The correct answer is A. The 200 randomly selected students
Explanation:
In most studies, the complete population is not surveyed or studied instead, a specific number of individuals are selected, this group is known as the sample. Additionally, the sample represents the population, and due to this, their answers are used to make inferences about all the population.
According to this, the population is all the students in the school, while the sample is the 200 randomly selected students because this is the group that is going to be studied to make conclusions and inferences about all the population.
Answer:
(a)
Step-by-step explanation:
The diagram shows the first four patterns of a sequence. Find an expression for the numbers of squares in the nth pattern of the sequence.
Answer:
n^2+3
Step-by-step explanation:
As we can see in the diagram
1st pattern consists from 1 square 1x1 +3 squares 1x1 each
2nd pattern consists from 1 square 2x2 +3 squares 1x1 each
3-rd pattern consists from 1 square 3x3 +3 squares 1x1 each
4-th pattern consists from 1 square 4x4 + 3 squares 1x1 each
We can to continue :
5-th pattern consists from 1 square 5x5+3 squares 1x1 each
So the nth pattern consists from 1 square nxn+3 squares 1x1 each
Or total amount of 1x1 squares in nth pattern N= n^2+3
The expression for the numbers of squares in the nth pattern of the sequence is [tex]n^{2} +3[/tex].
What is nth term of a sequence?"The nth term of a sequence is a formula that enables us to find any term in the sequence. We can make a sequence using the nth term by substituting different values for the term number(n) into it."
From the given diagram
We can see that every term is made up with a square which side is n and three small square side is 1.
So,
1st term is 1 × 1 + 3 = 4
2nd term is 2 × 2 + 3 = 4
3rd term is 3 × 3 + 3 = 12
4th term is 4 × 4 + 3 = 19
So, nth term is [tex]n^{2} +3[/tex]
Hence, The expression for the numbers of squares in the nth pattern of the sequence is [tex]n^{2} +3[/tex].
Learn more about nth term of a sequence here
https://brainly.com/question/24306119
#SPJ2
find the value of x
m<2= x + 122
Answer:
x= -14
Step-by-step explanation:
Please see attached picture for full solution.
Uncle Louise is at least 1 inch shorter than Miriam, and at least 2 inches taller than Jeffery. Jeffery's height is 64 inches. Miriam is not more than 5 inches taller than Jeffery. Which answer could be Uncle Louise's height? Please answer!!!
Answer:
67 inches
Step-by-step explanation:
Let's call the height of Louise 'L', the height of Miriam 'M' and the height of Jeffery 'J'.
Then, we can write the following equations and inequations:
[tex]L \leq M - 1[/tex]
[tex]L \geq J + 2[/tex]
[tex]J = 64[/tex]
[tex]M \leq J + 5[/tex]
Substituting J in the second and four inequations, we have:
[tex]L \geq 66[/tex]
[tex]M \leq 69[/tex]
If we assume the maximum value for M, in the first inequation we have that:
[tex]L \leq 68[/tex]
So the height of Uncle Louise is greater than or equal 66, and lesser than or equal 68, so his height could be 67 inches for example.
16. How much money will I need to have at retirement so I can withdraw $60,000 a year for 20 years from an account earning 8% compounded annually? a. How much do you need in your account at the beginning b. How much total money will you pull out of the account? c. How much of that money is interest?
Answer:
starting balance: $636,215.95total withdrawals: $1,200,000interest withdrawn: $563,784.05Step-by-step explanation:
a) If we assume the annual withdrawals are at the beginning of the year, we can use the formula for an annuity due to compute the necessary savings.
The principal P that must be invested at rate r for n annual withdrawals of amount A is ...
P = A(1+r)(1 -(1 +r)^-n)/r
P = $60,000(1.08)(1 -1.08^-20)/0.08 = $636,215.95
__
b) 20 withdrawals of $60,000 each total ...
20×$60,000 = $1,200,000
__
c) The excess over the amount deposited is interest:
$1,200,000 -636,215.95 = $563,784.05
A softball pitcher has a 0.626 probability of throwing a strike for each curve ball pitch. If the softball pitcher throws 30 curve balls, what is the probability that no more than 16 of them are strikes
Answer:
19.49% probability that no more than 16 of them are strikes
Step-by-step explanation:
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].
In this problem, we have that:
[tex]n = 30, p = 0.626[/tex]
So
[tex]\mu = E(X) = np = 30*0.626 = 18.78[/tex]
[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{30*0.626*(1-0.626)} = 2.65[/tex]
What is the probability that no more than 16 of them are strikes
Using continuity correction, this is [tex]P(X \leq 16 + 0.5) = P(X \leq 16.5)[/tex], which is the pvalue of Z when X = 16.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{16.5 - 18.78}{2.65}[/tex]
[tex]Z = -0.86[/tex]
[tex]Z = -0.86[/tex] has a pvalue of 0.1949
19.49% probability that no more than 16 of them are strikes
What are the side of triangle PWR
Answer:
PR, PW, RW
Step-by-step explanation:
The sides of a triangle are named by naming the vertices at either end.
Triangle PWR has vertices P, W, R. The sides connecting these are named ...
PW, WR, RP
Any name can have the letters reversed. That is, PR names the same segment that RP does.
Weite the number names
31,19,624
4,06,85,012
6,500,000
25,430,756
Answer:
Thirty-one million, six hundred and twenty-four
Four billion, six million, eighty-five thousand, and twelve
six million five hundred thousad
twenty-five million, four hundred and thirty thousand and seven hundred and fifty-six
Step-by-step explanation:
NEED UGANT HELP pls help me
An event that is impossible has a probability of 0
An event that is certain to happen has a probability of 1
The probability scales from 0 to 1, referring from no chance to will happen.
Answer in POINT-SLOPE FORM:
Complete the point-slope equation of the line through (1,3) and (5,1) Use exact numbers!
Answer:
y - 3 = (1/2)(x - 1)
Step-by-step explanation:
As we go from (1, 3) to (5, 1), we see that x (the run) increases by 4 and y (the rise) decreases by 2. Hence, the slope is m = rise / run = 2/4, or m = 1/2.
Then the desired point slope equation is y - 3 = (1/2)(x - 1).
Crane Company reports the following for the month of June.
Date
Explanation
Units
Unit Cost
Total Cost
June 1 Inventory 150 $4 $600
12 Purchase 450 5 2,250
23 Purchase 400 6 2,400
30 Inventory 80
Assume a sale of 500 units occurred on June 15 for a selling price of $7 and a sale of 420 units on June 27 for $8.
Calculate cost of goods available for sale.
Calculate Moving-Average unit cost for June 1, 12, 15, 23 & 27. (Round answers to 3 decimal places, e.g. 2.525.)
Answer:
Crane CompanyJune Financial Reports
a) Cost of goods available for sale = $5,250
b) Moving-Average unit cost for:
i) June 1: = $5
ii) 12: = $4.75
iii) 15: = $4.75
iv) 23: = $5.75
v) 27: = $5.25
Step-by-step explanation:
a) Calculations:
Date Explanation Units Unit Cost Total Cost Moving Average Cost
June 1 Inventory 150 $4 $600 $4.000
12 Purchase 450 5 2,250 4.750
15 Sale 500 7 3,500 4.750
23 Purchase 400 6 2,400 5.750
27 Sale 420 8 3,360 5.250
30 Inventory 80
Cost of goods available for sale = Cost of Beginning Inventory + Cost of Purchases = $5,250 + ($600 + 2,250 + 2,400)
b) Moving-Average unit cost for:
i) June 1: Cost of goods available/Units of goods available = $5 ($600/150)
ii) 12: Cost of goods available/Units of goods available = $4.75 ($600 + 2,250/600)
iii) 15: Cost of goods available/Units of goods available = $4.75 ($475/100)
iv) 23: Cost of goods available/Units of goods available = $5.75 ($475 + 2,400)/500
v) 27: Cost of goods available/Units of goods available = $5.25 ($420/80)
Create a bucket by rotating around the y axis the curve y=5 ln(x-2) from y=0 to y=4. If this bucket contains a liquid with density 760 kg/m3 filled to a height of 3 meters, find the work required to pump the liquid out of this bucket (over the top edge). Use 9.8 m/s2 for gravity.
Answer:
The work will be "1909212.015 J". The further explanation is given below.
Step-by-step explanation:
The given values are:
Liquid's density
= 760 kg/m³
Height
= 3 meters
Gravity
g = 3.8 m/s²
Value of y is:
y = 5 log (x-2)
y = 0
y = 4
As we know,
⇒ [tex]\Delta V=\pi r^2 \Delta y[/tex]
⇒ [tex]y =5log(x-2)[/tex]
⇒ [tex]\frac{y}{5} =log (x-2)[/tex]
⇒ [tex]e^{\frac{y}{5}}=(x-2)[/tex]
⇒ [tex]x=e^{\frac{y}{5}}+2[/tex]
Now,
[tex]\Delta F=ma[/tex]
[tex]=760 \pi (e^{\frac{y}{5}}+2)^2(9.8)\Delta y[/tex]
So that,
⇒ [tex]\Delta W = \Delta F.distance[/tex]
[tex]=\Delta F(4-y)[/tex]
The required work will be:
⇒ [tex]W=760\times 9.8 \pi \int_{3}^{0}(e^{\frac{y}{5}}+2)^2 (\Delta-y)dy[/tex]
[tex]=760\times 9.8 \pi[{-20(y-9)^{e^{\frac{y}{5}}}-2(y-8)y}][/tex]
[tex]=760\times 9.8 \pi[81.455][/tex]
[tex]=1909212.015 \ J[/tex]
Find the lateral surface area, base area of a cylinder with radius 5 cm and height 16 cm
Answer:
Lateral surface area is
≈
502.65cm²
Base area is
=
πr^2
The first card selected from a standard 52-card deck was a king. If it is returned to the deck, what is the probability that a king will be drawn on the second selection
Answer:
[tex]\frac{1}{13}[/tex]
Step-by-step explanation:
The probability P(A) that an event A will occur is given by;
P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]
From the question,
=>The event A is selecting a king the second time from a 52-card deck.
=> In the card deck, there are 4 king cards. After the first selection which was a king, the king was returned. This makes the number of king cards return back to 4. Therefore,
number-of-possible-outcomes-of-event-A = 4
=> Since there are 52 cards in total,
total-number-of-sample-space = 52
Substitute these values into equation above;
P(Selecting a king the second time) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]
The table below shows the distance a car travels and the amount of gasoline left in the tank of the car. Distance Traveled and Gas Left in Tank Distance Traveled (in miles) 0 90 180 270 Amount of Gas Left in Tank (in gallons) 15 12 9 6 PLZ HELP How many gallons of gasoline does the car have left after it has traveled 330 miles? 2 4 6 8
Answer:
b: 4
Step-by-step explanation:
i took the test on edge 2020
The gallons of gasoline the car has left after it has traveled 330 miles is 4 gallons so option (B) will be correct.
How to form an equation?Determine the known quantities and designate the unknown quantity as a variable while trying to set up or construct a linear equation to fit a real-world application.
In other words, an equation is a set of variables that are constrained through a situation or case.
Given the table of the number of miles and gallons.
If we take two points of the number of miles and gallons.
Then,
1 st point = ( 0 ,15 )
2 nd point = ( 90 , 12)
Now since the relation is linear which can be seen by data.
So,
Linear equation joining points 1st and 2nd is
y - 15 = [(12-15)/(90-0)](x - 0)
y - 15 = -x/30
y = (450 - x)/30
So,
At x = 330 miles
y = (450 - 330 )/30
y = 4 gallons
Hence "The gallons of gasoline the car has left after it has traveled 330 miles is 4 gallons".
For more about the equation,
https://brainly.com/question/10413253
#SPJ2
Determine the relation of AB and CD given the following points: A (3,-4), B (5.-7), C (8,3), and D (6,6).
Answer:
Step-by-step explanation:
To find the relationship between the given lines, we have to find the slope of both lines using slope formula, which is
So for AB, we will get
And for CD , we will get
Since the slopes of the two lines are equal , and when slopes are equal , lines are parallel .
The volume of a cantaloupe is approximated by Upper V equals four thirds pi font size decreased by 5 r cubed . The radius is growing at the rate of 0.5 cm divided by week, at a time when the radius is 6.4 cm. How fast is the volume changing at that moment?
Answer:
308.67 cm ^ 3 / week
Step-by-step explanation:
A cantaloupe is approximately a sphere, therefore its approximate volume would be:
V = (4/3) * pi * (r ^ 3)
They tell us that dr / dt 0.5 cm / week and the radius is 6.4 cm
if we derive the formula from the volume we are left with:
dV / dt = (4/3) * pi * d / dr [(r ^ 3)]
dV / dt = (4/3) * pi * 3 * (r ^ 2) * dr / dt
dV / dt = 4 * pi * (r ^ 2) * dr / dt
we replace all the values and we are left with:
dV / dt = 4 * 3.14 * (6.4 ^ 2) * 0.6
dV / dt = 308.67
Therefore the volume is changing at a rate of 308.67 cm ^ 3 / week
9. A line passes through (2, –1) and (8, 4). a. Write an equation for the line in point-slope form. b. Rewrite the equation in standard form using integers.
Answer:
Step-by-step explanation:
(4+1)/(8-2)= 5/6
y + 1 = 5/6(x - 2)
y + 1 = 5/6x - 5/3
y + 3/3 = 5/6x - 5/3
y = 5/6x - 8/3
6(y = 5/6x - 8/3)
6y = 5x - 16
-5x + 6y = -16
13) BRAINLIEST &10+ POINTS!
Answer:
- 220° and 500°
Step-by-step explanation:
To find the coterminal angles add / subtract 360°, that is
140° - 360° = - 220°
140° + 360° = 500°
Answer:
- 220° and 500°
Step-by-step explanation:
1. Define: Denominator
Answer:
This is an arithmetic fraction written under the line that indicates the equal part, the divisor.
Step-by-step explanation:
Answer:denominator is the lower part of a fraction.
Step-by-step explanation:
Feel pleasure to help u...
If x is a binomial random variable with n trials and success probability p , then as n gets smaller, the distribution of x becomes
Answer:
If the value of n gests smaller then the distribution of X would be more skewed, that's a property of the binomial distribution
Step-by-step explanation:
For this problem we are assumeing that the random variable X is :
[tex] X \sim Bin(n,p)[/tex]
If the value of n gests smaller then the distribution of X would be more skewed, that's a property of the binomial distribution and if we don't satisfy this two conditions:
[tex] n p>10[/tex]
[tex]n(1-p) >10[/tex]
Then we can't use the normal approximation
The following lists the joint probabilities associated with smoking and lung disease among 60-to-65 year-old men. Has Lung Disease/smoker 0.1, No Lung Disease/Smoker 0.17, Lung Disease/Nonsmoker 0.03, No Lung Disease/Nonsmoker 0.7. One 60-to-65 year old man is selected at random. What is the probability of the following event: He has lung disease given that he does not smoke?
Answer:
4.11% probability that he has lung disease given that he does not smoke
Step-by-step explanation:
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Does not smoke
Event B: Lung disease
Lung Disease/Nonsmoker 0.03
This means that [tex]P(A \cap B) = 0.03[/tex]
Lung Disease/Nonsmoker 0.03
No Lung Disease/Nonsmoker 0.7
This means that [tex]P(A) = 0.03 + 0.7 = 0.73[/tex]
What is the probability of the following event: He has lung disease given that he does not smoke?
[tex]P(B|A) = \frac{0.03}{0.73} = 0.0411[/tex]
4.11% probability that he has lung disease given that he does not smoke
Probabilities are used to determine the chances of an event.
The probability that he has lung disease given that he does not smoke is 0.231
The required probability is calculated as:
[tex]\mathbf{P = \frac{P(Lung\ Disease\ and\ Non\ Smoker)}{P(Lung\ Disease)}}[/tex]
From the question, we have:
[tex]\mathbf{P(Lung\ Disease\ and\ Non\ Smoker) = 0.03}[/tex]
[tex]\mathbf{P(Lung\ Disease) = P(Has Lung Disease/smoker) + P(Lung Disease/Nonsmoker)}[/tex]
[tex]\mathbf{P(Lung\ Disease) = 0.1 + 0.03}[/tex]
[tex]\mathbf{P(Lung\ Disease) = 0.13}[/tex]
So, we have:
[tex]\mathbf{P = \frac{P(Lung\ Disease\ and\ Non\ Smoker)}{P(Lung\ Disease)}}[/tex]
[tex]\mathbf{P = \frac{0.03}{0.13}}[/tex]
[tex]\mathbf{P = 0.231}[/tex]
Hence, the probability that he has lung disease given that he does not smoke is 0.231
Read more about probabilities at:
https://brainly.com/question/11234923
which of the following statements is false?
Answer:
A.
Step-by-step explanation:
It's the first one. The angles are supplementary not complementary.
Answer:
I would have to say A
Step-by-step explanation:
An electrical engineer wishes to compare the mean lifetimes of two types of transistors in an application involving high-temperature performance. A sample of 60 transistors of type A were tested and were found to have a mean lifetime of 1827 hours and a standard deviation of 168 hours. A sample of 180 transistors of type B were tested and were found to have a mean lifetime of 1658 hours and a standard deviation of 225 hours. Find a 95% confidence interval for the difference between the mean lifetimes of the two types of transistors.
Answer:
(115.2642, 222.7358).
Step-by-step explanation:
Given data:
type A: n_1=60, xbar_1=1827, s_1=168
type B: n_2=180, xbar_2=1658, s_2=225
n_1 = sample size 1, n_2= sample size 2
xbar_1, xbar_2 are mean life of sample 1 and 2 respectively. Similarly, s_1 and s_2 are standard deviation of 1,2.
a=0.05, |Z(0.025)|=1.96 (from the standard normal table)
So 95% CI is
(xbar_1 -xbar_2) ± Z×√[s1^2/n1 + s2^2/n2]
=(1827-1658) ± 1.96×sqrt(168^2/60 + 225^2/180)
= (115.2642, 222.7358).
11. If 4 < x < 14, what is the range for -x - 4?
Answer:
-18 < -x-4 < -8
Step-by-step explanation:
We start with the initial range as:
4 < x < 14
we multiplicate the inequation by -1, as:
-4 > -x > -14
if we multiply by a negative number, we need to change the symbols < to >.
Then, we sum the number -4, as:
-4-4> -x-4 > -14-4
-8 > -x-4 > -18
Finally, the range for -x-4 is:
-18 < -x-4 < -8
The sports bar owner runs a regression to test whether there is a relationship between Red Sox away games and daily revenue. Which of the following statements about the regression output is true?A. The average daily revenue for days when the Red Sox do not play away is $1,768.32.B. The average daily revenue for days when the Red Sox play away is $1,768.32.C. The average daily revenue for days when the Red Sox play away is $2,264.57.D. The average daily revenue for days when the Red Sox do not play away is $1,272.07.E. On average, the bar’s revenue is $496.25 higher on days when the Red Sox play away than on days when they do not.
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.4746
R Square 0.2252
Adusted R square 0.2091
Standard Error 466.32
Observations 50
ANOVA
Significance F MS df 0.0005 13.95 3.03E 06 3.03E+06 Regression 1.04E+07 2.17E+05 48 Residual 135E+07 49 Total Lower 95% Upper 95% tStot Standard Error P-vatue Coefficients 1968.21 17.79 1,568.42 99 42 0.0000 1768.32 Intercept Red Sox away game 763.38 00005 3.74 229.13 132.85 (1-yes, 0-no) 496.25 The average daily revenue for days when the Red Sox do not play away is $1,768.32
Answer:
Options A, C and D are true.
- The average daily revenue for days when the Red Sox do not play away is $1,768.32.
- The average daily revenue for days when the Red Sox play away is $2,264.57.
- On average, the bar’s revenue is $496.25 higher on days when the Red Sox play away than on days when they do not.
Step-by-step explanation:
The complete Question is presented in the attached image to this solution.
Analyzing the options at a time
A) The average daily revenue for days when the Red Sox do not play away is $1,768.32.
This option is true as 1768.32 is the intercept which is the average daily revenue when the Red Sox=0, that is, 0=no, when red sox do not play away.
B) The average daily revenue for days when the Red Sox play away is $1,768.32.
This is false because when the Red Sox play away, the value is 1 and the average revenue = 1768.32 + 496.25 = $2,264.57
C) The average daily revenue for days when the Red Sox play away is $2,264.57.
This is true. I just gave the explanation under option B.
D) The average daily revenue for days when the Red Sox do not play away is $1,272.07.
This is false. The explanation is under option A.
E) On average, the bar’s revenue is $496.25 higher on days when the Red Sox play away than on days when they do not.
This is true. It is evident from the table that the 0 and 1 coefficient is 496.25. This expresses the difference in average daily revenue when the Red Sox games are played away and when they are not.
Hope this Helps!!!
Which are not changed after a rotation? Check all that apply. angle measures orientation size shape position of center of rotation
Answer:
1 3 4 5
Step-by-step explanation:
The rotation does not change the angle measure, the side lengths and the shape of the shape that is being rotated.
What is an angle?
An angle measure the size, the shape, and the position of center of rotation do not change after rotation.
Which are not changed after rotation?
If one thing is rotated then it will not change the angle measures, the side lengths and shape of the body. The rotation does not change the center of object.
Learn more about angles at https://brainly.com/question/25716982
#SPJ2
If AB= X and x=4, then the transitive property states
Answer:
AB=4
Step-by-step explanation:
The transitive property states if A=B and B+C than A+C Next substitute
AB=x and x=4 so AB=4
Hope this helps, if it did, please give me brainliest, it helps me a lot. :)
Have a good day!
A school district performed a study to find the main causes leading to its students dropping out of school. Thirty cases were analyzed, and a primary cause was assigned to each case. The causes included unexcused absences (U), illness (I), family problems (F), and other causes (O). The results for the thirty cases are listed below:
U U U I F O O U I F F O U I I F I I O U I F F U U I I O F U
Required:
Construct a table summarizing the frequency distribution of the primary causes leading to student dropout.
Answer:
See below for the table.
Step-by-step explanation:
The results for the thirty cases are listed below:
U U U I F O O U I F F O U I I F I I O U I F F U U I I O F U
The table summarizing the frequency distribution of the primary causes leading to student dropout is:
[tex]\left|\begin{array}{c|c}$Cause&$Frequency\\----------&----\\\\$Unexcused absences (U)&9\\$Illness (I)&9\\$Family problems (F)&7\\$Other causes (O)&5\\-----------&---\\$Total&30\end{array}\right|[/tex]
In a certain online dating service, participants are given a 4-statement survey to determine their compatibility with other participants. Based on the questionnaire, each participant is notified if they are compatible with another participant. Each question is multiple choice with the possible responses of "Agree" or "Disagree," and these are assigned the numbers 1 or −1, respectively. Participant’s responses to the survey are encoded as a vector in R4, where coordinates correspond to their answers to each question. Here are the questions:
The question is incomplete. Here is the complete question.
In a certain online dating service, participants are given a 4-statement survey to determine their compatibility with other participants. Based on the questionnaire, each particpant is notified if they are compatible with another participant. Each question is multiple choice with the possible responses of "Agree" or "Disagree", and these are assigned the numbers 1 or -1, respectively. pArticipnat's responses to the survey are encoded as a vector in R4, where coordinates coreespond to their answers to each question. Here are the questions:
Question #1: I prefer outdoor activities, rather than indoor activities.
Question #2: I prefer going out to eat in restaurants, rahter than cooking at home.
Question #3: I prefer texting, rather than talking on the phone.
Question #4: I prefer living in a small town, rather than in a big city.
Here are the results for the questionaire, with a group of 5 participants:
Question1 Question2 Question3 Question4
participant A 1 1 -1 -1
participant B -1 1 1 1
participant C -1 -1 1 1
participant D 1 -1 -1 -1
participant E 1 -1 1 1
Two participants are considered to be "compatible" with each other if the angle between their compatibility vectors is 60° or less. Participants are considered to be "incompatible" if the angle between their compatibility vectors is 120° or larger. For angles between 60° or 120°, pairs of participants are warned that they "may or may not be compatible".
(a) Which pairs of paricipants are compatible?
(b) Which pairs of participants are incompatible?
(c) How would this method of testing compatibility change if the questionnaire also allowed the answer "Neutral", which would correspond to the number zero in a participant's vector? Would this be better than only
allowing "Agree" or "Disagree"? Could anything go wrong if we allowed "Neutral" as an answer?
Answer: (a) Participants A and D; B and C; C and E.
(b) Participants A and B; A and C; A and E; B and D; C and D;
Step-by-step explanation: Vectors in R4 are vectors in a 4 dimensional space and are determined by 4 numbers.
Vectors form angles between themselves and can be found by the following formula:
cos α = [tex]\frac{A.B}{||A||.||B||}[/tex]
which means that the cosine of the angle between two vectors is equal the dot product of these vectors divided by the product of their magnitude.
For the compatibility test, find the angle between vectors:
1) The vectors magnitude:
Magnitude of a vector is given by:
||x|| = [tex]\sqrt{x_{i}^{2} + x_{j}^{2}}[/tex]
Since all the vectors have value 1, they have the same magnitude:
||A|| = [tex]\sqrt{1^{2} + 1^{2} + (-1)^{2} + (-1)^{2}}[/tex] = 2
||A|| = ||B|| = ||C|| = ||D|| = ||E|| = 2
2) The dot product of vectors:
A·B = 1(-1) + 1(1) + (-1)1 + (-1)1 = -2
cos [tex]\alpha_{1}[/tex] = [tex]\frac{-2}{4}[/tex] = [tex]\frac{-1}{2}[/tex]
The angle that has cosine equal -1/2 is 120°, so incompatible
A·C = 1(-1) + 1(-1) + (-1)1 + (-1)1 = -4
cos [tex]\alpha _{2}[/tex] = -1
Angle = 180° --------> incompatible
A·D = 1(1) + 1(-1) + (-1)(-1) + (-1)(-1) = 2
cos [tex]\alpha _{3}[/tex] = 1/2
Angle = 60° ---------> COMPATIBLE
A·E = 1.1 + 1(-1) + (-1)1 + (-1)1 = -2
cos [tex]\alpha_{4}[/tex] = -1/2
Angle = 120° --------> incompatible
B·C = (-1)(-1) + 1(-1) + 1.1 + 1.1 = 2
cos [tex]\alpha _{5}[/tex] = 1/2
Angle = 60° -------------> COMPATIBLE
B·D = (-1)1 + 1(-1) + 1(-1) + 1(-1) = -4
cos[tex]\alpha_{6}[/tex] = -1
Angle = 180° -----------> incompatible
B·E = (-1)1 + 1(-1) + 1.1 + 1.1 = 0
cos[tex]\alpha _{7}[/tex] = 0
Angle = 90° -------------> may or may not
C·D = (-1)1 + (-1)(-1) + 1(-1) + 1(-1) = -2
cos[tex]\alpha_{8} =[/tex] -1/2
Angle = 120° ---------------> Incompatible
C·E = (-1)1 + (-1)(-1) + 1.1 + 1.1 = 2
cos [tex]\alpha_{9}[/tex] = 1/2
Angle = 60° ---------------> COMPATIBLE
D·E = 1.1 + (-1)(-1) + (-1)1 + (-1)1 = 0
cos [tex]\alpha_{10}[/tex] = 0
Angle = 90° -----------------> may or may not
(c) Adding zero (0) as a component of the vectors would have to change the method of compatibility because, to determine the angle, it is necessary to calculate the magnitude of a vector and if it is a zero vector, the magnitude is zero and there is no division by zero. So, unless the service change the method, adding zero is not a good option.
find the Pythagorean triplets of 5
Answer:
The Pythagorean Triplet that has 5 is 3-4-5
Step-by-step explanation:
We can prove this using Pythagorean Theorem: a² + b² = c²
3² + 4² = 5²
9 + 16 = 25
25 = 25