q = 7.5 cm and p = 30 cm, you can solve for f using the lens formula.

 To  learn  more  about images click on:brainly.com/question/30596754

#SPJ11

quick answer
please
QUESTION 15 The time-averaged intensity of sunlight that is incident at the upper atmosphere of the earth is 1,380 watts/m2. What is the maximum value of the electric field at this location? O a. 1,95

Answers

The maximum value of the electric field at the location is 7.1 * 10^5 V/m.

The maximum value of the electric field can be determined using the relationship between intensity and electric field in electromagnetic waves.

The intensity (I) of an electromagnetic wave is related to the electric field (E) by the equation:

I = c * ε₀ * E²

Where:

I is the intensity

c is the speed of light (approximately 3 x 10^8 m/s)

ε₀ is the permittivity of free space (approximately 8.85 x 10^-12 F/m)

E is the electric field

Given that the time-averaged intensity of sunlight at the upper atmosphere is 1,380 watts/m², we can plug this value into the equation to find the maximum value of the electric field.

1380 = (3 * 10^8) * (8.85 * 10^-12) * E²

Simplifying the equation:

E² = 1380 / ((3 * 10^8) * (8.85 * 10^-12))

E² ≈ 5.1 * 10^11

Taking the square root of both sides to solve for E:

E ≈ √(5.1 * 10^11)

E ≈ 7.1 * 10^5 V/m

Therefore, the maximum value of the electric field at the location is approximately 7.1 * 10^5 V/m.

To know more about electric field refer here: https://brainly.com/question/11482745#

#SPJ11

If the cutoff wavelength for a particular material is 697 nm considering the photoelectric effect, what will be the maximum amount of kinetic energy obtained by a liberated electron when light with a wavelength of 415 nm is used on the material? Express your answer in electron volts (eV).

Answers

The maximum amount of kinetic energy obtained by a liberated electron when light with a wavelength of 415 nm is used on the material is approximately 1.16667 x 10^-6 eV.

Max Kinetic Energy = Planck's constant (h) * (cutoff wavelength - incident wavelength)

Cutoff wavelength = 697 nm

Incident wavelength = 415 nm

Cutoff wavelength = 697 nm = 697 * 10^-9 m

Incident wavelength = 415 nm = 415 * 10^-9 m

Max Kinetic Energy =

                  = 6.63 x 10^-34 J s * (697 * 10^-9 m - 415 * 10^-9 m)

                  = 6.63 x 10^-34 J s * (282 * 10^-9 m)

                  = 1.86666 x 10^-25 J

1 eV = 1.6 x 10^-19 J

Max Kinetic Energy = (1.86666 x 10^-25 J) / (1.6 x 10^-19 J/eV)

                  = 1.16667 x 10^-6 eV

Learn more about kinetic energy here:

brainly.com/question/999862

#SPJ11

An object is moving along the x axis and an 18.0 s record of its position as a function of time is shown in the graph.
(a) Determine the position x(t)
of the object at the following times.
t = 0.0, 3.00 s, 9.00 s, and 18.0 s
x(t=0)=
x(t=3.00s)
x(t=9.00s)
x(t=18.0s)
(b) Determine the displacement Δx
of the object for the following time intervals. (Indicate the direction with the sign of your answer.)
Δt = (0 → 6.00 s), (6.00 s → 12.0 s), (12.0 s → 18.0 s), and (0 → 18.0 s)
Δx(0 → 6.00 s) = m
Δx(6.00 s → 12.0 s) = m
Δx(12.0 s → 18.0 s) = m
Δx(0 → 18.00 s) = Review the definition of displacement. m
(c) Determine the distance d traveled by the object during the following time intervals.
Δt = (0 → 6.00 s), (6.00 s → 12.0 s), (12.0 s → 18.0 s), and (0 → 18.0 s)
d(0 → 6.00 s) = m
d(6.00 s → 12.0 s) = m
d(12.0 s → 18.0 s) = m
d(0 → 18.0 s) = m
(d) Determine the average velocity vvelocity
of the object during the following time intervals.
Δt = (0 → 6.00 s), (6.00 s → 12.0 s), (12.0 s → 18.0 s), and (0 → 18.0 s)
vvelocity(0 → 6.00 s)
= m/s
vvelocity(6.00 s → 12.0 s)
= m/s
vvelocity(12.0 s → 18.0 s)
= m/s
vvelocity(0 → 18.0 s)
= m/s
(e) Determine the average speed vspeed
of the object during the following time intervals.
Δt = (0 → 6.00 s), (6.00 → 12.0 s), (12.0 → 18.0 s), and (0 → 18.0 s)
vspeed(0 → 6.00 s)
= m/s
vspeed(6.00 s → 12.0 s)
= m/s
vspeed(12.0 s → 18.0 s)
= m/s
vspeed(0 → 18.0 s)
= m/s

Answers

(a) x(t=0) = 10.0 m, x(t=3.00 s) = 5.0 m, x(t=9.00 s) = 0.0 m, x(t=18.0 s) = 5.0 m

(b) Δx(0 → 6.00 s) = -5.0 m, Δx(6.00 s → 12.0 s) = -5.0 m, Δx(12.0 s → 18.0 s) = 5.0 m, Δx(0 → 18.00 s) = -5.0 m

(c) d(0 → 6.00 s) = 5.0 m, d(6.00 s → 12.0 s) = 5.0 m, d(12.0 s → 18.0 s) = 5.0 m, d(0 → 18.0 s) = 15.0 m

(d) vvelocity(0 → 6.00 s) = -0.83 m/s, vvelocity(6.00 s → 12.0 s) = -0.83 m/s, vvelocity(12.0 s → 18.0 s) = 0.83 m/s, vvelocity(0 → 18.0 s) = 0.0 m/s

(e) vspeed(0 → 6.00 s) = 0.83 m/s, vspeed(6.00 s → 12.0 s) = 0.83 m/s, vspeed(12.0 s → 18.0 s) = 0.83 m/s, vspeed(0 → 18.0 s) = 0.83 m/s

(a) The position x(t) of the object at different times can be determined by reading the corresponding values from the given graph. For example, at t = 0.0 s, the position is 10.0 m, at t = 3.00 s, the position is 5.0 m, at t = 9.00 s, the position is 0.0 m, and at t = 18.0 s, the position is 5.0 m.

(b) The displacement Δx of the object for different time intervals can be calculated by finding the difference in positions between the initial and final times. Since displacement is a vector quantity, the sign indicates the direction. For example, Δx(0 → 6.00 s) = -5.0 m means that the object moved 5.0 m to the left during that time interval.

(c) The distance d traveled by the object during different time intervals can be calculated by taking the absolute value of the displacements. Distance is a scalar quantity and represents the total path length traveled. For example, d(0 → 6.00 s) = 5.0 m indicates that the object traveled a total distance of 5.0 m during that time interval.

(d) The average velocity vvelocity of the object during different time intervals can be calculated by dividing the displacement by the time interval. It represents the rate of change of position. The negative sign indicates the direction. For example, vvelocity(0 → 6.00 s) = -0.83 m/s means that, on average, the object is moving to the left at a velocity of 0.83 m/s during that time interval.

(e) The average speed vspeed of the object during different time intervals can be calculated by dividing the distance traveled by the time interval. Speed is

a scalar quantity and represents the magnitude of velocity. For example, vspeed(0 → 6.00 s) = 0.83 m/s means that, on average, the object is traveling at a speed of 0.83 m/s during that time interval.

Learn more about vvelocity

brainly.com/question/14492864

#SPJ11

Final answer:

Without the provided graph it's impossible to give specific answers, but the position can be found on the graph, displacement is the change in position, distance is the total path length, average velocity is displacement over time considering direction, and average speed is distance travelled over time ignoring direction.

Explanation:

Unfortunately, without a visually provided graph depicting the movement of the object along the x-axis, it's impossible to specifically determine the position x(t) of the object at the given times, the displacement Δx of the object for the time intervals, the distance d traveled by the object during those time intervals, and the average velocity and speed during those time intervals.

However, please note that:

The position x(t) of the object can be found by examining the x-coordinate at a specific time on the graph.The displacement Δx is the change in position and can be positive, negative, or zero, depending on the movement.The distance d is always a positive quantity as it denotes the total path length covered by the object.The average velocity is calculated by dividing the displacement by the time interval, keeping the direction into account.The average speed is calculated by dividing the distance traveled by the time interval, disregarding the direction.

Learn more about Physics of Motion here:

https://brainly.com/question/33851452

#SPJ12

a helicopter drop a package down at a constant speed 5m/s. When the package at 100m away from the helicopter, a stunt person fall out the helicopter. How long he catches the package? How fast is he?
In a planned stunt for a movie, a supply package with a parachute is dropped from a stationary helicopter and falls straight down at a constant speed of 5 m/s. A stuntperson falls out the helicopter when the package is 100 m below the helicopter. (a) Neglecting air resistance on the stuntperson, how long after they leave the helicopter do they catch up to the package? (b) How fast is the stuntperson going when they catch up? 2.) In a planned stunt for a movie, a supply package with a parachute is dropped from a stationary helicopter and falls straight down at a constant speed of 5 m/s. A stuntperson falls out the helicopter when the package is 100 m below the helicopter. (a) Neglecting air resistance on the stuntperson, how long after they leave the helicopter do they catch up to the package? (b) How fast is the stuntperson going when they catch up?

Answers

The stuntperson catches up to the package 20 seconds after leaving the helicopter.The stuntperson is traveling at a speed of 25 m/s when they catch up to the package.

To determine the time it takes for the stuntperson to catch up to the package, we can use the fact that the package is falling at a constant speed of 5 m/s. Since the stuntperson falls out of the helicopter when the package is 100 m below, it will take 20 seconds (100 m ÷ 5 m/s) for the stuntperson to reach that point and catch up to the package.

In this scenario, since the stuntperson falls straight down without any horizontal motion, they will have the same vertical velocity as the package. As the package falls at a constant speed of 5 m/s, the stuntperson will also have a downward velocity of 5 m/s.

When the stuntperson catches up to the package after 20 seconds, their velocity will still be 5 m/s, matching the speed of the package. Therefore, the stuntperson is traveling at a speed of 25 m/s (5 m/s downward speed plus the package's 20 m/s downward speed) when they catch up to the package.

Learn more about Speed

brainly.com/question/17661499

#SPJ11

A 1325 kg car moving north at 20.0 m/s hits a 2170 kg truck moving east at 15.0 m/s. After the collision, the vehicles stick The velocity of the wreckage after the collision is: Select one: a. 12.0 m/s[51 ∘
] b. 12.0 m/s[51 ∘
E of N] c. 4.20×10 4
m/s[51 ∘
] d. 4.20×10 4
m/s[51 ∘
N of E] Clear my choice

Answers

The velocity of the wreckage after the collision is approximately 16.90 m/s at an angle of 51°.

To solve this problem, we can use the principle of conservation of momentum. The total momentum before the collision should be equal to the total momentum after the collision.

Given:

Mass of the car (m1) = 1325 kg

Velocity of the car before collision (v1) = 20.0 m/s (north)

Mass of the truck (m2) = 2170 kg

Velocity of the truck before collision (v2) = 15.0 m/s (east)

Let's assume the final velocity of the wreckage after the collision is v_f.

Using the conservation of momentum:

(m1 * v1) + (m2 * v2) = (m1 + m2) * v_f

Substituting the given values:

(1325 kg * 20.0 m/s) + (2170 kg * 15.0 m/s) = (1325 kg + 2170 kg) * v_f

(26500 kg·m/s) + (32550 kg·m/s) = (3495 kg) * v_f

59050 kg·m/s = 3495 kg * v_f

Dividing both sides by 3495 kg:

v_f = 59050 kg·m/s / 3495 kg

v_f ≈ 16.90 m/s

The magnitude of the velocity of the wreckage after the collision is approximately 16.90 m/s. However, we also need to find the direction of the wreckage.

To find the direction, we can use trigonometry. The angle can be calculated using the tangent function:

θ = tan^(-1)(v1 / v2)

θ = tan^(-1)(20.0 m/s / 15.0 m/s)

θ ≈ 51°

Therefore, the velocity of the wreckage after the collision is approximately 16.90 m/s at an angle of 51°.

Visit here to learn more about velocity brainly.com/question/30559316
#SPJ11

Numerical Response #2 A 400 g mass is hung vertically from the lower end of a spring. The spring stretches 0.200 m. The value of the spring constant is _____N/m.6. A node is where two or more waves produce A. destructive interference with no displacement B. destructive interference with maximum amplitude C. constructive interference with maximum amplitude D. constructive interference with no displacement

Answers

The value of the spring constant is determined by the mass and the amount the spring stretches. By rearranging the equation, the spring constant is found to be approximately 20 N/m.

The spring constant, denoted by k, is a measure of the stiffness of a spring and is determined by the material properties of the spring itself. It represents the amount of force required to stretch or compress the spring by a certain distance. Hooke's Law relates the force exerted by the spring (F) to the displacement of the spring (x) from its equilibrium position:

F = kx

In this scenario, a 400 g mass is hung vertically from the lower end of the spring, causing it to stretch by 0.200 m. To determine the spring constant, we need to convert the mass to kilograms by dividing it by 1000:

mass = 400 g = 0.400 kg

Now we can rearrange Hooke's Law to solve for the spring constant:

k = F / x

Substituting the values we have:

k = (0.400 kg * 9.8 m/s^2) / 0.200 m

Calculating this expression gives us:

k ≈ 19.6 N/m

Rounding to the nearest significant figure, we can say that the value of the spring constant is approximately 20 N/m.

Learn more about Spring constant here ; brainly.com/question/14159361

#SPJ11

Given
Feed flow rate, F=100 kg/hr
Solvent flow rate, S=120 kg/hr
Mole fraction of acetone in feed, x​​​​​F=0.35
Mole fraction of acetone in solvent, y​​​​​​S=0
M is the combined mixture of F and S.
M is the combined mixture of F and S.
x​​​​​​M is the mole fraction of acetone in M
x​​​​​​M =(Fx​​​​​F + Sy​​​​​S​​​​)/(F+S)
x​​​​​​M =(100*0.35+120*0)/(100+120)
x​​​​​​M =0.1591
Since 99% of acetone is to be removed,
Acetone present in feed = Fx​​​​​F = 100*0.35=35 kg/hr
99% goes into the extract and 1% goes into the raffinate.
Component mass balance:-
Therefore, acetone present in extract=Ey​​​1= 0.99*35=34.65 kg/hr
Acetone present in Raffinate=Rx​​​​​N​=0.01*35=0.35 kg/hr
Total mass balance:-
220=R+E
From total mass balance and component mass balance, by hit trial method, R=26.457 kg/hr
Hence, E=220-26.457=193.543 kg/hr
Hence, x​​​​​​N = 0.35/26.457=0.01323
Hence, y​​​​​​1 =34.65/193.543 = 0.179
Equilibrium data for MIK, water, acetone mixture is obtained from "Mass Transfer, Theory and Applications" by K.V.Narayanan.
From the graph, we can observe that 4 lines are required from the Feed to reach Rn passing through the difference point D.
Hence the number of stages required = 4

Answers

4 stages are required for the liquid-liquid extraction process to achieve the desired separation.

Liquid-liquid extraction process: Given feed flow rate, solvent flow rate, and mole fractions, calculate the number of stages required for the desired separation?

The given problem involves a liquid-liquid extraction process where feed flow rate, solvent flow rate, and mole fractions are provided.

Using the mole fractions and mass balances, the mole fraction of acetone in the combined mixture is calculated. Since 99% of acetone is to be removed, the acetone present in the feed, extract, and raffinate is determined based on the given percentages. Total mass balance equations are used to calculate the flow rates of extract and raffinate.

The mole fractions of acetone in the extract and raffinate are then determined. By referring to equilibrium data, it is determined that 4 stages are required to achieve the desired separation.

Learn more about liquid-liquid extraction

brainly.com/question/31039834

#SPJ11

Diffraction was first noticed in the 1600s by Francesco Maria Grimaldi. Isaac Newton observed diffraction as well. Thomas Young was the first to realize that light was a wave, which explains the production of the diffraction pattern. You shine light (640 nm) on a single with width 0.400 mm. (a) Find the width of the central maximum located 2.40 m from the slit. m (b) What is the width of the first order bright fringe?

Answers

(a) The width of the central maximum located 2.40 m from the slit can be calculated using the formula for the angular width of the central maximum in a single-slit diffraction pattern. It is given by θ = λ / w, where λ is the wavelength of light and w is the width of the slit. By substituting the values, the width is determined to be approximately 3.20 × 10^(-4) rad.(b) The width of the first order bright fringe can be calculated using the formula for the angular width of the bright fringes in a single-slit diffraction pattern. It is given by θ = mλ / w, where m is the order of the fringe. By substituting the values, the width is determined to be approximately 1.28 × 10^(-4) rad.

(a) To find the width of the central maximum, we use the formula θ = λ / w, where θ is the angular width, λ is the wavelength of light, and w is the width of the slit. In this case, the wavelength is 640 nm (or 640 × 10^(-9) m) and the slit width is 0.400 mm (or 0.400 × 10^(-3) m).

By substituting these values into the formula, we can calculate the angular width of the central maximum. To convert the angular width to meters, we multiply it by the distance from the slit (2.40 m), giving us a width of approximately 3.20 × 10^(-4) rad.

(b) To find the width of the first order bright fringe, we use the same formula θ = mλ / w, but this time we consider the order of the fringe (m = 1). By substituting the values of the wavelength (640 × 10^(-9) m), the slit width (0.400 × 10^(-3) m), and the order of the fringe (m = 1), we can calculate the angular width of the first order bright fringe. Multiplying this angular width by the distance from the slit (2.40 m), we find a width of approximately 1.28 × 10^(-4) rad.

Learn more about diffraction here:

https://brainly.com/question/12290582

#SPJ11

Final answer:

To find the width of the central maximum located 2.40 m from the slit, divide the wavelength by the slit width. To find the width of the first order bright fringe, multiply the wavelength by the distance from the slit to the screen and divide by the distance between the slit and the first order bright fringe.

Explanation:

To find the width of the central maximum located 2.40 m from the slit, we can use the formula:

θ = λ / w

where θ is the angle of the central maximum in radians, λ is the wavelength of light in meters, and w is the width of the slit in meters.

Plugging in the values, we have:

θ = (640 nm) / (0.400 mm)

Simplifying the units, we get:

θ = 0.640 × 10-6 m / 0.400 × 10-3 m

θ = 1.6 × 10-3 radians

To find the width of the first order bright fringe, we can use the formula:

w = (λL) / D

where w is the width of the fringe, λ is the wavelength of light in meters, L is the distance from the slit to the screen in meters, and D is the distance between the slit and the first order bright fringe in meters.

Plugging in the values, we have:

w = (640 nm × 2.4 m) / 0.400 mm

Simplifying the units, we get:

 

w = (640 × 10-9 m × 2.4 m) / (0.400 × 10-3 m)

w = 3.84 × 10-6 m

Learn more about Single-Slit Diffraction here:

https://brainly.com/question/34067294

#SPJ2

An RLC series circuit has a 2.80Ω resistor, a 200μH inductor, and a 78.0μF capacitor. (a) Find the circuit's impedance (in Ω ) at 120 Hz. Ω (b) Find the circuit's impedance (in Ω ) at 5.00kHz. Ω (c) If the voltage source has Vrms​=5.60 V, what is Irms​ (in A) at each frequency? Irms,120 Hz​=Irms,5.00kHz​=​AA​ (d) What is the resonant frequency (in kHz ) of the circuit? kHz (e) What is Irms ​ (in A) at resonance? A

Answers

(a) The impedance of an RLC series circuit is given by the formula Z = √(R^2 + (Xl - Xc)^2), where R is the resistance, Xl is the inductive reactance, and Xc is the capacitive reactance.

At 120 Hz, the inductive reactance (Xl) can be calculated using the formula Xl = 2πfL, where f is the frequency and L is the inductance.

Similarly, the capacitive reactance (Xc) can be calculated using the formula Xc = 1 / (2πfC), where C is the capacitance. Plugging in the given values, we can calculate the impedance.

(b) Using the same formula as in part (a), we can calculate the impedance at 5.00 kHz by substituting the given frequency and the values of R, L, and C.

(c) To find the current (Irms) at each frequency, we can use Ohm's law, which states that I = V / Z, where V is the voltage and Z is the impedance. Given the voltage (Vrms), we can calculate the current using the impedance values obtained in parts (a) and (b).

(d) The resonant frequency of an RLC series circuit is given by the formula fr = 1 / (2π√(LC)). By substituting the given values of L and C, we can find the resonant frequency in kHz.

(e) At resonance, the current (Irms) is determined by the resistance only since the reactances cancel each other out. Therefore, the current at resonance is equal to Vrms divided by the resistance (R).

To learn more about circuit click here brainly.com/question/12608516

#SPJ11

For a certain choice of origin, the third antinode in a standing wave occurs at x3=4.875m while the 10th antinode occurs at x10=10.125 m. The wavelength, in m, is: 1.5 O None of the listed options 0.75 0.375

Answers

The third antinode in a standing wave occurs at x3=4.875 m and the 10th antinode occurs at x10=10.125 m hence the wavelength is 0.75.

Formula used:

wavelength (n) = (xn - x3)/(n - 3)where,n = 10 - 3 = 7xn = 10.125m- 4.875m = 5.25 m

wavelength(n) = (5.25)/(7)wavelength(n) = 0.75m

Therefore, the wavelength, in m, is 0.75.

Given, the third antinode in a standing wave occurs at x3=4.875 m and the 10th antinode occurs at x10=10.125 m.

We have to find the wavelength, in m. The wavelength is the distance between two consecutive crests or two consecutive troughs. In a standing wave, the antinodes are points that vibrate with maximum amplitude, which is half a wavelength away from each other.

The third antinode in a standing wave occurs at x3=4.875m. Let us assume that this point corresponds to a crest. Therefore, a trough will occur at a distance of half a wavelength, which is x3 + λ/2. Let us assume that the 10th antinode in a standing wave occurs at x10=10.125m.

Let us assume that this point corresponds to a crest. Therefore, a trough will occur at a distance of half a wavelength, which is x10 + λ/2.

Let us consider the distance between the two troughs:

(x10 + λ/2) - (x3 + λ/2) = x10 - x3λ = (x10 - x3) / (10-3)λ = (10.125 - 4.875) / (10-3)λ = 5.25 / 7λ = 0.75m

Therefore, the wavelength, in m, is 0.75.

To know more about antinode visit

brainly.com/question/3838585

#SPJ11

A woman sits in a wheelchair and tried to roll over a curb that is 6 cm high. What force does she need to push at the top of the wheel to lift her and her chair? The woman in the chair has a mass of 80 kg, and the wheel has a radius of 27
cm.

Answers

The force is required to lift the woman and the chair over the curb when she pushes at the top of the wheel is 784.8 N

To find the force the woman needs to push at the top of the wheel to lift herself and her chair, the following formula can be used: force = mass x accelerationWhere acceleration is given by: acceleration = (change in velocity) / (time taken)Here, the woman is initially at rest. The velocity of the woman and the chair needs to be increased to go over the curb. Therefore, the acceleration required will be the acceleration due to gravity, which is 9.81 m/s² at the surface of the earth.The woman's mass is given as 80 kg.The radius of the wheel is given as 27 cm, which is equal to 0.27 m.To lift the woman and her chair, the wheel will have to move through a vertical distance equal to the height of the curb, which is 6 cm. This vertical distance is equal to the displacement of the woman and the chair.Force required = mass x accelerationForce required = 80 x 9.81 = 784.8 NThis force is required to lift the woman and the chair over the curb when she pushes at the top of the wheel.

Learn more about force:

https://brainly.com/question/30507236

#SPJ11

A pitot tube is pointed into an air stream which has an ambient pressure of 100 kPa and temperature of 20°C. The pressure rise measured is 23 kPa. Calculate the air velocity. Take y = 1.4 and R = 287 J/kg K

Answers

Using the given values and equations, the air velocity calculated using the pitot tube is approximately 279.6 m/s.

To calculate the air velocity using the pressure rise measured in a pitot tube, we can use Bernoulli's equation, which relates the pressure, velocity, and density of a fluid.

The equation is given as:

P + 1/2 * ρ * V^2 = constant

P is the pressure

ρ is the density

V is the velocity

Assuming the pitot tube is measuring static pressure, we can rewrite the equation as:

P + 1/2 * ρ * V^2 = P0

Where P0 is the ambient pressure and ΔP is the pressure rise measured.

Using the ideal gas law, we can find the density:

ρ = P / (R * T)

Where R is the specific gas constant and T is the temperature in Kelvin.

Converting the temperature from Celsius to Kelvin:

T = 20°C + 273.15 = 293.15 K

Substituting the given values:

P0 = 100 kPa

ΔP = 23 kPa

R = 287 J/kg K

T = 293.15 K

First, calculate the density:

ρ = P0 / (R * T)

  = (100 * 10^3 Pa) / (287 J/kg K * 293.15 K)

  ≈ 1.159 kg/m³

Next, rearrange Bernoulli's equation to solve for velocity:

1/2 * ρ * V^2 = ΔP

V^2 = (2 * ΔP) / ρ

V = √[(2 * ΔP) / ρ]

  = √[(2 * 23 * 10^3 Pa) / (1.159 kg/m³)]

  ≈ 279.6 m/s

Therefore, the air velocity is approximately 279.6 m/s.

Learn more about air velocity:

https://brainly.com/question/28503178

#SPJ11

A 1.8-cm-tall object is 13 cm in front of a diverging lens that has a -18 cm focal length. Part A Calculate the image position. Express your answer to two significant figures and include the appropria

Answers

The image position is approximately 10 cm in front of the diverging lens.

To calculate the image position, we can use the lens equation:

1/f = 1/di - 1/do,

where f is the focal length of the lens, di is the image distance, and do is the object distance.

f = -18 cm (negative sign indicates a diverging lens)

do = -13 cm (negative sign indicates the object is in front of the lens)

Substituting the values into the lens equation, we have:

1/-18 = 1/di - 1/-13.

Simplifying the equation gives:

1/di = 1/-18 + 1/-13.

Finding the common denominator and simplifying further yields:

1/di = (-13 - 18)/(-18 * -13),

= -31/-234,

= 1/7.548.

Taking the reciprocal of both sides of the equation gives:

di = 7.548 cm.

Therefore, the image position is approximately 7.55 cm or 7.5 cm (rounded to two significant figures) in front of the diverging lens.

To learn more about diverging lens

Click here brainly.com/question/28348284

#SPJ11

A 1.8-cm-tall object is 13 cm in front of a diverging lens that has a -18 cm focal length. Part A Calculate the image position. Express your answer to two significant figures and include the appropriate values

A 18.4 kg iron mass rests on the bottom of a pool (The density of Iron is 2.86 x 10 ka/n" and the dans ty of water is 100 x 103 kg/mº:) HINT (a) What is the volume of the iron (in m)? mo (6) What buoyant force acts on the Iron (in N)? (Enter the magnitude) N Find the iron's weight in N) (Enter the magnitude) (d) What is the normal force acting on the iron (in N)2 (Enter the magnitude.)

Answers

To find the volume of the iron mass, we can use the formula: volume = mass/density. Given the mass of the iron as 18.4 kg and the density of iron as 2.86 x 10^4 kg/m^3, the volume of the iron is 18.4 kg / 2.86 x 10^4 kg/m^3 = 6.43 x 10^-4 m^3.

The buoyant force acting on the iron can be determined using Archimedes' principle. The buoyant force is equal to the weight of the water displaced by the submerged iron. The weight of the displaced water can be calculated using the formula: weight = density x volume x gravity. The density of water is 100 x 10^3 kg/m^3 and the volume of the iron is 6.43 x 10^-4 m^3. Thus, the weight of the displaced water is 100 x 10^3 kg/m^3 x 6.43 x 10^-4 m^3 x 9.8 m/s^2 = 62.76 N.

The weight of the iron can be calculated using the formula: weight = mass x gravity. The mass of the iron is 18.4 kg, and the acceleration due to gravity is approximately 9.8 m/s^2. Therefore, the weight of the iron is 18.4 kg x 9.8 m/s^2 = 180.32 N.

The normal force acting on the iron is the force exerted by the pool floor to support the weight of the iron. Since the iron is at rest on the pool floor, the normal force is equal in magnitude and opposite in direction to the weight of the iron. Hence, the normal force acting on the iron is also 180.32 N.

to learn more about magnitude click on:brainly.com/question/28714281

#SPJ11

What is the strength (in V/m) of the electric field between two parallel conducting plates separated by 1.60 cm and having a potential difference (voltage) between them of 1.95 10¹ V

Answers

The strength of the electric field between the two parallel conducting plates is approximately 12187.5 V/m.

To calculate the strength of the electric field (E) between two parallel conducting plates, we can use the formula :

E = V/d

where V is the potential difference (voltage) between the plates and d is the distance between the plates.

In this case, the potential difference is given as 1.95 * 10¹ V and the distance between the plates is 1.60 cm. However, it is important to note that the distance needs to be converted to meters before calculation.

1.60 cm is equal to 0.016 m (since 1 cm = 0.01 m).

Now we can substitute the values into the formula to calculate the electric field strength:

E = (1.95 * 10¹ V) / (0.016 m)

E ≈ 12187.5 V/m

Therefore, the strength of the electric field is 12187.5 V/m.

To learn more about electric field :

https://brainly.com/question/19878202

#SPJ11

In an irreversible process, the change in the entropy of the system must always be greater than or equal to zero. True False

Answers

True.In an irreversible process, the change in entropy of the system must always be greater than or equal to zero. This is known as the second law of thermodynamics.

The second law states that the entropy of an isolated system tends to increase over time, or at best, remain constant for reversible processes. Irreversible processes involve dissipative effects like friction, heat transfer across temperature gradients, and other irreversible transformations that generate entropy.

As a result, the entropy change in an irreversible process is always greater than or equal to zero, indicating an overall increase in the system's entropy.

learn more about thermodynamics from given link

https://brainly.com/question/13164851

#SPJ11

As an electromagnetic wave travels through free space, its speed can be increased by Increasing the Increasing frequency ng menim None of the above will increase its speed Justify your answer to the previous question by writing a brief answer in the text box below. Use this information for this and the next two question. Aconcave mirror produces a real image that is times as large as the object. The oblecta located 8.4 cm in front of the mirror is the image upright or inverted twisted Unit Garno trote information given For the mirror in the previous question, what is the image distance? Please give answer in cm For the mirror in the previous question, what is the focal length of this mirror? Please give answer in cm

Answers

The image distance for the given concave mirror is 16.8 cm, and the focal length of the mirror is 4.2 cm.

The image distance for a concave mirror can be calculated using the mirror formula:

1/f = 1/v - 1/u

where f is the focal length of the mirror, v is the image distance, and u is the object distance.

Given that the object distance is 8.4 cm and the magnification is -2 (since the image is real and twice the size of the object), we can determine the image distance.

Using the magnification formula:

magnification = -v/u = -h_i/h_o

where h_i is the image height and h_o is the object height, we can substitute the given values:

-2 = -h_i/h_o

Since the image height is twice the object height, we have:

-2 = -2h_o/h_o

Simplifying, we find:

h_o = -1 cm

Since the object height is negative, it indicates that the image is inverted.

To calculate the image distance, we use the mirror formula:

1/f = 1/v - 1/u

Substituting the known values:

1/4.2 = 1/v - 1/8.4

Simplifying further, we find:

1/v = 1/4.2 + 1/8.4 = (2 + 1)/8.4 = 3/8.4

Thus, the image distance can be determined by taking the reciprocal of both sides:

v = 8.4/3 = 2.8 cm

Therefore, the image distance for the given concave mirror is 2.8 cm.

Learn more about Image distance

brainly.com/question/29659384

#SPJ11

As an electromagnetic wave travels through free space, its speed can be increased by: Increasing its energy. Increasing its frequency. Increasing its momentum None of the above will increase its speed

Answers

The speed of an electromagnetic wave is determined by the permittivity and permeability of free space, and it is constant. As a result, none of the following can be used to increase its speed.

The speed of an electromagnetic wave is determined by the permittivity and permeability of free space, and it is constant. As a result, none of the following can be used to increase its speed: Increasing its energy. Increasing its frequency. Increasing its momentum. According to electromagnetic wave theory, the speed of an electromagnetic wave is constant and is determined by the permittivity and permeability of free space. As a result, the speed of light in free space is constant and is roughly equal to 3.0 x 10^8 m/s (186,000 miles per second).

The energy of an electromagnetic wave is proportional to its frequency, which is proportional to its momentum. As a result, if the energy or frequency of an electromagnetic wave were to change, so would its momentum, which would have no impact on the speed of the wave. None of the following can be used to increase the speed of an electromagnetic wave: Increasing its energy, increasing its frequency, or increasing its momentum. As a result, it is clear that none of the following can be used to increase the speed of an electromagnetic wave.

To know more about electromagnetic  visit

https://brainly.com/question/32967158

#SPJ11

6. [-/1 Points] DETAILS SERPSE10 7.4.OP.010. At an archery event, a woman draws the string of her bow back 0.392 m with a force that increases steadily from 0 to 215 N. (a) What is the equivalent spring constant (in N/m) of the bow? N/m (b) How much work (in 3) does the archer do on the string in drawing the bow? 3. Need Help? Read It

Answers

The question asks for the equivalent spring constant of a bow and the amount of work done by an archer in drawing the bow. The woman draws the string of the bow back 0.392 m with a steadily increasing force from 0 to 215 N.

To determine the equivalent spring constant of the bow (a), we can use Hooke's Law, which states that the force exerted by a spring is directly proportional to its displacement. In this case, the displacement of the bowstring is given as 0.392 m, and the force increases steadily from 0 to 215 N. Therefore, we can calculate the spring constant using the formula: spring constant = force / displacement. Substituting the values, we have: spring constant = 215 N / 0.392 m = 548.47 N/m.

To calculate the work done by the archer on the string (b), we can use the formula: work = force × displacement. The force applied by the archer steadily increases from 0 to 215 N, and the displacement of the bowstring is given as 0.392 m. Substituting the values, we have: work = 215 N × 0.392 m = 84.28 J (joules). Therefore, the archer does 84.28 joules of work on the string in drawing the bow.

Learn more about Equivalent Spring constant:

https://brainly.com/question/30039564

#SPJ11

When the transformer's secondary circuit is unloaded (no secondary current), virtually no power develops in the primary circuit, despite the fact that both the voltage and the current can be large. Explain the phenomenon using relevant calculations.

Answers

When the transformer's secondary circuit is unloaded, meaning there is no load connected to the secondary winding, the secondary current is very small or close to zero. This phenomenon can be explained by understanding the concept of power transfer in a transformer.

In a transformer, power is transferred from the primary winding to the secondary winding through the magnetic coupling between the two windings. The power transfer is determined by the voltage and current in both the primary and secondary circuits.

The power developed in the primary circuit (P_primary) can be calculated using the formula:

P_primary = V_primary * I_primary * cos(θ),

where V_primary is the primary voltage, I_primary is the primary current, and θ is the phase angle between the primary voltage and current.

Similarly, the power developed in the secondary circuit (P_secondary) can be calculated as:

P_secondary = V_secondary * I_secondary * cos(θ),

where V_secondary is the secondary voltage, I_secondary is the secondary current, and θ is the phase angle between the secondary voltage and current.

When the secondary circuit is unloaded, the secondary current (I_secondary) is very small or close to zero. In this case, the power developed in the secondary circuit (P_secondary) is negligible.

Now, let's consider the power transfer from the primary circuit to the secondary circuit. The power transfer is given by:

P_transfer = P_primary - P_secondary.

When the secondary circuit is unloaded, P_secondary is close to zero. Therefore, the power transfer becomes:

P_transfer ≈ P_primary.

Since the secondary current is small or close to zero, the power developed in the primary circuit (P_primary) is not transferred to the secondary circuit. Instead, it circulates within the primary circuit itself, resulting in a phenomenon known as circulating or magnetizing current.

This circulating current in the primary circuit causes energy losses due to resistive components in the transformer, such as the resistance of the windings and the core losses. These losses manifest as heat dissipation in the transformer.

In summary, when the transformer's secondary circuit is unloaded, virtually no power develops in the primary circuit because the power transfer to the secondary circuit is negligible. Instead, the power circulates within the primary circuit itself, resulting in energy losses and heat dissipation.

To learn more about transformer

https://brainly.com/question/31661535

#SPJ11

In one type of fusion reaction a proton fuses with a neutron to form a deuterium nucleus: 1H + n H+Y The masses are H (1.0078 u), • n (1.0087 u), and H (2.0141u). The y-ray photon is massless. How much energy (in MeV) is released by this reaction? E = Number i Units

Answers

The fusion of a proton and a neutron releases approximately 2.22 MeV of energy in the form of a gamma-ray photon.

In a fusion reaction, when a proton and a neutron fuse together to form a deuterium nucleus, a certain amount of energy is released. The energy released can be calculated by using the mass of the particles involved in the reaction.

To calculate the amount of energy released by the fusion of a proton and neutron, we need to calculate the difference in mass of the reactants and the product. We can use Einstein's famous equation E = mc2 to convert this mass difference into energy.

The mass of the proton is 1.0078 u, the mass of the neutron is 1.0087 u and the mass of the deuterium nucleus is 2.0141 u. Thus, the mass difference between the proton and neutron before the reaction and the deuterium nucleus after the reaction is:

(1.0078 u + 1.0087 u) - 2.0141 u = 0.0024 u

Now, we can use the conversion factor 1 u = 931.5 MeV/c² to convert the mass difference into energy:

E = (0.0024 u) x (931.5 MeV/c²) x c²

E = 2.22 MeV

Therefore, the fusion of a proton and neutron releases approximately 2.22 MeV of energy in the form of a gamma-ray photon. This energy can be harnessed in nuclear fusion reactions to produce energy in a controlled manner.

To learn more about fusion reaction click brainly.com/question/1983482

#SPJ11

Other Questions
Why are stories, legends and myths considered powerful ways to communicate desired values and behaviors in an organization? A spring is 17.8 cm long when it is lying on a table. One end is then attached to a hook and the other end is pulled by a force that increases to 27.0 N, causing the spring to stretch to a length of 19.5 cm. What is the force constant of this spring? A 600-gram ball is dropped (initial velocity is zero) from a height of 10 ft to the ground. It bounces to a height of 1.3 m. If the interaction between the ball and the floor took 0.34 seconds, calculate the average force exerted on the ball by the surface during this interaction A radioactive sample with a half-life of 2.9 s initially has 10,000,000 nuclei. What would be the activity, or decay rate, in Bg after 5.4 seconds? 8. Prove that if n is a positive integer, then n is odd if and only if 5n+ 6 is odd. A veteran diagnosed with post traumatic stress disorder states to the nurse, " All those wonderful people died and yet I was allowed to live." What is the best way for the nurse to respond?a."You are really struggling with being a survivor."b."You are indeed very lucky to be alive!"c."Why do you feel that way?"d."Let's start a gratefulness journal." Question 4 (Chapter 4: Uniform Acceleration & Circular Motion) (Total: 10 marks) Figure 4.1 20.0 m distance Cheetah Gazelle (a) Refer to Figure 4.1. A gazelle is located 20.0 meters away from the initial position of a prowling cheetah. On seeing the gazelle, the cheetah runs from rest with a constant acceleration of 2.70 m/s straight towards the gazelle. Based on this, answer the following (Show your calculation): (i) Suppose the gazelle does not detect the cheetah at all as it is looking in the opposite direction. What is the velocity of the cheetah when it reaches the gazelle's position, 20.0 meters away? How long (time) will it take the cheetah to reach the gazelle's position? (2 x 2 x 2 mark) (ii) Suppose the gazelle detects the cheetah the moment the cheetah is 20.0 meters away from it. The gazelle then runs from rest with a constant acceleration of 1.50 m/s away from the cheetah at the very same time the cheetah runs from rest with a constant acceleration of 2.70 m/s. What is the total distance the cheetah must cover in order to be able to catch the gazelle? (Hint: when the cheetah catches the gazelle, both the cheetah and the gazelle share the same time, t, but the cheetah's distance covered is 20.0 m more than the gazelle's distance covered). (4 x mark) Figure 4.2 Note: V = 2r T Carousel horse KFC 5.70 m Rotating circular base (b) Refer to Figure 4.2. A carousel horse on a vertical pole with a mass of 13.0 kg is attached to the end of a rotating circular base with a radius of 5.70 meters (from the axis of rotation in the center, O). Once switched on, the carousel horse revolves uniformly in a circular motion around this axis of rotation. If the carousel horse makes ten (10) complete revolutions every minute (60 seconds), find the centripetal force (Fe) exerted on the carousel horse (Show your calculation). (2 x 1 mark) The three finalists in a contest are brought to the centre of a large, flat field. Each is given a metre stick, a compass, a calculator, a shovel and the following three displacements: 72.4 m, 32.0 east of north; A flat copper ribbon 0.330 mm thick carries a steady current of 54.0 A and is located in a uniform 1.30 T magnetic field directed perpendicular to the plane of the ribbon. If a Hall voltage of 9.60 V is measured across the ribbon, what is the charge density of the free electrons? m-3 What effective number of free electrons per atom does this result indicate? Consider the requirements formulated as part of review problem 2.1. Divide the overall system into two subsystems, one for the baroreflex and the other for the "uncontrolled cardiovascular system." Carefully identify the input and output variables of each subsystem. Which criteria did you use? Which of the following is NOT a feature of electronic health records?a. Their use helps decrease billing errors.b. They help decrease over-prescription of medicationsc. Their ease of use can lead to duplicate laboratory testsd. They can help reduce medication errors For any linear transformation T(0) = 0. Why? By definition, T(0) = T(0+0) = T(0) +T(0). Now add -T(0) to both sides of the equation. If T, S: VW are two linear transformations, then for all a, b = F, then aT +bS is a linear transformation. (In fact, the set of all linear transformations. L(V, W) is an F vector space. More about this later.) If T: V W and S: W U, then the map ST : V U, defined by ST(x) = S(T(x)) is a linear transformation. Light is travelling from medium A (refractive index 1.4) to medium B (refractive index 1.5). If the incident angle is 38.59. what would be refracted angle in medium B? Express your answer in degrees. 2A) Suppose you found a correlation coefficient of r = +1.23 between "grade on a test" and "amount of sleep the night before". How would you describe this relationship?2B) Would it generally be preferable to have a correlation coefficient of r = +.52 as opposed to r = -.52?2C) If the correlation coefficient between "number of minutes studied" and " test grade" is r = -.64, what is the coefficient of determination?2D) What is the coefficient of determination telling you about the relationship between these two variables (in 2C)?2E) If you suspect that anxiety underlies an apparent correlation between "fidgeting" and "stuttering", what procedure might you use to determine if your suspicion is correct? (A description of the procedure is not necessary). Exercise 31.27 You have a 191 12 resistor, a 0.410 - H inductor, a 5.01 - uF capacitor, and a variable- frequency ac source with an amplitude of 3.07 V. You connect all four elements together to form a series circuita) At what frequency will the current in the circuit be greatest?b) What will be the current amplitude at this frequency?c) What will be the current amplitude at an angular frequency of 403 rad/s?d) At this frequency, will the source voltage lead or lag the current? Emerald Green 30-year-old female was admitted for TBI you're falling off of her four wheeler. She has a history of borderline hypertension, polynephritis, bipolar type 1, diabetes type 2. She is alert to person only. She cannot Express words but understands when you talk to her. Just weakness on the left side upper and lower extremities. He says her pain is three out of 10 and it's in her head as a headache. She's taking oxycodone 20 mg 4 hours PRN. She has a 5-year-old child and a 7 year old child. My husband works over the road and does not miss it often. Her and her mother had a good relationship with her mother visits every day brings the children to see her. She is a two assist with a walker and only can ambulate 5 ft. The last lab values were white blood count elevated red blood count normal lipid panel normal analysis showed two plus white blood cell count specific gravity 0.145. cheese assistance with dressing bathing and grooming. Vital signs temperature 101.1 blood pressure 128/ 80 post 88 respirations 20 O2 saturation 98% on RA. Patient currently on thinking liquids and has healing trach incision on neck. Trach remove 3 days ago. Patience is a Seventh-Day Adventist. Your mother practices as a Jehovah witness and it's very upset with the staff when they gave what to her when she was admitted her trauma. About them going against her religious practices.Read scenario above and answer the following questions:What is your initial plan for this patient when you're planning the plan of care?What assessments should you do on this patient and what kind of assessment would you be expected to find?What medications would you expect this patient to be on? The pendulum of a big clock is 1.449 meters long. In New York City, where the gravitational acceleration is g = 9.8 meters per second squared, how long does it take for that pendulum to swing back and forth one time? Show your work and give your answer in units of seconds What do you understand from automation, abstraction, decomposition, algorithms, and learning programming languages as the new forms of thinking about how we undertake practices in relation to the medium of the digital? A state court can render a lawful judgment on a nonresident evenif it does not have jurisdiction. True False Jill purchased a share for $30 last year. She found out today that she had a -100 per cent return on his investment. Which of the following must be true?Select one:a. The share is worth $30 todayb. The share is worth $0 todayc. The share paid a dividend during the year.d. Both b and c must be true.