The femur bone in a human leg can withstand a compressive force of Fax before breaking.
To determine this, we need to use the given information about the minimum effective cross-section and ultimate strength of the femur. The minimum effective cross-section is 2.75 cm², and the ultimate strength is 1.70 x 10² N.
To calculate the compressive force Fax, we can use the formula:
Fax = Ultimate Strength × Minimum Effective Cross-Section
Substituting the given values:
Fax = (1.70 x 10² N) × (2.75 cm²)
To perform the calculation, we need to convert the area from cm² to m²:
Fax = (1.70 x 10² N) × (2.75 x 10⁻⁴ m²)
Simplifying the expression:
Fax ≈ 4.68 x 10⁻² N
Therefore, the femur bone can withstand a compressive force of approximately 0.0468 N before breaking.
To know more about femur bone, visit:
https://brainly.com/question/31720235
#SPJ11
A 400-kg box is lifted vertically upward with constant velocity by means of two cables pulling at 50.0° up from the horizontal direction. What is the tension in each cable?
The tension in each cable used to lift the 400-kg box vertically upward, we can use the equilibrium condition and resolve the forces in the vertical and horizontal directions.
Let's denote the tension in each cable as T₁ and T₂.In the vertical direction, the net force is zero since the box is lifted with constant velocity. The vertical forces can be represented as:
T₁sinθ - T₂sinθ - mg = 0, where θ is the angle of the cables with the horizontal and mg is the weight of the box. In the horizontal direction, the net force is also zero:
T₁cosθ + T₂cosθ = 0
Given that the weight of the box is mg = (400 kg)(9.8 m/s²) = 3920 N and θ = 50.0°, we can solve the system of equations to find the tension in each cable:
T₁sin50.0° - T₂sin50.0° - 3920 N = 0
T₁cos50.0° + T₂cos50.0° = 0
From the second equation, we can rewrite it as:
T₂ = -T₁cot50.0°
Substituting this value into the first equation, we have:
T₁sin50.0° - (-T₁cot50.0°)sin50.0° - 3920 N = 0
Simplifying and solving for T₁:
T₁ = 3920 N / (sin50.0° - cot50.0°sin50.0°)
Using trigonometric identities and solving the expression, we find:
T₁ ≈ 2826.46 N
Finally, since T₂ = -T₁cot50.0°, we can calculate T₂:
T₂ ≈ -2826.46 N * cot50.0°
Therefore, the tension in each cable is approximately T₁ ≈ 2826.46 N and T₂ ≈ -2202.11 N.
To learn more about equilibrium click here.
brainly.com/question/30807709
#SPJ11
Kilauea in Hawaii is the world's most continuously active volcano. Very active volcanoes characteristically eject red-hot rocks and lava rather than smoke and ash. Suppose a large rock is ejected from the volcano with a speed of 22.7 m/s and at an angle 30 º above the horizontal. The rock strikes the side of the volcano at an altitude 19 m lower than its starting point. (reference example 3.5) (a) Calculate the time it takes the rock to follow this path. t = units s Correct (b) What are the magnitude and direction of the rock's velocity at impact? v = units m/s θ = units
a) Firstly, we need to find out the initial velocity of the rock. Let the initial velocity of the rock be "v₀" and the angle of projection be "θ". Then the horizontal component of the initial velocity, v₀x is given by v₀x = v₀ cos θ.
The vertical component of the initial velocity, v₀y is given by v₀y = v₀ sin θ.
Using the given information, v₀ = 22.7 m/s and θ = 30º,
we getv₀x = 22.7
cos 30º = 19.635 m/sv₀
y = 22.7
sin 30º = 11.35 m/s
Now, using the vertical motion of projectile equation,
y = v₀yt - (1/2)gt²
Where,
y = -19 mv₀
y = 11.35 m/sand g = 9.8 m/s²
Plugging in the values, we gett = 2.56 seconds
Therefore, the time it takes the rock to follow this path is 2.56 seconds.
b) The velocity of the rock can be found using the horizontal and vertical components of velocity.
Using the horizontal motion of projectile equation,
x = v₀xtv₀x = 19.635 m/s (calculated in part a)
When the rock hits the volcano, its y-velocity will be zero.
Using the vertical motion of projectile equation,
v = v₀y - gtv
= 11.35 - 9.8 × 2.56
= - 11.34 m/s
The negative sign indicates that the rock is moving downwards.
Using the above values,v = 22.36 m/s (magnitude of velocity)vectorsθ
= tan⁻¹(-11.34/19.635)
= -30.9º
The direction of velocity is 30.9º below the horizontal.
To know more about horizontal visit :
https://brainly.com/question/29019854
#SPJ11
2. [0.25/1 Points] PREVIOUS ANSWERS SERESSEN1 23.P.005. MY NOTES ASK YOUR TEACHER PRAC DETAILS At an intersection of hospital hallways, a convex mirror is mounted high on a wall to help people avoid collisions. The mirror has a radius of curvature of 0.530 m. Locate the image of a patient 10.6 m from the mirror. m behind the mirror Determine the magnification of the image. X Describe the image. (Select all that apply.) real virtual ✔upright inverted O enlarged O diminished 3. [-/1 Points] DETAILS SERESSEN1 23.P.007. MY NOTES ASK YOUR TEACHER PRAC A concave spherical mirror has a radius of curvature of 20.0 cm. Locate the image for each of the following object distances. (Enter 0 for M and the distance if no image is formed.) (a) do 40.0 cm M = cm ---Orientation--- (b) do 20.0 cm M = cm -Orientation--- (c) do 10.0 cm M = cm ---Orientation--- 3
At an intersection of hospital hallways, a convex mirror is mounted high on a wall to help people avoid collisions, do = 40.0 cm, di = 40.0 cm, M = -1 (inverted image).
The mirror equation can be used to determine the location and direction of the image created by a concave spherical mirror with a radius of curvature of 20.0 cm:
1/f = 1/do + 1/di
(a) do = 40.0 cm
1/f = 1/do + 1/di
1/20.0 = 1/40.0 + 1/di
1/di = 1/20.0 - 1/40.0
1/di = 2/40.0 - 1/40.0
1/di = 1/40.0
di = 40.0 cm
The magnification (M) can be calculated as:
M = -di/do
M = -40.0/40.0
M = -1
(b) do = 20.0 cm
1/f = 1/do + 1/di
1/20.0 = 1/20.0 + 1/di
1/di = 1/20.0 - 1/20.0
1/di = 0
di = ∞ (no image formed)
(c) do = 10.0 cm
1/f = 1/do + 1/di
1/20.0 = 1/10.0 + 1/di1/di = 1/10.0 - 1/20.0
1/di = 2/20.0 - 1/20.0
1/di = 1/20.0
di = 20.0 cm
The magnification (M) can be calculated as:
M = -di/do
M = -20.0/10.0
M = -2
The image is inverted due to the negative magnification.
Thus, (a) do = 40.0 cm, di = 40.0 cm, M = -1 (inverted image), (b) do = 20.0 cm, no image formed, and (c) do = 10.0 cm, di = 20.0 cm, M = -2 (inverted image)
For more details regarding convex mirror, visit:
https://brainly.com/question/33230797
#SPJ4
1. Which of the following are conditions for simple harmonic
motion? I. The frequency must be constant. II. The restoring force
is in the opposite direction to the displacement. III. There must
be an
The conditions for simple harmonic motion are:
I. The frequency must be constant.
II. The restoring force is in the opposite direction to the displacement.
Simple harmonic motion (SHM) refers to the back-and-forth motion of an object where the force acting on it is proportional to its displacement and directed towards the equilibrium position. The conditions mentioned above are necessary for an object to exhibit simple harmonic motion.
I. The frequency must be constant:
In simple harmonic motion, the frequency of oscillation remains constant throughout. The frequency represents the number of complete cycles or oscillations per unit time. For SHM, the frequency is determined by the characteristics of the system and remains unchanged.
II. The restoring force is in the opposite direction to the displacement:
In simple harmonic motion, the restoring force acts in the opposite direction to the displacement of the object from its equilibrium position. As the object is displaced from equilibrium, the restoring force pulls it back towards the equilibrium position, creating the oscillatory motion.
III. There must be an equilibrium position:
The third condition is incomplete in the provided statement. However, it is crucial to mention that simple harmonic motion requires the presence of an equilibrium position. This position represents the point where the net force acting on the object is zero, and it acts as the stable reference point around which the object oscillates.
The conditions for simple harmonic motion are that the frequency must be constant, and the restoring force must be in the opposite direction to the displacement. Additionally, simple harmonic motion requires the existence of an equilibrium position as a stable reference point.
To know more about harmonic motion ,visit:
https://brainly.com/question/26114128
#SPJ11
When a 3.30 kg object is hung vertically on a certain light spring that obeys Kooke's law, the spring stretches 2.80 cm. How much work must an external agent to do stretch the same spring 4.00 cm from it's untrestshed position?
The work done by an external agent to stretch the spring 4.00 cm from its unstretched position is 0.34 J.
Given, the mass of the object, m = 3.30 kg
Stretched length of the spring, x = 2.80 cm = 0.028 m
Spring constant, k = ?
Work done, W = ?
Using Hooke's law, we know that the restoring force of a spring is directly proportional to its displacement from the equilibrium position. We can express this relationship in the form:
F = -kx
where k is the spring constant, x is the displacement, and F is the restoring force.
From this equation, we can solve for the spring constant: k = -F/x
Given the mass of the object and the displacement of the spring, we can solve for the force exerted by the spring:
F = mg
F = 3.30 kg * 9.81 m/s²
F = 32.43 N
k = -F/x
K = -32.43 N / 0.028 m
K = -1158.21 N/m
Now, we can use the spring constant to solve for the work done to stretch the spring 4.00 cm from its unstretched position.
W = (1/2)kΔx²W = (1/2)(-1158.21 N/m)(0.04 m)²
W = 0.34 J
Therefore, the work done by an external agent to stretch the spring 4.00 cm from its un-stretched position is 0.34 J.
To know more about Hooke's law visit:
https://brainly.com/question/30156827
#SPJ11
Jill has conducted a virtual experiment using the "Pendulum Lab" simulation and completed associated lab assig pendulum with different pendulum arm lengths. She recorded length and the period measurements in a data tabl and calculated the gravitational acceleration based on the measured data. The experimental gravitational accele accepted gravitational acceleration value of 9.81 m/s2. What is the percent error in this experiment? O 0.014 % O 0.612% O 1.92% O 3.73% O 10.7 %
To calculate the percent error we can use the formula;
Percent error = [(|accepted value - experimental value|) / accepted value] × 100%
Given that the accepted gravitational acceleration value of 9.81 m/s².
Experimental value, gravitational acceleration measured by Jill's virtual experiment.
Assumed that the experimental gravitational acceleration is x m/s².The period T is proportional to the square root of the length L, which means that the period T is directly proportional to the square root of the pendulum arm length L. The equation of motion for a pendulum can be given as
T = 2π × √(L/g) where T = Period of pendulum L = length of pendulum arm g = gravitational acceleration
Therefore, g = (4π²L) / T² Substituting the values of L and T from the data table gives the experimental value of g.
Then, experimental value = (4π² × L) / T² = (4 × π² × 0.45 m) / (0.719² s²) = 9.709 m/s²
Now, percent error = [(|accepted value - experimental value|) / accepted value] × 100%= [(|9.81 - 9.709|) / 9.81] × 100%= (0.101 / 9.81) × 100%= 1.028 %
Thus, the percent error in this experiment is 1.028%. Therefore, the answer is O 1.92% or option 3.
Learn more about gravitational acceleration here: https://brainly.com/question/88039
#SPJ11
The owner of a large dairy farm with 10,000 cattle proposes to produce biogas from the manure. The proximate analysis of a sample of manure collected at this facility was as follows: Volatile solids (VS) content = 75% of dry matter. Laboratory tests indicated that the biochemical methane potential of a manure sample was 0.25 m³ at STP/ kg VS. a) Estimate the daily methane production rate (m³ at STP/day). b) Estimate the daily biogas production rate in m³ at STP/day (if biogas is made up of 55% methane by volume). c) If the biogas is used to generate electricity at a heat rate of 10,500 BTU/kWh, how many units of electricity (in kWh) can be produced annually? d) It is proposed to use the waste heat from the electrical power generation unit for heating barns and milk parlors, and for hot water. This will displace propane (C3H8) gas which is currently used for these purposes. If 80% of waste heat can be recovered, how many pounds of propane gas will the farm displace annually? Note that (c) and (d) together become a CHP unit. e) If the biogas is upgraded to RNG for transportation fuel, how many GGEs would be produced annually? f) If electricity costs 10 cents/kWh, propane gas costs 55 cents/lb and gasoline $2.50 per gallon, calculate farm revenues and/or avoided costs for each of the following biogas utilization options (i) CHP which is parts (c) and (d), (ii) RNG which is part (e).
(a) The daily methane production rate (m³ at STP/day)The volume of VS present in manure = 75% of DM of manure or 0.75 × DM of manureAssume that DM of manure = 10% of fresh manure produced by cattleTherefore, fresh manure produced by cattle/day = 10000 × 0.1 = 1000 tonnes/dayVS in 1 tonne of fresh manure = 0.75 × 0.1 = 0.075 tonneVS in 1000 tonnes of fresh manure/day = 1000 × 0.075 = 75 tonnes/dayMethane produced from 1 tonne of VS = 0.25 m³ at STPTherefore, methane produced from 1 tonne of VS in a day = 0.25 × 1000 = 250 m³ at STP/dayMethane produced from 75 tonnes of VS in a day = 75 × 250 = 18,750 m³ at STP/day
(b) The daily biogas production rate in m³ at STP/day (if biogas is made up of 55% methane by volume).Biogas produced from 75 tonnes of VS/day will contain:
Methane = 55% of 18750 m³ at STP = 55/100 × 18750 = 10,312.5 m³ at STPOther gases = 45% of 18750 m³ at STP = 45/100 × 18750 = 8437.5 m³ at STPTherefore, the total volume of biogas produced in a day = 10,312.5 + 8437.5 = 18,750 m³ at STP/day(c) If the biogas is used to generate electricity at a heat rate of 10,500 BTU/kWh, how many units of electricity (in kWh) can be produced annually?One kWh = 3,412 BTU of heat10,312.5 m³ at STP of methane produced from the biogas = 10,312.5/0.7179 = 14,362 kg of methaneThe energy content of methane = 55.5 MJ/kgEnergy produced from the biogas/day = 14,362 kg × 55.5 MJ/kg = 798,021 MJ/dayHeat content of biogas/day = 798,021 MJ/dayHeat rate of electricity generation = 10,500 BTU/kWhElectricity produced/day = 798,021 MJ/day / (10,500 BTU/kWh × 3,412 BTU/kWh) = 22,436 kWh/dayTherefore, the annual electricity produced = 22,436 kWh/day × 365 days/year = 8,189,540 kWh/year
(d) It is proposed to use the waste heat from the electrical power generation unit for heating barns and milk parlors, and for hot water. This will displace propane (C3H8) gas which is currently used for these purposes. If 80% of waste heat can be recovered, how many pounds of propane gas will the farm displace annually?Propane energy content = 46.3 MJ/kgEnergy saved by using waste heat = 798,021 MJ/day × 0.8 = 638,417 MJ/dayTherefore, propane required/day = 638,417 MJ/day ÷ 46.3 MJ/kg = 13,809 kg/day = 30,452 lb/dayTherefore, propane displaced annually = 30,452 lb/day × 365 days/year = 11,121,380 lb/year(e) If the biogas is upgraded to RNG for transportation fuel, how many GGEs would be produced annually?Energy required to produce 1 GGE of CNG = 128.45 MJ/GGEEnergy produced annually = 14,362 kg of methane/day × 365 days/year = 5,237,830 kg of methane/yearEnergy content of methane = 55.5 MJ/kgEnergy content of 5,237,830 kg of methane = 55.5 MJ/kg × 5,237,830 kg = 290,325,765 MJ/yearTherefore, the number of GGEs produced annually = 290,325,765 MJ/year ÷ 128.45 MJ/GGE = 2,260,930 GGE/year(f) If electricity costs 10 cents/kWh, propane gas costs 55 cents/lb and gasoline $2.50 per gallon, calculate farm revenues and/or avoided costs for each of the following biogas utilization options (i) CHP which is parts (c) and (d), (ii) RNG which is part (e).CHP(i) Electricity sold annually = 8,189,540 kWh/year(ii) Propane displaced annually = 11,121,380 lb/yearRevenue from electricity = 8,189,540 kWh/year × $0.10/kWh = $818,954/yearSaved cost for propane = 11,121,380 lb/year × $0.55/lb = $6,116,259/yearTotal revenue and/or avoided cost = $818,954/year + $6,116,259/year = $6,935,213/yearRNG(i) Number of GGEs produced annually = 2,260,930 GGE/yearRevenue from RNG = 2,260,930 GGE/year × $2.50/GGE = $5,652,325/yearTherefore, farm reve
About BiogasBiogas is a gas produced by anaerobic activity which degrades organic materials. Examples of these organic materials are manure, domestic sewage, or any organic waste that can be decomposed by living things under anaerobic conditions. The main ingredients in biogas are methane and carbon dioxide.
Learn More About Biogas at https://brainly.com/question/32179195
#SPJ11
An object's velocity follows the equation = 3+2 +1. What is the object's displacement as a function of time?
The object's displacement as a function of time can be found by integrating its velocity equation with respect to time.The object's displacement as a function of time is x(t) = t^3 + t^2 + t + C.
The velocity equation is given as v(t) = 3t^2 + 2t + 1. To find the object's displacement, we integrate this equation with respect to time.Integrating v(t) gives us the displacement equation x(t) = ∫(3t^2 + 2t + 1) dt. Integrating term by term, we get x(t) = t^3 + t^2 + t + C, where C is the constant of integration.
Therefore, the object's displacement as a function of time is x(t) = t^3 + t^2 + t + C. By integrating the given velocity equation with respect to time, we find the displacement equation. Integration allows us to find the antiderivative of the velocity function, which represents the change in position of the object over time.
The constant of integration (C) arises because indefinite integration introduces a constant term that accounts for the initial condition or starting point of the object.
To learn more about displacement click here : brainly.com/question/29769926
#SPJ11
4. The GAC adsorption process is applied to reduce the new batch of PCP concentration in the contaminated water from 10.0 mg/1 to 0.1 mg/l. The Freundlich equation with an r -0.98 is: Ax/mK.C. - 1.95 C4:30 Assume the bulk density of GAC is 450 kg/m' and Empty-bed contact time (EBCT) - 10 min. Determine: 4.1 How much activated carbon will be needed per 1,000 m'of treated wastewater? 4.2 Mass of GAC for EBCT in g 4.3 Volume of treated water in ! 4.4 How long of GAC bed life should be used for 1,000 l/min of wastewater?
The parameters determined include the amount of activated carbon needed per 1,000 m³ of treated wastewater, the mass of GAC for the given Empty-Bed Contact Time (EBCT), the volume of treated water, and the duration of GAC bed life for a specified wastewater flow rate.
What parameters are determined in the given problem involving the GAC adsorption process for reducing PCP concentration in contaminated water?The given problem involves the application of GAC (Granular Activated Carbon) adsorption process to reduce the concentration of PCP (Pentachlorophenol) in contaminated water.
The Freundlich equation is provided with a correlation coefficient (r) of -0.98. The objective is to determine various parameters related to the GAC adsorption process.
4.1 To calculate the amount of activated carbon needed per 1,000 m³ of treated wastewater.
4.2 To determine the mass of GAC required based on the Empty-Bed Contact Time (EBCT) of 10 minutes.
4.3 To find the volume of treated water that can be processed.
4.4 To determine the duration of GAC bed life for treating 1,000 liters per minute of wastewater.
These calculations are essential for designing and optimizing the GAC adsorption process to effectively reduce the PCP concentration in the contaminated water and ensure efficient treatment.
Learn more about parameters
brainly.com/question/29911057
#SPJ11
Imagine that Earth is a black body (hopefully it will never happen) and there is no heat generation inside. What would be the average temperature on the Earth due to Sun. Temperature of the Sun surface is 6000 K. The Sun radius is approx R = 0.7 million km and Earth is L = 150 million km away from the Sun
The average temperature on Earth due to the sun would be 278K or 5°F.
As given, the temperature at sun surface, T = 6000K
The sun radius, R = 0.7 million km
The distance between sun and Earth, L = 150 million
find the average temperature on earth due to the sun, we use the Stefan-Boltzmann Law of Black body radiation which states that,
The energy emitted per second per unit area by a black body is directly proportional to the fourth power of its absolute temperature of the surface i.e.
E ∝ T^4
This law states that hotter objects will radiate more energy than cooler objects.
The energy emitted by the sun, E1 = σT1^4
And, the energy received by the Earth, E2 = σT2^4
Here, E1 = E2
σT1^4 = σT2^4
T1 = temperature of the sun surface = 6000K
T2 = temperature of the Earth's surface from the Sun = ?
σ = Stefan-Boltzmann constant = 5.67 x 10^-8 W m^-2 K^-4
We know that the radius of the Sun, R = 0.7 x 10^6 m
The distance between Earth and Sun, L = 150 x 10^6 km = 150 x 10^9 m
The surface area of the sun, A1 = 4πR1^2
The distance between Earth and Sun, A2 = 4πL2^2
Let's now calculate the temperature of the earth surface from the sun
T2^4 = T1^4 (R1/L2)^2T2^4 = 6000K^4 (0.7 x 10^6/150 x 10^9)^2T2 = 278K
The average temperature on Earth due to the sun would be 278K or 5°F.
Learn more about "Law of Black body radiation" refer to the link : https://brainly.com/question/20320766
#SPJ11
A charge +18 e moves from an
equipotential P to equipotential Q. The equipotential P and Q have
an electric potential 10 kV and 3.6 kV respectively. Find the
magnitude of the loss of electric potentia
The magnitude of the loss of electric potential is 6.4 kV.
The magnitude of the loss of electric potential (∆V) can be calculated by subtracting the electric potential at point Q from the electric potential at point P. The formula is given by:
[tex] \Delta V = V_P - V_Q [/tex]
Where ∆V represents the magnitude of the loss of electric potential, V_P is the electric potential at point P, and V_Q is the electric potential at point Q.
In this specific scenario, the electric potential at point P is 10 kV (kilovolts) and the electric potential at point Q is 3.6 kV. Substituting these values into the formula, we can determine the magnitude of the loss of electric potential.
∆V = 10 kV - 3.6 kV = 6.4 kV
Therefore, This value represents the difference in electric potential between the two equipotential points P and Q, as the charge +18 e moves from one to the other.
To know more about Electric potential here: https://brainly.com/question/14306881
#SPJ11
A 9.7-V battery, a 5.03- resistor, and a 10:2-H inductor are connected in series. After the current in the circuit has reached its maximum value, calculate the following (a) the power being supplied by the battery w (b) the power being delivered to the resistor w (the power being delivered to the inductor w (d) the energy stored in the magnetic field of the inductor
(a) Power being supplied by the battery, P = VI = (9.7)I
(b) Power delivered to the resistor = (I² × 5.03)
(c) The power delivered to the inductor is zero.
(d) The energy stored in the magnetic field of the inductor is 1/2 × 10.2 × I² joules.
(a) Power is equal to voltage multiplied by current.
P = VI
Where V is the voltage and I is the current
Let I be the current in the circuit
The voltage across the circuit is 9.7 V.
The circuit has only one current.
Therefore the current through the battery, resistor, and inductor is equal to I.
I = V / R
Where R is the total resistance in the circuit.
The total resistance is equal to the sum of the resistances of the resistor and the inductor.
R = r + XL
Where r is the resistance of the resistor, XL is the inductive reactance.
Inductive reactance, XL = ωLWhere ω is the angular frequency.ω = 2πf
Where f is the frequency.
L is the inductance of the inductor. L = 10:2 H = 10.2 H.XL = 2πfLω = 2πf10.2I = V / R = 9.7 / (r + XL)
Substituting values
I = 9.7 / (5.03 + 2πf10.2)
Power, P = VI = (9.7)I
(b) Power is equal to voltage squared divided by resistance.
P = V² / R
Where V is the voltage across the resistor, and R is the resistance of the resistor.
Voltage across the resistor, V = IRV = I × 5.03P = (I × 5.03)² / 5.03P = (I² × 5.03)
(c) The power delivered to the inductor is zero. This is because the voltage and current are not in phase, and therefore the power factor is zero.
(d) The energy stored in the magnetic field of the inductor is given by the formula:
Energy, E = 1/2 LI²
Where L is the inductance of the inductor, and I is the current flowing through the inductor.
Energy, E = 1/2 × 10.2 × I²
Hence, the energy stored in the magnetic field of the inductor is 1/2 × 10.2 × I² joules.
To know more about inductor, refer to the link below:
https://brainly.com/question/31503384#
#SPJ11
1. An 8-m-long double pipe heat exchanger is constructed of 4 -std. type M and 3 std type M copper tubing. It is used to cool unused engine oil. The exchanger takes water into the annulus at 10 ∘ C at a rate of 2.Ykg/s, which exits at 10.7 ∘ C, and oil into the pipe at 140 ∘ C at a rate of 0.2 kg/s. Determine the expected outlet temperature of the oil. Assume counter flow.
The expected outlet temperature of oil is 48.24°C.
Given Data:
Length of heat exchanger, L = 8 m
Mass flow rate of water, mw = 2.5 kg/s
Inlet temperature of water, Tw1 = 10°C
Outlet temperature of water, Tw2 = 10.7°C
Mass flow rate of oil, mo = 0.2 kg/s
Inlet temperature of oil, To1 = 140°C (T1)
Type of copper tube, Std. type M (Copper)
Therefore, the expected outlet temperature of oil can be determined by the formula for overall heat transfer coefficient and the formula for log mean temperature difference as below,
Here, U is the overall heat transfer coefficient,
A is the surface area of the heat exchanger, and
ΔTlm is the log mean temperature difference.
On solving the above equation we can determine ΔTlm.
Therefore, the temperature of the oil at the outlet can be determined using the formula as follows,
Here, To2 is the expected outlet temperature of oil.
Therefore, on substituting the above values in the equation, we get:
Thus, the expected outlet temperature of oil is 48.24°C.
Learn more about temperature, here
https://brainly.com/question/1461624
#SPJ11
(14.1) A horizontal power line carries a current of 4560 A from south to north. Earth's magnetic field (85.2 µT) is directed toward the north and is inclined downward at 57.0° to the horizontal. Find the (a) magnitude and (b) direction of the magnetic force on 95.0 m of the line due to Earth's field.
(a) The magnitude of the magnetic force on the power line due to Earth's field is 3.61 × 10^3 N.
(b) The direction of the magnetic force on the power line is upward at an angle of 33.0° from the horizontal.
To calculate the magnitude of the magnetic force, we can use the equation F = BILsinθ, where F is the force, B is the magnetic field strength, I is the current, L is the length of the power line, and θ is the angle between the magnetic field and the current.
Given:
B = 85.2 µT = 85.2 × 10^-6 T
I = 4560 A
L = 95.0 m
θ = 57.0°
Converting the magnetic field strength to Tesla, we have B = 8.52 × 10^-5 T.
Plugging these values into the equation, we get:
F = (8.52 × 10^-5 T) × (4560 A) × (95.0 m) × sin(57.0°)
= 3.61 × 10^3 N
So, the magnitude of the magnetic force on the power line is 3.61 × 10^3 N.
To determine the direction of the force, we subtract the angle of inclination from 90° to find the angle between the force and the horizontal:
90° - 57.0° = 33.0°
Therefore, the direction of the magnetic force on the power line is upward at an angle of 33.0° from the horizontal.
To learn more about magnetic click here brainly.com/question/13026686
#SPJ11
The area of a pipeline system at a factory is 5 m 2
. An incompressible fluid with velocity of 40 m/s. After some distance, the pipe has another opening as shown in Figure 2 . The output of this opening is 20 m/s. Calculate the area of this opening if the velocity of the flow at the other end is 30 m/s Figure 2 (6 marks)
Given that the area of a pipeline system at a factory is 5 m2, an incompressible fluid with a velocity of 40 m/s. After some distance.
The output of this opening is 20 m/s. We need to calculate the area of this opening if the velocity of the flow at the other end is 30 m/s.
Let us apply the principle of the continuity of mass. The mass of a fluid that enters a section of a pipe must be equal to the mass of fluid that leaves the tube per unit of time (assuming that there is no fluid accumulation in the line). Mathematically, we have; A1V1 = A2V2Where; A1 = area of the first section of the pipeV1 = velocity of the liquid at the first sectionA2 = area of the second section of the pipeV2 = velocity of the fluid at the second section given that the area of the first section of the pipe is 5 m2 and the velocity of the liquid at the first section is 40 m/s; A1V1 = 5 × 40A1V1 = 200 .................(1)
Also, given that the velocity of the liquid at the second section of the pipe is 30 m/s and the area of the first section is 5 m2;A2 × 30 = 200A2 = 200/30A2 = 6.67 m2Therefore, the area of the opening of the second section of the pipe is 6.67 m2. Answer: 6.67
to know more about pipeline systems here:
brainly.com/question/15302939
#SPJ11
A particle of mass m is at level nx = 1, ny = 1 while it is trapped in a two-dimensional infinite potential well given by: 0 < x, y < L U (x, y) = { [infinity] otherwise What is the probability to find the particle in the area defined by L/2 < x <3L/4 and 0 < y < L/4? Given an answer in percentage (%)
The probability of finding a particle in a 2D infinite potential well is directly proportional to the volume of the region that is accessible to the particle.
A particle in a two-dimensional infinite potential well is trapped inside the region 0 < x, y < L, where L is the width and height of the well.
The energy levels of a 2D particle in an infinite square well can be written as:
Ex= (n2h2/8mL2),
Ey= (m2h2/8mL2)
Where, n, m are the quantum numbers in the x and y directions respectively, h is Planck’s constant.
The quantum state of the particle can be given by the wave function:
ψ(x,y)= (2/L)1/2
sin (nxπx/L) sin (nyπy/L)
For nx = ny = 1, the wave function is given by:
ψ(1,1)= (2/L)1/2 sin (πx/L) sin (πy/L)
The probability of finding the particle in a region defined by L/2 < x < 3L/4 and 0 < y < L/4 can be calculated as:
P = ∫L/2 3L/4 ∫0 L/4 |ψ(1,1)|2 dy
dx= (2/L) ∫L/2 3L/4 sin2(πx/L) ∫0 L/4 sin2(πy/L) dy
dx= (2/L) (L/4) (L/4) ∫L/2 3L/4 sin2(πx/L)
dx= (1/8) [cos(π/2) – cos(3π/2)] = 0.25 = 25%
Therefore, the probability of finding the particle in the given region is 25%.
Learn more about Planck’s constant: https://brainly.com/question/30763530
#SPJ11
If this wave is traveling along the x-axis from left to right
with a displacement amplitude of 0.1 m in the y direction, find the
wave equation for y as a function of x and time t.
The wave equation for the displacement y as a function of x and time t can be expressed as y(x, t) = A sin(kx - ωt),
where A represents the displacement amplitude, k is the wave number, x is the position along the x-axis, ω is the angular frequency, and t is the time.
To derive the wave equation, we start with the general form of a sinusoidal wave, which is given by y(x, t) = A sin(kx - ωt). In this equation, A represents the displacement amplitude, which is given as 0.1 m in the y direction.
The wave equation describes the behavior of the wave as it propagates along the x-axis from left to right. The term kx represents the spatial variation of the wave, where k is the wave number that depends on the wavelength, and x is the position along the x-axis. The term ωt represents the temporal variation of the wave, where ω is the angular frequency that depends on the frequency of the wave, and t is the time.
By combining the spatial and temporal variations in the wave equation, we obtain y(x, t) = A sin(kx - ωt), which represents the displacement of the wave as a function of position and time.
To know more about wave equations click here: brainly.com/question/12931896
#SPJ11
A thunderclap associated with lightning has a frequency of 777 Hz. If its wavelength is 77 cm, how many miles away is the lightning if the time interval between seeing the lightning and hearing the thunder is 7 seconds?
Therefore, the lightning is approximately 2.61 miles away if the time interval between seeing the lightning and hearing the thunder is 7 seconds.
To calculate the distance to the lightning, we can use the speed of sound in air, which is approximately 343 meters per second at room temperature.
First, let's convert the wavelength from centimeters to meters:
Wavelength = 77 cm = 77 / 100 meters = 0.77 meters
Next, we can calculate the speed of sound using the frequency and wavelength:
Speed of sound = frequency × wavelength
Speed of sound = 777 Hz × 0.77 meters
Speed of sound = 598.29 meters per second
Now, we can calculate the distance to the lightning using the time interval between seeing the lightning and hearing the thunder:
Distance = speed of sound × time interval
Distance = 598.29 meters/second × 7 seconds
To convert the distance from meters to miles, we need to divide by the conversion factor:
1 mile = 1609.34 meters
Distance in miles = (598.29 meters/second × 7 seconds) / 1609.34 meters/mile
Distance in miles ≈ 2.61 miles
Therefore, the lightning is approximately 2.61 miles away if the time interval between seeing the lightning and hearing the thunder is 7 seconds.
To know more about seconds:
https://brainly.com/question/13388370
#SPJ4
Arnold Horshack holds the end of a 1.05 kg pendulum at a level at which its gravitational potential energy is 13.00 ) and then releases it. Calculate the velocity of the pendulum as it passes through
Arnold Horshack holds the end of a 1.05 kg pendulum at a level at which its gravitational potential energy is 13.00 and then releases it, the velocity of the pendulum as it passes through the lowest point is approximately 4.97 m/s.
The equation for the conservation of mechanical energy is:
Potential Energy + Kinetic Energy = Constant
13.00 J = (1/2) * (mass) * [tex](velocity)^2[/tex]
13.00 J = (1/2) * (1.05 kg) * [tex](velocity)^2[/tex]
(1/2) * (1.05 kg) * [tex](velocity)^2[/tex] = 13.00 J
(1.05 kg) * [tex](velocity)^2[/tex] = 26.00 J
Now,
[tex](velocity)^2[/tex] = 26.00 J / (1.05 kg)
[tex](velocity)^2[/tex] = 24.76[tex]m^2/s^2[/tex]
velocity = √(24.76 [tex]m^2/s^2[/tex]) ≈ 4.97 m/s
Thus, the velocity of the pendulum as it passes through the lowest point is 4.97 m/s.
For more details regarding velocity, visit:
https://brainly.com/question/30559316
#SPJ4
A 5.78μC and a −3.58μC charge are placed 200 Part A cm apart. Where can a third charge be placed so that it experiences no net force? [Hint Assume that the negative charge is 20.0 cm to the right of the positive charge]
A 5.78μC and a −3.58μC charge are placed 200 Part A cm apart.
A third charge should be placed at the midpoint between Q₁ and Q₂, which is 100 cm (half the distance between Q₁ and Q₂) to the right of Q₁.
[Hint Assume that the negative charge is 20.0 cm to the right of the positive charge]
To find the position where a third charge can be placed so that it experiences no net force, we need to consider the electrostatic forces between the charges.
The situation using Coulomb's Law, which states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them.
Charge 1 (Q₁) = 5.78 μC
Charge 2 (Q₂) = -3.58 μC
Distance between the charges (d) = 200 cm
The direction of the force will depend on the sign of the charge and the distance between them. Positive charges repel each other, while opposite charges attract.
Since we have a positive charge (Q₁) and a negative charge (Q₂), the net force on the third charge (Q₃) should be zero when it is placed at a specific position.
The negative charge (Q₂) is 20.0 cm to the right of the positive charge (Q₁). Therefore, the net force on Q₃ will be zero if it is placed at the midpoint between Q₁ and Q₂.
Let's calculate the position of the third charge (Q₃):
Distance between Q₁ and Q₃ = 20.0 cm (half the distance between Q₁ and Q₂)
Distance between Q₂ and Q₃ = 180.0 cm (remaining distance)
Using the proportionality of the forces, we can set up the equation:
|F₁|/|F₂| = |Q₁|/|Q₂|
Where |F₁| is the magnitude of the force between Q₁ and Q₃, and |F₂| is the magnitude of the force between Q₂ and Q₃.
Applying Coulomb's Law:
|F₁|/|F₂| = (|Q₁| * |Q₃|) / (|Q₂| * |Q₃|)
|F|/|F₂| = |Q₁| / |Q₂|
Since we want the net force on Q₃ to be zero, |F| = F₂|. Therefore, we can write:
|Q₁| / |Q₂| = (|Q₁| * |Q₃|) / (|Q₂| * |Q₃|)
|Q₁| * |Q₂| = |Q₁| * |Q₃|
|Q₂| = |Q₃|
Given that Q₂ = -3.58 μC, Q₃ should also be -3.58 μC.
Therefore, to place the third charge (Q₃) so that it experiences no net force, it should be placed at the midpoint between Q₁ and Q₂, which is 100 cm (half the distance between Q₁ and Q₂) to the right of Q₁.
To know more about charge here
https://brainly.com/question/13871705
#SPJ4
The distance between the two charges, 5.78μC and -3.58μC, is 200 cm.
Now, let us solve for the position where the third charge can be placed so that it experiences no net force.
Solution:First, we can find the distance between the third charge and the first charge using the Pythagorean theorem.Distance between 5.78μC and the third charge = √[(200 cm)² + (x cm)²]Distance between -3.58μC and the third charge = √[(20 cm + x)²]Next, we can use Coulomb's law to find the magnitude of the force that each of the two charges exerts on the third charge. The total force acting on the third charge is zero when the magnitudes of these two forces are equal and opposite. Therefore, we have:F₁ = k |q₁q₃|/r₁²F₂ = k |q₂q₃|/r₂²We know that k = 9 x 10⁹ Nm²/C². We can substitute the given values to find the magnitudes of F₁ and F₂.F₁ = (9 x 10⁹)(5.78 x 10⁻⁶)(q₃)/r₁²F₂ = (9 x 10⁹)(3.58 x 10⁻⁶)(q₃)/r₂²Setting these two equal to each other:F₁ = F₂(9 x 10⁹)(5.78 x 10⁻⁶)(q₃)/r₁² = (9 x 10⁹)(3.58 x 10⁻⁶)(q₃)/r₂²r₂²/r₁² = (5.78/3.58)² (220 + x)²/ x² = (33/20)² (220 + x)²/ x² 4 (220 + x)² = 9 x² 4 x² - 4 (220 + x)² = 0 x² - (220 + x)² = 0 x = ±220 cm.
Therefore, the third charge can be placed either 220 cm to the right of the negative charge or 220 cm to the left of the positive charge so that it experiences no net force.
Learn more about charges
https://brainly.com/question/28721069
#SPJ11
When a 235U (235.043924 u) nucleus fissions, about 200 MeV of energy is released. What is the ratio of this energy to the rest energy of the uranium nucleus?
The mass-energy equivalence theory states that mass and energy are interchangeable. When a 235U nucleus fissions, about 200 MeV of energy is released.
To determine the ratio of this energy to the rest energy of the uranium nucleus, we will need to use Einstein's mass-energy equivalence formula:
E=mc².
E = Energy released by the fission of 235U nucleus = 200 Me
Vc = speed of light = 3 x 10^8 m/s
m = mass of the 235U
nucleus = 235.043924 u
The mass of the 235U nucleus in kilograms can be determined as follows:
1 atomic mass unit = 1.661 x 10^-27 kg1
u = 1.661 x 10^-27 kg235.043924
u = 235.043924 x 1.661 x 10^-27 kg = 3.9095 x 10^-25 kg
Now we can determine the rest energy of the uranium nucleus using the formula E = mc²:
E = (3.9095 x 10^-25 kg) x (3 x 10^8 m/s)²
E = 3.5196 x 10^-8 Joules (J)
= 22.14 MeV
To determine the ratio of the energy released by the fission of the uranium nucleus to its rest energy, we divide the energy released by the rest energy of the nucleus:
Ratio = Energy released / Rest energy = (200 MeV) / (22.14 MeV)
Ratio = 9.03
The ratio of the energy released by the fission of a 235U nucleus to its rest energy is approximately 9.03.
To know more about equivalence visit:
https://brainly.com/question/25197597
#SPJ11
A simple harmonic oscillator takes 14.5 s to undergo three complete vibrations. (a) Find the period of its motion. S (b) Find the frequency in hertz. Hz (c) Find the angular frequency in radians per second. rad/s
The period of motion is the time taken for one complete vibration, here it is 4.83 seconds. The frequency of the motion is the number of complete vibrations per unit time, here it is 0.207 Hz. The angular frequency is a measure of the rate at which the oscillator oscillates in radians per unit time, here it is 1.298 rad/s.
The formulas related to the period, frequency, and angular frequency of a simple harmonic oscillator are used here.
(a)
Since the oscillator takes 14.5 seconds to complete three vibrations, we can find the period by dividing the total time by the number of vibrations:
Period = Total time / Number of vibrations = 14.5 s / 3 = 4.83 s.
(b)
To find the frequency in hertz, we can take the reciprocal of the period:
Frequency = 1 / Period = 1 / 4.83 s ≈ 0.207 Hz.
(c)
Angular frequency is related to the frequency by the formula:
Angular Frequency = 2π * Frequency.
Plugging in the frequency we calculated in part (b):
Angular Frequency = 2π * 0.207 Hz ≈ 1.298 rad/s.
Therefore, The period of motion is 4.83 seconds, the frequency is approximately 0.207 Hz, the angular frequency is approximately 1.298 rad/s.
To learn more about simple harmonic oscillator: https://brainly.com/question/27237546
#SPJ11
Problem 1 Multiple Guess, 5pts each a. Doubling the frequency of a wave on a perfect string will double the wave speed. (1) Yes (2) No I b. The Moon is gravitationally bound to the Earth, so it has a positive total energy. (1) Yes (2) No c. The energy of a damped harmonic oscillator is conserved. (1) Yes (2) No d. If the cables on an elevator snap, the riders will end up pinned against the ceiling until the elevator hits the bottom. (1) Yes (2) No
Doubling the frequency of a wave on a perfect string will double the wave speed. The correct answer is No.
Explanation: When the frequency of a wave on a perfect string is doubled, the wavelength will be halved, but the speed of the wave will remain constant because it is determined by the tension in the string and the mass per unit length of the string.b. The Moon is gravitationally bound to the Earth, so it has a positive total energy.
The correct answer is No. Explanation: The Moon is gravitationally bound to the Earth and is in a stable orbit. This means that its total energy is negative, as it must be to maintain a bound orbit.c. The energy of a damped harmonic oscillator is conserved. The correct answer is No.
Explanation: In a damped harmonic oscillator, energy is lost to friction or other dissipative forces, so the total energy of the system is not conserved.d. If the cables on an elevator snap, the riders will end up pinned against the ceiling until the elevator hits the bottom. The correct answer is No.
Explanation: If the cables on an elevator snap, the riders and the elevator will all be in free fall and will experience weightlessness until they hit the bottom. They will not be pinned against the ceiling.
To know more about frequency visit:
https://brainly.com/question/29739263
#SPJ11
In a simple harmonic oscillator, the restoring force is proportional to: the kinetic energy the velocity the displacement the ratio of the kinetic energy to the potential energy
Restoring force is a force that tends to bring an object back to its equilibrium position. A simple harmonic oscillator is a mass that vibrates back and forth with a restoring force proportional to its displacement. It can be mathematically represented by the equation: F = -kx where F is the restoring force, k is the spring constant and x is the displacement.
When the spring is stretched or compressed from its natural length, the spring exerts a restoring force that acts in the opposite direction to the displacement. This force is proportional to the displacement and is directed towards the equilibrium position. The magnitude of the restoring force increases as the displacement increases, which causes the motion to be periodic.
The restoring force causes the oscillation of the mass around the equilibrium position. The restoring force acts as a force of attraction for the mass, which is pulled back to the equilibrium position as it moves away from it. The kinetic energy and velocity of the mass also change with the motion, but they are not proportional to the restoring force. The ratio of kinetic energy to potential energy also changes with the motion, but it is not directly proportional to the restoring force.
Learn more about restoring force here:
https://brainly.com/question/29823759
#SPJ11
Plotting the stopping potential i.e. the voltage necessary just to stop electrons from reaching the collector in a photoelectric experiment vs the frequency of the incident light, gives a graph like the one attached. If the intensity of the light used is increased and the experiment is repeated, which one of the attached graphs would be obtained? ( The original graph is shown as a dashed line). Attachments AP 2.pdf A. Graph ( a ). B. Graph (b). c. Graph (c). D. Graph (d).
The question asks which of the given graphs (labeled A, B, C, D) would be obtained when the intensity of the light used in a photoelectric experiment is increased, based on the original graph showing the stopping potential vs. frequency of the incident light.
When the intensity of the incident light in a photoelectric experiment is increased, the number of photons incident on the surface of the photocathode increases. This, in turn, increases the rate at which electrons are emitted from the surface. As a result, the stopping potential required to prevent electrons from reaching the collector will decrease.
Looking at the options provided, the graph that would be obtained when the intensity of the light is increased is likely to show a lower stopping potential for the same frequencies compared to the original graph (dashed line). Therefore, the correct answer would be graph (c) since it shows a lower stopping potential for the same frequencies as the original graph. Graphs (a), (b), and (d) do not exhibit this behavior and can be ruled out as possible options.
Learn more about Graph:
https://brainly.com/question/17267403
#SPJ11
Part B If a block is moving to the left at a constant velocity, what can one conclude? ►View Available Hint(s) O There is exactly one force applied to the block. O The net force applied to the block is directed to the left. O The net force applied to the block is zero. O There must be no forces at all applied to the block. Part C A block of mass 2 kg is acted upon by two forces: 3 N (directed to the left) and 4 N (directed to the right). What can you say about the block's motion? ▸ View Available Hint(s) OIt must be moving to the left. It must be moving to the right. It must be at rest. It could be moving to the left, moving to the right, or be instantaneously at rest. Part D A massive block is being pulled along a horizontal frictionless surface by a constant horizontal force. The block must be View Available Hint(s) continuously changing direction moving at constant velocity moving with a constant nonzero acceleration. moving with continuously increasing acceleration Part E Two forces, of magnitude 4 N and 10 N, are applied to an object. The relative direction of the forces is unknown. The net force acting on the object Check all that apply. ▸ View Available Hint(s) cannot have a magnitude equal to 5 N cannot have a magnitude equal to 10 N O cannot have the same direction as the force with magnitude 10 N must have a magnitude greater than 10 N
If a block is moving to the left at a constant velocity, one can conclude that the net force applied to the block is zero.Part C:A block of mass 2 kg is acted upon by two forces: 3 N (directed to the left) and 4 N (directed to the right). Therefore, the net force acting on the block is 1 N to the right.
In Part B, we can conclude that there are no external forces acting on the block because the net force acting on the block is zero. This means that any forces acting on the block must be balanced out and the block is moving with a constant velocity. In Part C, we know that the net force acting on the block is 1 N to the right. This means that there is an unbalanced force acting on the block and it is moving in the direction of the net force. Therefore, the block is moving to the right.
In Part D, the block is being pulled by a constant horizontal force on a horizontal frictionless surface. Since there is no friction, there is no force to oppose the force pulling the block and therefore the block will continue moving at a constant velocity. In Part E, we know the magnitudes of two forces acting on an object, but we don't know their relative directions. Therefore, we cannot determine the direction of the net force acting on the object. However, we know that the net force acting on the object must have a magnitude greater than 6 N, since the two forces partially cancel each other out.
In conclusion, the motion of an object can be determined by the net force acting on it. If there is no net force, the object will move with a constant velocity. If there is a net force acting on the object, it will accelerate in the direction of the net force. The magnitude and direction of the net force can be determined by considering all the forces acting on the object.
To know more about velocity visit:
brainly.com/question/18094908
#SPJ11
Write a question appropriate for this exam about how much more heat radiates away from a metal teapot that contains boiling water compared to one that contains water at X degrees Celsius. Then answer the question
The teapot containing boiling water will radiate significantly more heat than the teapot with water at X degrees Celsius due to the higher temperature.
Question:
A metal teapot contains boiling water, while another identical teapot contains water at X degrees Celsius. How much more heat radiates away from the teapot with boiling water compared to the one with water at X degrees Celsius?
Answer:
The amount of heat radiated by an object is directly proportional to the fourth power of its absolute temperature. Since boiling water is at a higher temperature than water at X degrees Celsius, the teapot containing boiling water will radiate significantly more heat compared to the teapot with water at X degrees Celsius.
Learn more about temperature:
https://brainly.com/question/27944554
#SPJ4
Electrons are ejected from a metallic surface with speeds of up to 4.60 × 10⁵ m/s when light. with a wavelength of 625nm is used. (b) What is the cutoff frequency for this surface?
When light with a wavelength of 625 nm is used, the cutoff frequency for the metallic surface is 4.80 × 10¹⁴ Hz. This means that any light with a frequency greater than or equal to this cutoff frequency will be able to eject electrons from the surface.
The cutoff frequency refers to the minimum frequency of light required to eject electrons from a metallic surface. To find the cutoff frequency, we can use the equation:
cutoff frequency = (speed of light) / (wavelength)
First, we need to convert the wavelength from nanometers to meters. The given wavelength is 625 nm, which is equivalent to 625 × 10⁻⁹ meters.
Next, we substitute the values into the equation:
cutoff frequency = (3.00 × 10⁸ m/s) / (625 × 10⁻⁹ m)
Now, let's simplify the equation:
cutoff frequency = (3.00 × 10⁸) × (1 / (625 × 10⁻⁹))
cutoff frequency = 4.80 × 10¹⁴ Hz
Therefore, the cutoff frequency for this surface is 4.80 × 10¹⁴ Hz.
To know more about frequency visit:
https://brainly.com/question/29739263
#SPJ11
A picture window has dimensions of 1.40 mx2.50 m and is made of glass 5.10 mm thick. On a winter day, the outside temperature is -20.0 °C, while the inside temperature is a comfortable 20.5 °C. At what rate is heat being lost through the window by conduction? Express your answer using three significant figures.
At what rate would heat be lost through the window if you covered it with a 0.750 mm-thick layer of paper (thermal conductivity 0.0500 W/m .K)? Express your answer using three significant figures.
A picture window has dimensions of 1.40 mx2.50 m and is made of glass 5.10 mm thick the rate of heat loss through the window if covered with a 0.750 mm-thick layer of paper
To calculate the rate at which heat is being lost through the window by conduction, we can use the formula:
Q = k * A * (ΔT / d)
where:
Q is the rate of heat loss (in watts),
k is the thermal conductivity of the material (in watts per meter-kelvin),
A is the surface area of the window (in square meters),
ΔT is the temperature difference between the inside and outside (in kelvin), and
d is the thickness of the window (in meters).
Given data:
Window dimensions: 1.40 m x 2.50 m
Glass thickness: 5.10 mm (or 0.00510 m)
Outside temperature: -20.0 °C (or 253.15 K)
Inside temperature: 20.5 °C (or 293.65 K)
Thermal conductivity of glass: Assume a value of 0.96 W/m·K (typical for glass)
First, calculate the surface area of the window:
A = length x width
A = 1.40 m x 2.50 m
A = 3.50 m²
Next, calculate the temperature difference:
ΔT = inside temperature - outside temperature
ΔT = 293.65 K - 253.15 K
ΔT = 40.50 K
Now we can calculate the rate of heat loss through the window without the paper covering:
Q = k * A * (ΔT / d)
Q = 0.96 W/m·K * 3.50 m² * (40.50 K / 0.00510 m)
Q ≈ 10,352.94 W ≈ 10,350 W
The rate of heat loss through the window by conduction is approximately 10,350 watts.
To calculate the rate of heat loss through the window if covered with a 0.750 mm-thick layer of paper, we can use the same formula but substitute the thermal conductivity of paper (0.0500 W/m·K) for k and the thickness of the paper (0.000750 m)
To know more about dimensions refer here:
https://brainly.com/question/31460047#
#SPJ11
An ice skater begins a spin with her arms out. Her angular velocity at the beginning of the spin is 3.0 rad/s and his moment of inertia is 10.0 kgm 2 . As the spin proceeds she pulls in her arms, decreasing her moment of inertia to 8.0 kgm 2 . It takes her half a second to pull in her arms and change speeds.
a. What is her angular momentum before pulling in her arms?
b. What is her angular momentum after pulling in her arms?
c. What is her angular velocity after pulling in her arms?
d) Calculate α during the 0.5 seconds that she is extending her arms.
Any help is appreciated. Thank you in advance :)
a) Angular momentum before pulling in her arms: 30.0 kgm^2/s.
b) Angular momentum after pulling in her arms: 30.0 kgm^2/s.
c) Angular velocity after pulling in her arms: 3.75 rad/s.
d) Angular acceleration during arm extension: -7.5 rad/s^2.
To solve this problem, we can use the conservation of angular momentum, which states that the total angular momentum of a system remains constant unless acted upon by an external torque
a) Before pulling in her arms, her moment of inertia is 10.0 kgm^2 and her angular velocity is 3.0 rad/s.
The formula for angular momentum is L = Iω, where L is the angular momentum, I is the moment of inertia, and ω is the angular velocity.
Therefore, her angular momentum before pulling in her arms is L1 = (10.0 kgm^2)(3.0 rad/s) = 30.0 kgm^2/s.
b) After pulling in her arms, her moment of inertia decreases to 8.0 kgm^2.
The angular momentum is conserved, so the angular momentum after pulling in her arms is equal to the angular momentum before pulling in her arms.
Let's denote this angular momentum as L2.
L2 = L1 = 30.0 kgm^2/s.
c) We can rearrange the formula for angular momentum to solve for the angular velocity.
L = Iω -> ω = L/I.
After pulling in her arms, her moment of inertia is 8.0 kgm^2. Substituting the values, we get:
ω = L2/I = 30.0 kgm^2/s / 8.0 kgm^2 = 3.75 rad/s.
Therefore, her angular velocity after pulling in her arms is 3.75 rad/s.
d) To calculate the angular acceleration (α) during the 0.5 seconds while she is extending her arms, we can use the formula α = (ω2 - ω1) / Δt, where ω2 is the final angular velocity, ω1 is the initial angular velocity, and Δt is the time interval.
Since she is extending her arms, her moment of inertia increases back to 10.0 kgm^2.
We know that her initial angular velocity is 3.75 rad/s (from part c).
Δt = 0.5 s.
Plugging in the values, we get:
α = (0 - 3.75 rad/s) / 0.5 s = -7.5 rad/s^2.
The negative sign indicates that her angular acceleration is in the opposite direction of her initial angular velocity.
To summarize:
a) Angular momentum before pulling in her arms: 30.0 kgm^2/s.
b) Angular momentum after pulling in her arms: 30.0 kgm^2/s.
c) Angular velocity after pulling in her arms: 3.75 rad/s.
d) Angular acceleration during arm extension: -7.5 rad/s^2.
Learn more about Angular momentum from this link:
https://brainly.com/question/29512279
#SPJ11