Answer:
It rotated 180 degrees
Step-by-step explanation:
If you use this image and paste in on to google docs you will be able to rotate the image. Use this tool so that your can identify the amount of degrees.
If the Quadrilateral A'B'C'D' is the image of quadrilateral ABCD under a rotation about the origin, (0,0) then the angle of rotation is option (c) 180 degrees
What is Quadrilateral?
In geometry a quadrilateral is a four-sided polygon, having four edges and four corners
What is Angle of rotation?The angle of rotation is a measurement of the amount, of namely angle, that a figure is rotated about a fixed point, often the center of a circle.
Given,
Quadrilateral A'B'C'D' is the image of quadrilateral ABCD under a rotation about the origin, (0,0)
Consider the coordinates of D and D'
D(2,3) and D'(-2,-3)
Connect D and D'
∠D0D' = 180 Degrees
Hence, If the Quadrilateral A'B'C'D' is the image of quadrilateral ABCD under a rotation about the origin, (0,0) then the angle of rotation is option (c) 180 degrees
Learn more about Quadrilateral and Angle of rotation here
https://brainly.com/question/17106452
#SPJ2
I don’t get plz help
Answer:
D.
Step-by-step explanation:
[tex]\frac{pV}{T} =\frac{m}{M}[/tex]
[tex]\frac{M}{1}* \frac{pV}{T} =\frac{m}{M}*\frac{M}{1}[/tex]
[tex]\frac{MpV}{T} ={m}[/tex]
If x=64 &y=27 Evaluate x½-y⅓÷y-x⅔
━━━━━━━☆☆━━━━━━━
▹ Answer
-191/162
▹ Step-by-Step Explanation
Answer:
-191/162
Step-by-step explanation:
Substitute the numbers for the variables:
64 1/2 - 27 1/3 ÷ 27 - 64 2/3
Convert the mixed numbers to improper fractions:
129/2 - 82/3 * 1/27 - 194/3
Multiply the improper fractions:
129/2 - 82/81 - 194/3
= -191/162
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Please answer this correctly without making mistakes
Answer:
1/2 mi
Step-by-step explanation:
Fairfax to Greenwood is equal to one mile
Now think of it as an equation and substitute 1/2 for fairfax and x for greenwood
1/2 + x = 1
This means that x = 1/2
Because of this from Arcadia to Greenwood it is 1/2 mi
here is my question hope this works now
Answer:
[tex]\boxed{x=1}[/tex] and [tex]\boxed{x=7}[/tex]
Step-by-step explanation:
This quadratic is already factored down to its factors (x - 1) and (x - 7).
Set these equal to zero and solve for x by adding 1 or 7 to both sides of the equation.
[tex]x-1=0\\\\\boxed{x=1}[/tex]
[tex]x-7=0\\\\\boxed{x=7}[/tex]
One number is eight less than a second number. Five times the first is 6 more than 6 times the second. Find the numbers.
The value of the first number is -
Answer:
-42/11
Step-by-step explanation:
x = y - 8
5x = 6 - 6y
So now solve the system of equations, divide everything in the second equation by 5 to get it to x = 6/5 - 6y/5
Now...
x = y - 8
x = 6/5 - 6y/5
Now substitute first equation into the second and x is gonna be -42/11 or the first number
Mary is thinking of a mystery number. She reduces it by 15% then subtracts 5. The result is 29. Determine the mystery number
Answer:
40
Step-by-step explanation:
Let x represent the mystery number.
Create an equation to represent the situation, then solve for x:
0.85x - 5 = 29
0.85x = 34
x = 40
So, the mystery number is 40.
please help with this
Answer:
[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex]
Step-by-step explanation:
We are given the graph of r = cos( θ ) + sin( 2θ ) so that we are being asked to determine the integral. Remember that [tex]\:r=cos\left(\theta \right)+sin\left(2\theta \right)[/tex] can also be rewritten as [tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex].
Let's apply the functional rule [tex]\int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx[/tex],
[tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex] = [tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex]
At the same time [tex]\int \cos \left(\theta \right)d\theta \right=\sin \left(\theta \right)[/tex] = [tex]sin( \theta \right ))[/tex], and [tex]\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]-\frac{1}{2}\cos \left(2\theta \right)[/tex]. Let's substitute,
[tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \right)[/tex]
And adding a constant C, we receive our final solution.
[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex] - this is our integral
PLS PLS PLS HELP QUICKKKK
Find the value of x in each case
Answer:
KI and HE are parallel
So we apply the law of exterior angles ;
3X=X + 180– 2X
3X +X = 180
4X= 180
X= 180/4
X= 45
I hope I helped you^_^
Marking as brainyest PLEASE HELP
How does f(x) = 9x change over the interval from x = 3 to x = 4? A) f(x) increases by 100% B) f(x) increases by 800% C) f(x) increases by 900% D) f(x) increases by 1000%
Answer:
C) f(x) increases by 900%
Step-by-step explanation:
The rate of change is
f(4) - f(3)
---------------
4-3
f(4) = 9*4 = 36
f(3) = 9*3 = 27
36 -27
---------------
4-3
9
-----
1
The rate of change is 9
To change to a percent, multiply by 100%
9*100% = 900%
Answer:
Increases by 900%
Step-by-step explanation:
● f(x) = 9x
The rate of change is:
● r = (36-27)/(4-3) = 9
So the function increses nine times wich is equivalent to 900%
a shopping center form 300000 square feet to an excess of 1 million square feer that consists mostly of large national chain stores is called a
Answer: Honeymoon2871
Step-by-step explanation:
It can be shown that the line with intercepts (a, 0) and (0, b) has the following equation:
x/a + y/b= 1, a ≠ 0, b ≠ 0.
Use this result to write an equation of the line.
Point on line:
(−2, 4)
x-intercept: (a, 0)
y-intercept: (0, a)
(a ≠ 0)
The equation of the straight line is [tex]x+y=2[/tex].
Given:
The line with intercepts (a,0) and (0,b) has the equation [tex]\frac{x}{a} +\frac{y}{b} =1, a\neq 0, b\neq 0[/tex] Point on the line: (-2, 4)x-intercept: (a, 0)y-intercept: (0, a)[tex]a\neq 0[/tex]To find: The equation of this line
It is given that a line with intercepts (a,0) and (0,b) has the equation [tex]\frac{x}{a} +\frac{y}{b} =1, a\neq 0, b\neq 0[/tex]
Now, it is given that the referred line has intercepts (a, 0) and (0, a). Then, using the above statement, the equation of this line can be written as,
[tex]\frac{x}{a} +\frac{y}{a}=1[/tex]. It is already given that [tex]a\neq 0[/tex]. So, we need not mention it again.
It is also given that the point (-2, 4) lies on this line. Then, the coordinates of this point must satisfy the equation of the line.
This implies that,
[tex]\frac{-2}{a} +\frac{4}{a} =1[/tex]
[tex]\frac{2}{a} =1[/tex]
[tex]a=2[/tex]
Now, put [tex]a=2[/tex] in the equation of the line, [tex]\frac{x}{a} +\frac{y}{a}=1[/tex] to get,
[tex]\frac{x}{2} +\frac{y}{2} =1[/tex]
[tex]x+y=2[/tex]
So, the equation of the line is [tex]x+y=2[/tex].
Learn more about equations of straight lines here:
https://brainly.com/question/18879008
Can someone help me ASAP!!!?
Answer:
√x-x-2x³+√x+x
= 2√x-2x³
= -2x³+2√x
which is option A
What is the volume of a cube with a side length of
of a unit?
Sum of × +1 and × + 2
Step-by-step explanation:
X +1 + X + 2
X + X + 1 + 2
2x + 3
Therefore it's 2x + 3
Given the set of data: 24, 43, 65, 12, 31, 78, 43, 24, 25, 18, 29, 53, 18, 23, 20, 43, 53, 25 Determine the quartiles.
Answer:
Lower quartile= 4.75
Middle quartile= 9.5
Upper quartile= 14.25
Step-by-step explanation:
The given date set is 24, 43, 65, 12, 31, 78, 43, 24, 25, 18, 29, 53, 18, 23, 20, 43, 53, 25
On counting them we notice that it's number of element is 18
So N = 18
Arranging them in ascending order gives
12,18,18,20,23,24,24,25,25,29,31,43,43,43,53,53,65,78
Lower quartile= (N+1)*1/4
Lower quartile= (18+1)/4
Lower quartile= 19/4
Lower quartile= 4.75
Middle quartile= (N+1)*2/4
Middle quartile= (18+1)*2/4
Middle quartile= (19)*2/4
Middle quartile= 9.5
Upper quartile= (N+1)*3/4
Upper quartile= (18+1)*3/4
Upper quartile= (19)*3/4
Upper quartile= 14.25
Inter quartile range = upper quartile- minutes lower quartile
= 14.25-4.75
= 9.5
7.19 We are given the following probability distribution. x P(x) b. c. d. 0 1 2 3 .1 .4 .3 .2 a. Calculate the mean, variance, and standard deviation.
Answer:
Mean = 1.6
Variance = 0.84
Standard deviation = 0.916
Step-by-step explanation:
We are given the following probability distribution below;
X P(X) [tex]X \times P(X)[/tex] [tex]X^{2} \times P(X)[/tex]
0 0.1 0 0
1 0.4 0.4 0.4
2 0.3 0.6 1.2
3 0.2 0.6 1.8
Total 1.6 3.4
Now, the mean of the probability distribution is given by;
Mean, E(X) = [tex]\sum X \times P(X)[/tex] = 1.6
Also, the variance of the probability distribution is given by;
Variance, V(X) = [tex]\sum X^{2} \times P(X) - (\sum X \times P(X))^{2}[/tex]
= [tex]3.4 - (1.6)^{2}[/tex]
= 3.4 - 2.56 = 0.84
And the standard deviation of the probability distribution is given by;
Standard deviation, S.D. (X) = [tex]\sqrt{Variance}[/tex]
= [tex]\sqrt{0.84}[/tex] = 0.916.
0.18 divided by 0.04
What is the solution for the quadratic equation?
If P is the midpoint of XY, XP = 8x - 2 and PY = 12x - 30, find the
value of x.
Answer:
x=7
Step-by-step explanation:
If P is the midpoint of XY, then XP = PY:
8x - 2 = 12x - 3012x -8x = 30 -24x = 28x= 28/4x= 7Three students were given the expression shown and were asked to take a common factor out of two of the terms. Use the drop-down menus to complete the statements about whether each student's answer is an equivalent expression. Then choose an expression that is equivalent.
Answer:
Step-by-step explanation:
Given: 4 - 9x +21
Factorizing this expression, we have;
4 -3(3x - 7)
i. Chang's expression: 4 - 3(3x + 7)
This is not an equivalent expression, because by expansion of the bracket, the expression gives: 4 -9x -21
ii. Benjamin's expression: 4 + 3(3x + 7)
This is not an equivalent expression, because by expansion of the bracket, the expression gives: 4 +9x +21
iii. Habib's expression: 4 + 12x
This is not an equivalent expression, because the expression is not related to the given question
Comparing the three student's answers with the appropriate expression, none of the student's is an equivalent expression.
This expression that is equivalent to the given question is;
4 -3(3x - 7) = 4 -9x + 21
Answer:
1,2,4
Step-by-step explanation:
How much money will there be in an account at the end of 10 years if $4000 is deposited at 6% compounded quarterly
Answer:
$7,256.07
Step-by-step explanation:
A = p(1+r/n)^nt
A = 4000(1+.06/4)^(10*4)
Suppose that 11% of all steel shafts produced by a certain process are nonconforming but can be reworked (rather than having to be scrapped). Consider a random sample of 200 shafts, and let X denote the number among these that are nonconforming and can be reworked.Required:a. What is the (approximate) probability that X is at most 30?b. What is the (approximate) probability that X is less than 30?c. What is the (approximate) probability that X is between 15 and 25 (inclusive)?
Answer:
(a) The probability that X is at most 30 is 0.9726.
(b) The probability that X is less than 30 is 0.9554.
(c) The probability that X is between 15 and 25 (inclusive) is 0.7406.
Step-by-step explanation:
We are given that 11% of all steel shafts produced by a certain process are nonconforming but can be reworked. A random sample of 200 shafts is taken.
Let X = the number among these that are nonconforming and can be reworked
The above situation can be represented through binomial distribution such that X ~ Binom(n = 200, p = 0.11).
Here the probability of success is 11% that this much % of all steel shafts produced by a certain process are nonconforming but can be reworked.
Now, here to calculate the probability we will use normal approximation because the sample size if very large(i.e. greater than 30).
So, the new mean of X, [tex]\mu[/tex] = [tex]n \times p[/tex] = [tex]200 \times 0.11[/tex] = 22
and the new standard deviation of X, [tex]\sigma[/tex] = [tex]\sqrt{n \times p \times (1-p)}[/tex]
= [tex]\sqrt{200 \times 0.11 \times (1-0.11)}[/tex]
= 4.42
So, X ~ Normal([tex]\mu =22, \sigma^{2} = 4.42^{2}[/tex])
(a) The probability that X is at most 30 is given by = P(X < 30.5) {using continuity correction}
P(X < 30.5) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{30.5-22}{4.42}[/tex] ) = P(Z < 1.92) = 0.9726
The above probability is calculated by looking at the value of x = 1.92 in the z table which has an area of 0.9726.
(b) The probability that X is less than 30 is given by = P(X [tex]\leq[/tex] 29.5) {using continuity correction}
P(X [tex]\leq[/tex] 29.5) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{29.5-22}{4.42}[/tex] ) = P(Z [tex]\leq[/tex] 1.70) = 0.9554
The above probability is calculated by looking at the value of x = 1.70 in the z table which has an area of 0.9554.
(c) The probability that X is between 15 and 25 (inclusive) is given by = P(15 [tex]\leq[/tex] X [tex]\leq[/tex] 25) = P(X < 25.5) - P(X [tex]\leq[/tex] 14.5) {using continuity correction}
P(X < 25.5) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{25.5-22}{4.42}[/tex] ) = P(Z < 0.79) = 0.7852
P(X [tex]\leq[/tex] 14.5) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{14.5-22}{4.42}[/tex] ) = P(Z [tex]\leq[/tex] -1.70) = 1 - P(Z < 1.70)
= 1 - 0.9554 = 0.0446
The above probability is calculated by looking at the value of x = 0.79 and x = 1.70 in the z table which has an area of 0.7852 and 0.9554.
Therefore, P(15 [tex]\leq[/tex] X [tex]\leq[/tex] 25) = 0.7852 - 0.0446 = 0.7406.
Lillie is saving up for a trip she is taking with friends during her break from school. If Lillie's current monthly net pay is $560.00 and her monthly expenses are $347.49, what percent of her net pay is left for savings? (2 points)
19%
23%
38%
Answer:
38%
Step-by-step explanation:
First determine her savings
560-347.49
212.51
Then divide by the total amount
212.51/560
.379482143
Change to percent form
37.948%
Answer:
38%
Step-by-step explanation:
[tex]560.00-347.49=212.51\\212.51\div560.00==38[/tex]
what is the decimal equivalent of 7/20
Aiko and Kendra arrive at the Texas
State Fair with $60. What is the total
number of rides they can go on if
they each pay the entrance fee of
$17 and rides cost $3 each?
Answer:
They can go on 14 rides the maximum.
Step-by-step explanation:
First, you have to set up the equation. Basically, Aiko and Kendra only carry $60 with them. They cannot go over that limit. Furthermore, the entrance free is $17. Each ride is $3.
(x = the amount of rides)
17 + 3x ≤ 60
17 represents the entrance fee which only has to be paid one time. 3x represents the cost of each ride (x equals to the amount of rides).
Now you solve.
Isolate the variable, which is 3x.
3x ≤ 60 - 17
3x ≤ 43
Now, divide 43 by 3 to find the value of x.
x ≤ 43 ÷ 3
x ≤ 14.3333333333
They can go on a max of 14 rides. Anymore, and they will go over budget. Normally, with problems like this one, if you have a decimal, you should round down unless your instructor says otherwise.
After all, who would you be able to go on a third of a ride? It isn't possible, so generally, they just have you round down.
formula of a square minus b square
Answer:
(a+b)(a-b)
Step-by-step explanation:
[tex]\\ \sf\longmapsto (a+b)(a-b)[/tex]
[tex]\\ \sf\longmapsto a(a-b)+b(a-b)[/tex]
[tex]\\ \sf\longmapsto a^2-ab+ba-b^2[/tex]
[tex]\\ \sf\longmapsto a^2-ab+ab-b^2[/tex]
[tex]\\ \sf\longmapsto a^2-b^2[/tex]
[tex]\large\bf{\orange{ \implies}} \: \tt \: {a}^{2} \: - \: {b}^{2} [/tex]
[tex]\large\bf{\pink{ \implies}} \: \tt \: (a + b) \quad \: (a - b)[/tex]
[tex]\large\bf{\pink{ \implies}} \: \tt \: a \: (a - b) \quad \: b \: (a - b)[/tex]
[tex]\large\bf{\pink{ \implies}} \: \tt \: {a}^{2} \: - \: ab \: + \: ba \: - \: {b}^{2} [/tex]
[tex]\large\bf{\pink{ \implies}} \: \tt \: {a}^{2} \: - \: ab \: + \: ab \: - \: {b}^{2} [/tex]
[tex]\large\bf{\pink{ \implies}} \: \tt \: {a}^{2} \: - \: \cancel{ab} \: + \: \cancel{ab} \: - \: {b}^{2} [/tex]
[tex]\large\bf{\pink{ \implies}} \: \tt \: {a}^{2} \: - \: {b}^{2} [/tex]
. A population is currently 6,000 and has been increasing by 1.2% each day. Write an exponential model for the population.
Answer: [tex]A=6000(1.012)^t[/tex]
Step-by-step explanation:
General exponential function:
[tex]A=P(1+r)^t[/tex]
, where P= current population
r= rate of growth
t= time period
A= population after t years
As per given , we have P=6,000
r= 1.2% = 0.012
Then, the required exponential function: [tex]A=6000(1+0.012)^t[/tex]
or [tex]A=6000(1.012)^t[/tex]
3,
If an angle measures 29°, find its supplement.
7
4
Kelsey is drawing a triangle with angle measures of 128° and 10°. What is the measure of
the missing angle?
A
1280
10°
В
not to scale
7.6.2 DOK
9514 1404 393
Answer:
3. 151°
4. 42°
Step-by-step explanation:
3. The measure of the supplement is found by subtracting the angle from 180°.
supplement of 29° = 180° -29° = 151°
__
4. The total of angles in a triangle is 180°, so the third one can be found by subtracting the other two from 180°.
third angle = 180° -128° -10° = 42°
Ethan has collected 417 football cards. He shares them equally between himself and his two friends. How many will each person get
Answer:
139 cards
Step-by-step explanation:
This is basically just a division statement - we have 417 cards and want to split it with 3 people (two friends + himself = 3 people).
We can divide these using a calculator or long division, but either way you will get:
[tex]417\div3=139[/tex]
Hope this helped!
Answer: 139
Step-by-step explanation:
417 divided by 3 gives you 139.
janice is buying paint to paint her new apartment
Answer:
I canot answer this
Step-by-step explanation: