Answer:
If DE// to BC, slope of DE= slope of BC
D=([tex]\frac{4+2}{2} ,\frac{6-2}{2}[/tex])
D=(3,2)
E=([tex]\frac{4-2}{2} ,\frac{6-4}{2}[/tex])
E=(1,1)
Slope of DE=[tex]\frac{2-1}{3-1} =\frac{1}{2}[/tex]
Slope of BC=[tex]\frac{-2-(-4)}{2-(-2)} =\frac{1}{2} =[/tex]Slope of DE
∴DE // to BC.
Joseph is paid $210 per week, plus $18 for each extended car warranty he sells. His supervisor raises his pay by $35 each week. Which function represents his new weekly pay, R(w), when he sells w extended warranties?
Find the value of x in the triangle. 1 and 4.
Answer:
263
Step-by-step explanation:
Que numero es mayor que -5/4
Answer:
4 is greater than -5
Step-by-step explanation:
positive are greater than negative
1.(07.02)
Simplify (3x – 5) + (5x + 1)
A) 8x-6
B) 8x+4
C) 8x-4
D) 2x-4
An equation is different from an expression because it has...
Answer:
Because it bears an equal sign
Expressions don't have a definite solution to the problem.
Find the value of x.
.
10
7
Answer:
X = 12.21
Step-by-step explanation:
Since this is a right triangle, use the formula A^2 + B^2 = C^2 and plug in appropriate values.
(10)^2 + (7)^2 = C^2
100 + 49 = C^2
149 = C^2
12.2065 = C
Rounded to two decimal places, this makes X equal to 12.21.
The required value of x is 12.21 for the given right triangle.
What is the right triangle?A right triangle is defined as a triangle in which one angle is a right angle or two sides are perpendicular.
Pythagoras's theorem states that in a right-angled triangle, the square of one side is equal to the sum of the squares of the other two sides.
Since this is a right triangle, use the formula A² + B² = C² and substitute appropriate values.
(10)² + (7)² = x²
100 + 49 = x²
149 = x²
x = √149
x = 12.2066
Rounded to two decimal places,
x = 12.21
Therefore, the required value of x is 12.21.
Learn more about Pythagoras's theorem here:
brainly.com/question/343682
#SPJ2
1. What is the distance between Point A(-2,3) and Point B (-2,8).
Answer:
5
Step-by-step explanation:
T-Mobile was having a sale where the price of a new phone was 25% off the original price of $1000. How much is the sale price of the phone? *
Answer:
The phone is $750
Step-by-step explanation:
1000 divided by 25% is 250. 1000 minus 250 is 750. Hoped this helped
On Tuesday, the price of oranges at a grocery store was $1.20 per pound. Today, the oranges at the same grocery store are on sale at a 15% discount. What is the total price of 5 and 1/2 pounds of oranges this week at the grocery store?
A. $6.00
B. $2.50
C. $5.61
D. $1.02
Answer:
$5.61
Step-by-step explanation:
So, first of all, 15% off of 1.20 is 1.02. Then, multiply that by 5 1/2 to get $5.61.
FOR THE LOVE OF GOD PLEASE HELP ME I WILL GIVE 30 points
Answer:
Eliminate y by adding equations (1) and (3) because the coefficients on y are opposites. Then eliminate y by multiplying equation (1) by 2 and adding it to equation (2).
Eliminate z by subtracting equations (1) and (2) because the coefficients are the same. Then eliminate z by multiplying equation (3) by 2 and adding it to equation (1).
Step-by-step explanation:
The variables have to be the same in both equations in the 2 × 2 system.
All of this should be included
please help :(
how do you know you have a direct variation in the relationship between two quantities?
Plz help me I need help asap
D) -3
because the number should be less than -2 and greater than -6
so here only -3 satisfies the condition
At a high school basketball game 15% of the fans supported the visiting team.If the number of visiting supporters at the game was 75, what was the total number of fans at the game
Answer:500
Step-by-step explanation:
2. Determine the value of each variable for parallelogram INDY has diagonals that intersec at P.1P=3x DP = 6x - 2 NP = 3y and YP=7x-2,
Answer:
x = 2/3 and y = 8/9
Step-by-step explanation:
If a parallelogram INDY has diagonals that intersects at P, then O bisects ID and YN
Hence IP = PD and NP = YP
Given
IP=3x
DP = 6x - 2
NP = 3y and
YP=7x-2,
Substitute
3x = 6x-2
3x-6x = -2
-3x = -2
x = 2/3
x = 0.67
Also NP = YP
3y = 7x-2
3y = 7(2/3) - 2
3y = 14/3 - 2
3y = 14-6/3
3y = 8/3
9y = 8
y = 8/9
Hence x = 2/3 and y = 8/9
The magnitude and direction of two vectors are shown in the diagram. What is the magnitude of their sum?
Answer:
2√5
Step-by-step explanation:
Using the formula for calculating resultant
R = √Fx + Fy
\sum Fx = -2sin 45 + 4 cos 45
\sum Fx = 2cos45
\sum Fx = 2(1/√2)
\sum Fx = 2/√2
Similarly;
\sum Fy = 2 cos 45 + 4 sin45
\sum Fx = 2(1/√2) + 4(1/√2)
\sum Fx = 6/√2
Magnitude = √(2/√2)²+6/√2)²
Magnitude = √4/2 + 36/2
Magnitude = √2+18
Magnitude = √20
Magnitude = 2√5
Hence the magnitude of their sum is 2√5
Answer:
2√5
Step-by-step explanation:
Please help me with this
Answer:
True
Step-by-step explanation:
Cuz if u substitute (3,-3/2) it would work
Y = 1/2x - 3
-3/2 = 1/2(3)-3
-3/2 = 1.5 - 3
-3/2 = -1.5
& -3/2 is -1.5 as a decimal lol
help me please-1 = (5 + x)/6
Answer:
x= -11 I hope this helps!
Step-by-step explanation:
Answer:
x=-11
Step-by-step explanation:
/=division
*=multiplication
-1=(5+x)/6
-1*6=(5+x)/6*6
-6-5=5+x-5
-11=x
what is the measure of
Answer:
The measure or what?
Step-by-step explanation:
Answer:
we need a measure
Step-by-step explanation:
2x-7=-3x+18
solve for x
Answer:
x=5
Step-by-step explanation:
2x−7=−3x+18
Step 1: Add 3x to both sides.
2x−7+3x=−3x+18+3x
5x−7=18
Step 2: Add 7 to both sides.
5x−7+7=18+7
5x=25
Step 3: Divide both sides by 5.
5x
5
=
25
5
x=5
Answer:
x = 5
Step-by-step explanation:
2x - 7 = -3x + 18
2x - 7 + 7 = -3x + 18 + 7
2x = -3x + 25
2x + 3x = -3x + 25 + 3x
5x = 25
x = 5
What is the equation of a line that passes through the points 0,5 and 4,8 in slope intercept form
Answer:
y = 3/4 + b
Step-by-step explanation:
To get slope intercept form you need to have the y = then you need to find the slope which is y2 - y1 and x2 - x1, find the answer whether it be a fraction or a whole number. And since you don't know the y-intercept you mark the last integer as b, since you don't the answer. So it comes out to y = 3/4 + b
y = (3/4)x + 5
Using the two coordinates, you can find slope and y-intercept
y-intercept is 5, from the point (0,5)
slope is 3/4, from rise/run, and that 0 to 4 is 4, while 5 to 8 is 3.
Combine slope and y-intercept for slope intercept form
y = (3/4)x + 5
Solve for x:
3x - 4 = 20
Answer:
8
Step-by-step explanation:
3x - 4 = 20
add
3x = 24
divide
x = 8
I need help part d of this question
Answer:
D is 50,230,000,000
Step-by-step explanation:
explanation
510,000,000
9,600,000,000
244,000
50,230,000,000
can someone please help its due soon.ill give brainliest!
Step-by-step explanation:
LINE K is linear equation
y = mx + b
m = delta y/ delta x
= 6/3
= 2
b = y-intercept (at x = 0, y = 0)
y = 2x
13. Which expressions are equal?
a. 2(x + 3) + 2x and 4x + 3
b. 3(x + 2) + 4x and 7x + 6
C. 5x + 2(x + 4) and 6x + 8
d. 4 + 5(x + 2) and 5x + 11
Answer:
B
Step-by-step explanation:
3 x X = 3x 3 x 2 = 6 so 4x + 3x = 7x +6
what is the minimum value of the parabola y = x^2 + 10 ?
PRACTISE NOW 11
Ex
15
Mr Lee drove from City P to City Q, which are 600 km apart. During his return journey,
his average speed was increased by 7 km/h and the time taken was 15 minutes less.
() If he drove at an average speed of x km/h on his journey from City P to City Q,
formulate an equation in x and show that it reduces to x2 + 7x – 16 800 = 0.
(ii
) Solve the equation x² + 7x - 16 800 = 0, giving both your answers correct to
2 decimal places.
(iii) Find the time taken for the return journey.
Answer:
i. x² + 7x - 16800 = 0 ii. x = 126.16 km/h or -133.16 km/h iii. 5.01 h
Step-by-step explanation:
i. If he drove at an average speed of x km/h on his journey from City P to City Q formulate an equation in x and show that it reduces to x2 + 7x – 16 800 = 0.
For the first journey from City P to City Q, with Mr Lee moving at an average speed of x km/h, he reaches there in time, t and covers the distance, d = 600 km
So, xt = 600 (1)
On his return journey from City Q to CIty P, his average speed increases by 7 km/h, so it is (x + 7)km/h and his time is 15 minutes less than his first journey. 15 min = 15/60 h = 0.25 h, we have that his time for the journey is (t - 0.25) h. Since the distance covered is the same d = 600 km,
We have (x + 7)(t - 0.25) = 600 (2)
Expanding the brackets, we have
xt - 0.25x + 7t - 0.25(7) = 600
xt - 0.25x + 7t - 1.75 = 600
From (1) t = 600/x and xt = 600
Substituting these into the equation, we have
600 - 0.25x + 7(600/x) - 1.75 = 600
simplifying
-0.25x + 4200/x - 1.75 = 600 - 600
-0.25x + 4200/x - 1.75 = 0
multiplying through by x, we have
-0.25x² + 4200 - 1.75x = 0
dividing through by -0.25, we have
-0.25x²/-0.25 + 4200/-0.25 - 1.75x/-0.25 = 0
x² - 16800 + 7x = 0
re-arranging, we have
x² + 7x - 16800 = 0
ii. Solve the equation x² + 7x - 16 800 = 0, giving both your answers correct to 2 decimal places.
Using the quadratic formula, we solve x² + 7x - 16800 = 0 for x
So, [tex]x = \frac{-7 +/-\sqrt{7^{2} - 4 X 1 X -16800} }{2 X 1}\\x = \frac{-7 +/-\sqrt{49 + 67200} }{2} \\x = \frac{-7 +/-\sqrt{67249} }{2} \\x = \frac{-7 +/- 259.32}{2} \\x = \frac{-7 + 259.32}{2} or x = \frac{-7 - 259.32}{2} \\x = 252.32/2 or x= -266.32/2\\x = 126.16 km/hor x = -133.16 km/h[/tex]
So, x = 126.16 km/h or -133.16 km/h
iii. Find the time taken for the return journey
The time taken for the return journey is t' = t + 0.25. Now. t = 600/x
Since x cannot be negative, we use x = 126.16 km/h.
So, t = 600/x = 600/126.16 = 4.76 h
t' = t + 0.25
t' = 4.76 + 0.25
t' = 5.01 h
find the slope of the line that passes through the points (-2,6) and (9,-5)
Answer:
-1
Step-by-step explanation:
deltay/deltax
(6-(-5))/(-2-9)
11/-11
-1
Which fractions are less than 1 2 ? Select all that apply. A. 1 3 B. 4 6 C. 2 5 D. 5 8 E. 7 12
Answer:
Explanation below
Step-by-step explanation:
1/2 =0.5
1/3 = 0.333
4/6 = 0.667
2/5 = 0.4
5/8 = 0.625
7/12 = 0.583
The fractions less than 1/2 are:
1/3 and 2/5. (A and C).
HELPPPPPPP?:))))))))))
Answer:
5. X = 2, Y = 3
6. X = 3, Y = 8
Step-by-step explanation:
For 5, it is easier to use the substitution method to solve. Plug the Y equation into the Y value of the first equation and simplify.
-3x - 2(5x-7) = -12
-3x - 10x + 14 = -12
-13 = -26x
x = 2
Then, plug the X value into either equation.
y = 5(2) -7
y = 3
For 6, it is easier to use the elimination method to solve. Multiply the first equation by 2 in order to eliminate 4y.
10x - 4y = -2
x + 4y = 35
Add these equations and simplify.
11x = 33
x = 3
Then, plug the X value into either equation.
3 + 4y = 35
32 = 4y
y = 8
evaluate 2-(-4) +(-and) where Y = 7.
Answer:
2-4=4+7=11 so that is the answer begginer
Will give Branliest.
Thanks,
:)
Answer:
1) m=7
2) y=8
3)m=9
4) a=121
5) t=30
6)h=7
Noah's number is 15
S=15