Answer:
32kg = 313.6N
82kg = 803.6N
1000kg = 9800N
524N = 53.47kg
441N = 45kg
51N = 5.20kg
for the box diagram the weight of the 15kg box is 147N
the net force will be equal to zero because the box is motionless
Fg goes downward arrow of box 147N
Fnorm goes upward arrow of box 147N
1. State the law of conservation of energy and what it means for you as a human considering how energy works.
2. Explain how different forms of energy are related.
PLEASE I NEED HELP!! I NEED IT NOW!! AND PLEASE DO IT IN YOUR OWN WORDS!! THANK YOU!
Answer: 1. The law of consevation of energy sates that energy can neither be created nor destroyed. It can only be transformed or transfered from one form to another. The law of conservation of energy is found everywhere for example, Water falls from the sky, converting potential energy to kinetic energy.
2. Different forms of energy are related because energy cannot be created or destroyed. they can all be transformed into from one form to another.
Explanation:
Using your knowledge on personal care products, how does sunscreen
lotion protect your skin from the damaging effect of ultraviolet rays?
Explain why of x-rays and gamma rays are commonly used in
radiotherapy.
Answer:
Ultraviolet rays from sun are very harmful from skin and can cause sunburn and skin diseases especially ultraviolet B rays. A sunscreen lotion act as a protection barrier on the skin that restrict the direct contact of UV rays with skin and filter the harmful rays to enter the skin.
Radiotherapy is a medical therapy use to treat cancer. Radiotherapy commonly uses x-rays and gamma rays because they are high-energy particles or waves that kills or destroys the cancer cells.
Sunscreen lotion is able to filter this damaging ultraviolet radiation and prevent it from damaging the skin.
The sun reaches us from outer space brings ultraviolet rays to us. Ultraviolet rays are known to have some damaging effects on the skin. One way to protect our skin from this damaging ultraviolet rays is to use sunscreen lotion which is able to filter this damaging ultraviolet radiation and prevent it from damaging the skin.
X-rays and gamma rays are used in radiotherapy because they are light energy rays which are able to penetrate and destroy malignant cells in the body.
Learn more: https://brainly.com/question/13695751
An ideal monatomic gas initially has a temperature of 300 K and a pressure of 5.79 atm. It is to expand from volume 420 cm3 to volume 1450 cm3. If the expansion is isothermal, what are (a) the final pressure and (b) the work done by the gas
Answer:
a) The final pressure is 1.68 atm.
b) The work done by the gas is 305.3 J.
Explanation:
a) The final pressure of an isothermal expansion is given by:
[tex] T = \frac{PV}{nR} [/tex]
[tex] T_{i} = T_{f} [/tex]
[tex] \frac{P_{i}V_{i}}{nR} = \frac{P_{f}V_{f}}{nR} [/tex]
Where:
[tex]P_{i}[/tex]: is the initial pressure = 5.79 atm
[tex]P_{f}[/tex]: is the final pressure =?
[tex]V_{i}[/tex]: is the initial volume = 420 cm³
[tex]V_{f}[/tex]: is the final volume = 1450 cm³
n: is the number of moles of the gas
R: is the gas constant
[tex] P_{f} = \frac{P_{i}V_{i}}{V_{f}} = \frac{5.79 atm*420 cm^{3}}{1450 cm^{3}} = 1.68 atm [/tex]
Hence, the final pressure is 1.68 atm.
b) The work done by the isothermal expansion is:
[tex] W = P_{i}V_{i}ln(\frac{V_{f}}{V_{i}}) = 5.79 atm*\frac{101325 Pa}{1 atm}*420 cm^{3}*\frac{1 m^{3}}{(100 cm)^{3}}ln(\frac{1450 cm^{3}}{420 cm^{3}}) = 305.3 J [/tex]
Therefore, the work done by the gas is 305.3 J.
I hope it helps you!