The genetic material of an offspring of sexually reproducing organisms is best described as genes from both parents in unique combinations.
SEXUAL REPRODUCTION:
Sexual reproduction is a type of reproduction that involves two organisms (a male and a female). The male organism produces a gamete called SPERM while the female organism produces a gamete called EGG. The gametes are produced via a process called MEIOSIS. Meiosis is a process of cell division whereby genetically different daughter cells are produced. The genetic variation is attributed to a process called crossing over, which is the exchange of genetic material between non-sister chromatids of homologous chromosomes. At the end of the fertilization process between male sperm and female egg, the genetic material of the offspring will contain genes from both parents in unique combinations.Learn more at: https://brainly.com/question/11622266?referrer=searchResults
Which describes an interaction within the musculoskeletal system?
Answer:
The musculoskeletal system involves the complex interactions of muscles, bones, and connective tissues.
When a muscle contracts, a bone will move. When a bone contracts, a muscle will move. When a ligament contracts, a tendon will move.
Answer:
A. when a muscle contracts , a bone will move
Explanation
thats the correct answer to this question on edg2021 :)
Melissa my pet cow from childhood that i could ride like a horse had a weight of 0.65 tons. Philip my pet rabbit had a weight of 192 ounces. How many philips would it take to weigh as much as one melissa
Answer:
11 times the weight of Philip.
Explanation:
From the question given above, the following data were obtained:
Weight of Melissa (i.e cow) = 0.65 tons
Weight of Philip (i.e rabbit) = 192 ounces
Next, we shall express the weight of Philip (i.e the rabbit) in tons. This can be obtained as follow:
1 ounce = 3.125×10¯⁵ ton
Therefore,
192 ounce = 192 ounce × 3.125×10¯⁵ ton / 1 ounce
192 ounce = 0.06 ton
Thus, the weight of Philip (i.e the rabbit) in ton is 0.06 ton.
Next, we shall determine the ratio of the weight of Melissa (i.e the cow) to the weight of Philip (i.e the rabbit). This can be obtained as follow:
Weight of Melissa (i.e cow) = 0.65 ton
Weight of Philip (i.e rabbit) = 0.06 ton
Melissa /Philip = 0.65/0.06
Melissa /Philip = 11
Melissa = 11 × Phillip
Thus, it will take 11 times the weight of Philip to weigh as much as Melissa.
1. A ball is thrown straight up.if the launch velocity is 15 m/s, at what velocity will the ball return to the thrower's hand?
2. A boat moves across a river going 18 m/s. At the same time there is a current flowing at a right angle to the boat at 6 m/s. What is the resulting velocity of the boat?
Answer:
1) The velocity of the ball return to the thrower's hand is -15 meters per second.
2) The resulting velocity of the boat is [tex]\vec v_{B} = 6\,\hat{i}+18\,\hat{j}\,\left[\frac{m}{s} \right][/tex].
Explanation:
1) Let suppose that ball experiments a free fall, that is an uniform accelerated motion, in which effects from gravity and Earth's rotation can be neglected. The velocity of the ball is represented by the following equations of motion:
Position
[tex]v_{o}\cdot t -\frac{1}{2}\cdot g\cdot t^{2} = 0[/tex]
[tex]t\cdot \left(v_{o}-\frac{1}{2}\cdot g\cdot t \right) = 0[/tex] (1)
Velocity
[tex]v = v_{o}-g\cdot t[/tex] (2)
Where:
[tex]t[/tex] - Time, measured in seconds.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]v_{o}[/tex] - Initial velocity of the ball, measured in meters per second.
[tex]v[/tex] - Final velocity of the ball, measured in meters per second.
From (1), we get the time when the ball returns to the thrower's hand:
[tex]v_{o}-\frac{1}{2}\cdot g\cdot t = 0[/tex]
[tex]t = \frac{2\cdot v_{o}}{g}[/tex]
And then we apply this result in (2):
[tex]v = v_{o}-g\cdot \left(\frac{2\cdot v_{o}}{g} \right)[/tex]
[tex]v = -v_{o}[/tex] (3)
Then, the velocity of the ball return to the thrower's hand is -15 meters per second.
2) The resulting velocity of the boat ([tex]\vec v_{B}[/tex]) is represented by the vectorial sum of the velocity of the boat relative to the river ([tex]\vec v_{B/R}[/tex]) and the velocity of the river ([tex]\vec v_{R}[/tex]), both measured in meters per second, that is:
[tex]\vec v_{B} = \vec v_{R}+\vec {v}_{B/R}[/tex] (4)
If we know that [tex]\vec v_{R} = 6\,\hat{i}\,\left[\frac{m}{s} \right][/tex] and [tex]\vec v_{B/R} = 18\,\hat{j}\,\left[\frac{m}{s} \right][/tex], then the resulting velocity of the boat is:
[tex]\vec v_{B} = 6\,\hat{i}+18\,\hat{j}\,\left[\frac{m}{s} \right][/tex]
The resulting velocity of the boat is [tex]\vec v_{B} = 6\,\hat{i}+18\,\hat{j}\,\left[\frac{m}{s} \right][/tex].
If a rock is dropped from the top of a tower at the front of it and takes 3.6 seconds to hit the ground. Calculate the final velocity of the penny in m/s. What is the height of the tower?
Answer:
35.28m/s; 63.50m
Explanation:
Given the following data;
Time, t = 3.6 secs
Since it's a free fall, acceleration due to gravity = 9.8m/s²
Initial velocity, u = 0
To find the final velocity, we would use the first equation of motion;
[tex] V = u + at[/tex]
Substituting into the equation, we have;
[tex] V = 0 + 9.8 * 3.6[/tex]
V = 35.28m/s
Therefore, the final velocity of the penny is 35.28m/s.
To find the height, we would use the second equation of motion;
[tex] S = ut + \frac {1}{2}at^{2}[/tex]
Substituting the values into the equation;
[tex] S = 0(3.6) + \frac {1}{2}*9.8*(3.6)^{2}[/tex]
[tex] S = 0 + 4.9*12.86[/tex]
[tex] S = 0.5 *36[/tex]
S = 63.50m
Therefore, the height of the tower is 63.50m.
(NEED HELP ASAP)
In a lab investigation one group of students (group a) measures the speed of a 0.1 toy car to be 2.5 m/s at the bottom of a ramp another group of students (group b) measures the speed of the car to be 3 m/s at the bottom of the ramp the cars starting position at the top of the ramp is 1 m high.
a. what is the potential energy of the car at the beginning of the experiment before it's speed is measured?
b. Calculate the kinetic energy of the car for group a.
C. Calculate the kinetic energy for the car for group b.
Answer:
a = 0.98J
Explanation:
PE = mgh
PE = 0.1 x 9.8 x 1
PE = 0.98J
(a) The potential energy of the car at the beginning of the experiment is 9.8(m) J.
(b) The kinetic energy of the car for group a is 3.125(m) J.
(c) The kinetic energy of the car for group b is 4.5(m) J.
Potential energy of the car at the beginning of the experimentThe potential energy of the car is calculated as follows;
P.E = mgh
where;
m is mass of the carg is accleration due to gravityh is height of the carP.E = m x 9.8 x 1
P.E = 9.8(m) J
Kinetic energy of the car for group aK.E = ¹/₂mv²
K.E = ¹/₂ x m x (2.5)²
K.E = 3.125(m) J
Kinetic energy of the car for group bK.E = ¹/₂mv²
K.E = ¹/₂ x m x (3)²
K.E = 4.5(m) J
Learn more about kinetic energy here:https://brainly.com/question/25959744
#SPJ2
A cow standing atop a building in Times Square recalled a funny joke and began to laugh. The uncontrollable laughter caused the cow to fall over the side of the building. He fell for a time period of 3.5 s and landed in a bed of bushes. How fast was the cow moo-ving when he reached the bushes?
Which equation should be used to solve the problem?
Answer:
Vf = 34.3 m/s
1st equation of motion was used to solve.
Explanation:
In order to find the final speed of the cow, when it hits the bushes, we can use first equation of motion:
Vf = Vi + gt
where,
Vf = Final Velocity of Cow = ?
Vi = Initial Velocity of Cow = 0 m/s
g = acceleration due to gravity = 9.8 m/s²
t = time taken = 3.5 s
Therefore,
Vf = 0 m/s + (9.8 m/s²)(3.5 s)
Vf = 34.3 m/s
1st equation of motion was used to solve.
State one way to decrease the moment of a given force about a given axis of rotation.
Answer:
The moment of a given force about a given axis of rotation can be decreased by decreasing the perpendicular distance of force from the axis of rotation.
Answer:
hope it helps...
Explanation:
The moment of a given force about a given axis of rotation can be decreased by decreasing the perpendicular distance of force from the axis of rotation.
You place a drop of blue food coloring in a cup of cold water and another drop of food coloring in a cup of hot water. Which observation is correct and why? A The food coloring in the hot water will spread more slowly than in the cold water because water molecules move more slowly when hot. B The food coloring in the hot water will spread more quickly than in the cold water because water molecules move more quickly when hot. C The food coloring in the cold water will spread more quickly than in the hot water because water molecules move more quickly when cold. D The food coloring in the cold water will spread at the same rate at the food coloring in the hot water because water molecules at any temperature move at the same rate.
Answer:
B food coloring will move quicker in hot water because the molecules move faster when they are hot
Explanation:
SCIENCE! aaaaand my physics text book
Option B is correct: The food coloring in the hot water will spread more quickly than in the cold water because water molecules move more quickly when hot since they have more kinetic energy.
Kinetic energy of the molecules:According to the question, we place a drop of blue food coloring in a cup of cold water and another drop of food coloring in a cup of hot water and then observe the spreading of the blue color in both the cups.
Option B will be correct because the kinetic energy of the molecules of a gas or a liquid is directly proportional to the absolute temperature of the gas or the liquid.
High kinetic energy means that the molecules will have higher velocity, which will make it easier for any solvent to dissolve in water since it will spread faster.
So the cup which has water at a higher temperature will have a faster spread of the food coloring.
Learn more about kinetic energy:
https://brainly.com/question/12669551?referrer=searchResults
the mass of the whole object is equal to the sum of all its parts A. Law of Conservation of Energy B. Law of Conservation of Mass C. Law of Conservation of Weight
HELP PLEASE ILL GIVE YOU BRAINLIEST OR WHATEVER AND LIKE 30 POINTS JUST PLEASE ANSWER ME
Answer:
B. Law of Conservation of Mass
Explanation:
In other words, the mass of any one element at the beginning of a reaction will equal the mass of that element at the end of the reaction. If we account for all reactants and products in a chemical reaction, the total mass will be the same at any point in time in any closed system.
What are the Laws of conservation of atoms?
Answer:
Both the initial and final substances are composed of atoms because all matter is composed of atoms. According to the law of conservation of matter, matter is neither created nor destroyed, so we must have the same number and kind of atoms after the chemical change as were present before the chemical change.
Explanation:
Answer:
The law of conservation of atoms is simple but it has a great affect. An atom cannot be destroyed by such a force. Matter/atoms can't be created by any means. An atom exits only by nature and not by force.
Hope this helped! Please mark brainliest! Have a great day!
By using electroscope, if the body is negatively charged then due to electrostatic induction, then on the leaves there will be appear:
(a) both positive and negative charges
(b) negative charge
(c) positive charge
(d) no charge
(b) negative charge
This is the answer
PLEASE HELP IF YOU KNOW THE ANSWER QUICK PLEASE!!!
Answer:
d
Explanation:
Calculate Vector component in Y if the hypotenuse is 32 and angle is 45
Answer:
The correct option is;
c. 22.6
Explanation:
The given parameters are;
The hypotenuse of the vector = 32
The angle of the vector = 45°
Therefore, the vector component in the y-axis is given as follows;
[tex]v_y = v \times sin(\theta)[/tex]
Substituting the values from the question gives;
[tex]v_y = 32 \times sin(45^{\circ}) \approx 22.6[/tex]
The vector component in the y-axis, [tex]v_y[/tex], is approximately 22.6.
A roller coaster with a potential energy of 235,200 J sits at the top of a 30 m high hill. What is the mass of the roller
coaster? (Formula: PE = mgh)
O 800 kg
O 7,840 kg
O 8,000 kg
O 78,400 kg
Answer:
800 kg
Explanation:
I just did it :)
if a truck goes 30 kilometers in 30 minutes what is the average speed
Answer:
60 km per hour
Explanation:
if you drive for 30 min and go 30km then if you drive for 60 min(1hr) then you would have driven 60km.
Answer:
60
Explanation:
hope this helps
A complex arrangement of pulleys forms what is called the block in a block and tackle. The rope used to lift the pulleys and the load is the tackle. A block and tackle is used to lift a truck engine, which has a weight and output force of nearly 8000 N. The input force required to lift this weight using the block and tackle is 400N. What is the mechanical advantage of the block and tackle?
Answer:
Mechanical advantage = 20
Explanation:
Given:
Output force = 8,000 N
Input force = 400 N
Find:
Mechanical advantage
Computation:
Mechanical advantage = Output force / Input force
Mechanical advantage = 8,000 / 400
Mechanical advantage = 20
How do you solving kinematic equations for horizontal projectiles?
Two bowling balls, each with a mass of 8.52 kg, are traveling toward each other. Find the total momentum of the system if both balls have a speed of 2.13 m/s, but are traveling opposite of one another.
a. 18.1
b. 36.3
c. 0.0
d. 17.4
b=36•3
momentum=mass×velocity
The total momentum of the given system is equal to zero. Therefore, option (C) is correct.
What is the law of conservation of momentum?The linear momentum can be described as the product of the mass times the velocity of that object. Conservation of momentum is a property of an object as the total amount of momentum stays the same.
According to the law of conservation of momentum, the sum of the momentum before and after the collision of the objects must be equal.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂v₂
where u₁ and u₂ are initial speed while v₁ & v₂ is final speed and m₁ and m₂ is the mass of the collided objects.
The first ball, m = 8.52 g and v = 2.13 m/s
The momentum of the first ball = 18.15 g.m/s
The second ball is moving in the opposite direction w.r.t. first ball,
The second ball, m = 8.52 g and v = - 2.13 m/s
The momentum of the first ball = - 18.15 g.m/s
The total momentum of the system = 18.15 + (-18.15) = 0
Therefore, the total momentum of the given system is zero.
Learn more about the law of conservation of linear momentum, here:
brainly.com/question/17140635
#SPJ6
A cork floats on the surface of an incompressible liquid in a container exposed to atmospheric pressure. The container is then sealed and the air above the liquid is evacuated. The cork:
Question:
A cork floats on the surface of an incompressible liquid in a container exposed to atmospheric pressure. The container is then sealed and the air above the liquid is evacuated. The cork:
A. sinks slightly
B. rises slightly
C. floats at the same height
D. bobs up and down about its old position
Answer:
The correct answer is C) floats at the same height
Explanation:
The liquid is incompressible because its density very high and leaves no room for further compaction whether or not there is atmospheric pressure. So when you put a cork on the liquid, pressure or no pressure, there is no displacement hence it floats on the same height regardless of the absence of air.
Cheers!
The total mechanical energy of a system is 950 J and the gravitational potential energy is 350 J. What is the kinetic energy?
Answer:
The kinetic energy is 600 J
Explanation:
Mechanical Energy
The principle of the conservation of mechanical energy states that the total mechanical energy in a system remains constant as long as the only forces acting are conservative forces.
The mechanical energy is defined as the sum of the potential plus kinetic energies:
E = U + K
Where E is the total mechanical energy, U is the gravitational potential energy and K is the kinetic energy.
Solving for K:
K = E - U
The system described has a total mechanical energy of E=950 J and gravitational potential energy of U=350 J, thus:
K = 950 J - 350 J
K = 600 J
The kinetic energy is 600 J
Un prisma rectangular de cobre, de base igual a 36 centímetros cuadrados y una altura de 10 cm se sumerge hasta la mitad por medio de un alambre en un recipiente que contiene alcohol ¿que volumen de alcohol desaloja?
La respuesta correcta es 180 centímetros cúbicos o 180 [tex]cm^{3}[/tex]
Explicación:
El primer paso para saber cuanto alcohol desaloja el prisma es calcular el volumen total del prisma. El volumen se puede encontrar usando la formula V (Volumen) = B (base) x h (altura). El proceso se muestra a continuación:
V = B x h
V = 36 [tex]cm^{2}[/tex] x 10 cm
V= 360 [tex]cm^{3}[/tex]
Finalmente, el volumen total del prisma debe dividirse en 2 considerando que solo la mitad del prisma fue sumergida y esta mitad equivale al volumen del alcohol desplazado.
360 [tex]cm^{3}[/tex] ÷ 2 = 180 [tex]cm^{3}[/tex]
El volumen de fluido desplazado es de 180 cm^3.
Sabemos que el objeto va a desplazar su propio volumen de fluido. Por lo tanto, necesitamos obtener el volumen del objeto a, este es el volumen del fluido que eventualmente será desplazado por el sólido.
El volumen del sólido es;
V = 36 cm^2 * 10 cm^2 = 360 cm^3
desde que se sumergió a la mitad, volumen de alcohol desplazado = 360 cm^3/2 = 180cm^3
Obtenga más información sobre el volumen: https://brainly.com/question/7932885
Please simplify and write the below paragraph.
The field lines due to a current in a
circular coil become straight and
perpendicular to the plane of the coil
at the centre. This is because at every
point of circular loop the concentric
circles representing the magnetic field
become larger and larger as we move
away from the wire.
Field lines become straight and perpendicular because every point of circular loop the concentric circles become larger and larger as we move away from the wire.
What does the triangle mean in physics?
In physics, the triangle symbol (∆) typically represents a change or difference in a particular quantity.
A triangle is often used to denote the difference between two values of a variable. For example, if we have two values of time, t1 and t2, the change or difference in time can be represented as Δt = t2 - t1, where Δt is the triangle symbol indicating the change in time. Similarly, it can be used to represent differences in other physical quantities such as displacement (∆x), velocity (∆v), or temperature (∆T). The triangle symbol (∆) is a shorthand notation commonly used in physics to indicate changes or differences.
In terms of change in displacement, the triangle symbol (∆) represents the difference between two positions or locations. It indicates the change in the object's position from an initial point to a final point.
For example, if an object initially starts at position x1 and then moves to position x2, the change in displacement (∆x) can be calculated as ∆x = x2 - x1. Here, ∆x represents the difference or change in the object's displacement.
The magnitude of ∆x gives the overall distance traveled by the object, and its sign indicates the direction of the displacement. A positive ∆x signifies a displacement in the positive direction (e.g., to the right or upward), while a negative ∆x represents a displacement in the negative direction (e.g., to the left or downward).
Therefore, The triangle symbol (∆) is commonly used in physics equations to denote changes or differences in various quantities, including displacement, velocity, time, and more. It helps us analyze and quantify the differences between two values of a physical quantity.
To learn more about the triangle symbol click:
https://brainly.com/question/30637056
#SPJ6