28. For any odd integer n, [n²/4] = ((n - 1)/2) ((n + 1)/2) is TRUE.
29. For any odd integer n, [n²/4] = (n² + 3)/4 is FALSE.
How did we arrive at these assertions?To prove or disprove the statements, let's start by considering each statement separately.
Statement 28: For any odd integer n, [n²/4] = ((n - 1)/2) ((n + 1)/2)
To prove this statement, we need to show that for any odd integer n, the expression on the left side ([n²/4]) is equal to the expression on the right side (((n - 1)/2) ((n + 1)/2)).
Let's test this statement for an odd integer, such as n = 3:
Left side: [3²/4] = [9/4] = 2 (the greatest integer less than or equal to 9/4 is 2)
Right side: ((3 - 1)/2) ((3 + 1)/2) = (2/2) (4/2) = 1 * 2 = 2
For n = 3, both sides of the equation yield the same result (2).
Let's test another odd integer, n = 5:
Left side: [5²/4] = [25/4] = 6 (the greatest integer less than or equal to 25/4 is 6)
Right side: ((5 - 1)/2) ((5 + 1)/2) = (4/2) (6/2) = 2 * 3 = 6
Again, for n = 5, both sides of the equation yield the same result (6).
We can repeat this process for any odd integer, and we will find that both sides of the equation yield the same result. Therefore, we have shown that for any odd integer n, [n²/4] = ((n - 1)/2) ((n + 1)/2).
Statement 28 is true.
Statement 29: For any odd integer n, [n²/4] = (n² + 3)/4
To prove or disprove this statement, we need to show that for any odd integer n, the expression on the left side ([n²/4]) is equal to the expression on the right side ((n² + 3)/4).
Let's test this statement for an odd integer, such as n = 3:
Left side: [3²/4] = [9/4] = 2 (the greatest integer less than or equal to 9/4 is 2)
Right side: (3² + 3)/4 = (9 + 3)/4 = 12/4 = 3
For n = 3, the left side yields 2, while the right side yields 3. They are not equal.
Therefore, we have found a counterexample (n = 3) where the statement does not hold.
Statement 29 is false.
learn more about odd integer: https://brainly.com/question/2263958
#SPJ4
The complete question goes thus:
28. If true, prove the following statement or find a counterexample if the statement is false, but do not use Theorem 4.6.1. in your proof. For any odd integer n, [n²/4]=((n - 1)/2) ((n + 1)/2). 2. (10 points)
29. If true, prove the following statement or find a counterexample if the statement is false, but do not use Theorem 4.6.1. in your proof. For any odd integer n, [n²/4] = (n² + 3)/4
Supersarket shoppers were observed and questioned immedalely after puking an lem in their cart of a random sample of 270 choosing a product at the regular price, 176 dained to check the price belore putting the item in their cart. Of an independent random sample of 230 choosing a product at a special price, 190 emade this claim. Find a 95% confidence inlerval for the delerence between the two population proportions. Let P X
be the population proporien of shoppers choosing a product at the regular peice who clam to check the price before puting in inso their carf and lat Py be the populacon broportion of ahoppen chooking a product al a special price whe claim to check the price before puiting it into their cart. The 95% confidence interval in ∠P x
−P y
⩽ (Round to four decimal places as needed)
The 95% confidence interval in P₁ − P₂ is -0.2892 ≤ P₁ − P₂ ≤ -0.0608.
Given data
Sample 1: n1 = 270, x1 = 176
Sample 2: n2 = 230, x2 = 190
Let P1 be the proportion of shoppers who check the price before putting an item in their cart when choosing a product at regular price. P2 be the proportion of shoppers who check the price before putting an item in their cart when choosing a product at a special price.
The point estimate of the difference in population proportions is:
P1 - P2 = (x1/n1) - (x2/n2)= (176/270) - (190/230)= 0.651 - 0.826= -0.175
The standard error is: SE = √((P1Q1/n1) + (P2Q2/n2))
where Q = 1 - PSE = √((0.651*0.349/270) + (0.826*0.174/230)) = √((0.00225199) + (0.00115638)) = √0.00340837= 0.0583
A 95% confidence interval for the difference in population proportions is:
P1 - P2 ± Zα/2 × SE
Where Zα/2 = Z
0.025 = 1.96CI = (-0.175) ± (1.96 × 0.0583)= (-0.2892, -0.0608)
Rounding to four decimal places, the 95% confidence interval in P₁ − P₂ is -0.2892 ≤ P₁ − P₂ ≤ -0.0608.
Learn more about confidence interval visit:
brainly.com/question/32546207
#SPJ11
Consider the dictionary below: student ={ "name": "Em "class": 9, "marks": 75 "name": "Emma", Select all the correct methods to obtain the value(s) of the key marks from the dictionary m= student.get(2) m= student.get(’marks’) m=( student [2])
m=( student[’marks’])
none of the above A and C B and D
Method 4: Here, the square bracket notation is used with the key marks, which is enclosed within quotes. As the key marks is not enclosed within quotes in the dictionary, this method is incorrect.
Hence, the method is incorrect.
The correct methods to obtain the value(s) of the key marks from the given dictionary are as follows:a. `m= student.get('marks')`b. `m= student['marks']`.
Method 1: Here, we use the get() method to obtain the value(s) of the key marks from the dictionary. This method returns the value of the specified key if present, else it returns none. Hence, the correct method is `m= student.get('marks')`.
Method 2: Here, we access the value of the key marks from the dictionary using the square bracket notation. This method is used to directly get the value of the given key.
To know more about dictionary visit:
https://brainly.com/question/32926436
#SPJ11
Suppose the scores of students on a Statistics course are Normally distributed with a mean of 484 and a standard deviation of 74. What percentage of of the students scored between 336 and 484 on the exam? (Give your answer to 3 significant figures.)
Approximately 47.7% of the students scored between 336 and 484 on the exam.
To solve this problem, we need to standardize the values using the z-score formula:
z = (x - μ) / σ
where x is the score of interest, μ is the mean, and σ is the standard deviation.
For x = 336, we have:
z1 = (336 - 484) / 74
≈ -1.99
For x = 484, we have:
z2 = (484 - 484) / 74
= 0
We want to find the area under the normal curve between z1 and z2. We can use a standard normal distribution table or calculator to find these areas.
The area to the left of z1 is approximately 0.023. The area to the left of z2 is 0.5. Therefore, the area between z1 and z2 is:
area = 0.5 - 0.023
= 0.477
Multiplying this by 100%, we get the percentage of students who scored between 336 and 484 on the exam:
percentage = area * 100%
≈ 47.7%
Therefore, approximately 47.7% of the students scored between 336 and 484 on the exam.
Learn more about approximately from
https://brainly.com/question/27894163
#SPJ11
Find the general solution of the differential equation ty ′ +2y=t 2 , where t>0
To find the general solution of the given differential equation:
ty' + 2y = t^2, where t > 0
We can use the method of integrating factors. The integrating factor is given by the expression e^∫(2/t) dt.
First, let's write the differential equation in the standard form:
ty' + 2y = t^2
Now, we can find the integrating factor. Integrating 2/t with respect to t, we get:
∫(2/t) dt = 2ln(t)
So, the integrating factor is e^(2ln(t)) = t^2.
Multiplying both sides of the differential equation by the integrating factor, we have:
t^3 y' + 2t^2 y = t^4
Now, notice that the left-hand side is the derivative of (t^3 y) with respect to t. Integrating both sides, we obtain:
∫(t^3 y' + 2t^2 y) dt = ∫t^4 dt
This simplifies to:
(t^3 y)/3 + (2t^2 y)/3 = (t^5)/5 + C
Multiplying through by 3, we get:
t^3 y + 2t^2 y = (3t^5)/5 + 3C
Combining the terms with y, we have:
t^3 y + 2t^2 y = (3t^5)/5 + 3C
Factoring out y, we get:
y(t^3 + 2t^2) = (3t^5)/5 + 3C
Dividing both sides by (t^3 + 2t^2), we obtain the general solution:
y = [(3t^5)/5 + 3C] / (t^3 + 2t^2)
Therefore, the general solution of the given differential equation is:
y = (3t^5 + 15C) / (5(t^3 + 2t^2))
where C is the constant of integration.
Learn more about differential equation here
https://brainly.com/question/32645495
#SPJ11
The Polar Equation Of The Curve Y=x/1+x Is
The polar equation of the curve y = x/(1+x) is r = 2cosθ. Here's how you can derive this equation:To begin, we'll use the fact that x = r cosθ and y = r sinθ for any point (r,θ) in polar coordinates.
Substituting these values for x and y into the equation y = x/(1+x), we get:r sinθ = (r cosθ) / (1 + r cosθ)
Multiplying both sides by (1 + r cosθ) yields: r sinθ (1 + r cosθ) = r cosθ
Expanding the left side of this equation gives:r sinθ + r² sinθ cosθ = r cosθ
Solving for r gives:r = cosθ / (sinθ + r cosθ)
Multiplying the numerator and denominator of the right side of this equation by sinθ - r cosθ gives:
r = cosθ (sinθ - r cosθ) / (sin²θ - r² cos²θ)
Using the Pythagorean identity sin²θ + cos²θ = 1, we can rewrite the denominator as:
r = cosθ (sinθ - r cosθ) / sin²θ (1 - r²)
Expanding the numerator gives: r = 2 cosθ / (1 + cos 2θ)
Recall that cos 2θ = 1 - 2 sin²θ, so we can substitute this into the denominator of the above equation to get: r = 2 cosθ / (2 cos²θ)
Simplifying by canceling a factor of 2 gives: r = cosθ / cos²θ = secθ / cosθ
= 1 / sinθ = cscθ
Therefore, the polar equation of the curve y = x/(1+x) is r = cscθ, or equivalently, r = 2 cosθ.
To know more about equation visit:
https://brainly.com/question/29657983
#SPJ11
a radar complex consists of 10 units that operate independently. the probability that a unit detects an incoming missile is 0.85. find the probability that an incoming missile will: (a) not be detected by any unit. (b) be detected by at least 8 units. (c) next year the radar complex will be expanded to 400 units. what will be the approximate probability that at least 360 units will detect an incoming missile.
Using binomial probability to solve the probability of the independent events;
(a) The probability that an incoming missile will not be detected by any unit in the radar complex is approximately 0.0000341468.
(b) The probability that an incoming missile will be detected by at least 8 units in the radar complex is approximately 0.999718.
(c) If the radar complex is expanded to 400 units with the same detection probability (0.85), the approximate probability that at least 360 units will detect an incoming missile is approximately 0.0265.
What is the probability that the incoming missile will not be detected by any unit?To solve these probability problems, we'll need to apply the concepts of independent events and the binomial probability formula. Let's go step by step:
(a) The probability that a unit does not detect an incoming missile is 1 - 0.85 = 0.15. Since each unit operates independently, the probability that none of the 10 units detects the missile is the product of their individual probabilities:
P(not detected by any unit) = (0.15)^10 = 0.0000341468 (approximately)
(b) To find the probability that an incoming missile is detected by at least 8 units, we need to calculate the probability of it being detected by exactly 8, exactly 9, or exactly 10 units, and then sum those probabilities.
P(detected by at least 8 units) = P(detected by 8 units) + P(detected by 9 units) + P(detected by 10 units)
Using the binomial probability formula:
P(k successes in n trials) = C(n, k) * p^k * (1-p)^(n-k)
where C(n, k) represents the number of combinations of n items taken k at a time, p is the probability of success, and (1-p) is the probability of failure.
P(detected by 8 units) = C(10, 8) * (0.85)^8 * (0.15)^2 ≈ 0.286476
P(detected by 9 units) = C(10, 9) * (0.85)^9 * (0.15)^1 ≈ 0.369537
P(detected by 10 units) = C(10, 10) * (0.85)^10 * (0.15)^0 = 0.443705
Summing these probabilities, we get:
P(detected by at least 8 units) ≈ 0.286476 + 0.369537 + 0.443705 ≈ 0.999718
Therefore, the probability that an incoming missile will be detected by at least 8 units is approximately 0.999718.
(c) If the radar complex is expanded to 400 units and the probability of detection remains the same (0.85), we can approximate the probability that at least 360 units will detect an incoming missile using a normal approximation to the binomial distribution.
The mean (μ) of the binomial distribution is given by n * p, and the standard deviation (σ) is given by √(n * p * (1-p)). In this case, n = 400 and p = 0.85.
μ = 400 * 0.85 = 340
σ = √(400 * 0.85 * 0.15) ≈ 10.2469
To find the probability that at least 360 units will detect an incoming missile, we can use the cumulative distribution function (CDF) of the normal distribution.
P(X ≥ 360) ≈ P(Z ≥ (360 - μ) / σ)
P(Z ≥ (360 - 340) / 10.2469) ≈ P(Z ≥ 1.951)
Consulting a standard normal distribution table or using a calculator, we find that P(Z ≥ 1.951) ≈ 0.0265.
Therefore, the approximate probability that at least 360 units will detect an incoming missile with the expanded radar complex is approximately 0.0265.
Learn more on binomial probability here;
https://brainly.com/question/15246027
#SPJ4
Consider the function f(x, y) = (2x+y^2-5)(2x-1). Sketch the following sets in the plane.
(a) The set of points where ƒ is positive.
S_+= {(x, y): f(x, y) > 0}
(b) The set of points where ƒ is negative.
S_ = {(x,y): f(x, y) <0}
Consider the function f(x, y) = (2x+y²-5)(2x-1). Sketch the following sets in the plane. The given function is f(x, y) = (2x+y²-5)(2x-1)
.The formula for the function is shown below: f(x, y) = (2x+y²-5)(2x-1)
On simplifying the above expression, we get, f(x, y) = 4x² - 2x + 2xy² - y² - 5.
The sets in the plane can be sketched by considering the two conditions given below:
(a) The set of points where ƒ is positive. S_+ = {(x, y): f(x, y) > 0}
(b) The set of points where ƒ is negative. S_ = {(x,y): f(x, y) <0}
Simplifying f(x, y) > 0:4x² - 2x + 2xy² - y² - 5 > 0Sketching the region using the trace function on desmos, we get the following figure:
Simplifying f(x, y) < 0:4x² - 2x + 2xy² - y² - 5 < 0Sketching the region using the trace function on desmos, we get the following figure.
To know more about sets visit:
https://brainly.com/question/28492445
#SPJ11
jesse has three one gallon containers. The first one has (5)/(9 ) of a gallon of juice, the second has (1)/(9) gallon of juice and the third has (1)/(9) gallon of juice. How many gallons of juice does Jesse have
Jesse has (7)/(9) of a gallon of juice.
To solve the problem, add the gallons of juice from the three containers.
Jesse has three one gallon containers with the following quantities of juice:
Container one = (5)/(9) of a gallon of juice
Container two = (1)/(9) gallon of juice
Container three = (1)/(9) gallon of juice
Add the quantities of juice from the three containers to get the total gallons of juice.
Juice in container one = (5)/(9)
Juice in container two = (1)/(9)
Juice in container three = (1)/(9)
Total juice = (5)/(9) + (1)/(9) + (1)/(9) = (7)/(9)
Therefore, Jesse has (7)/(9) of a gallon of juice.
To know more about gallon refer here:
https://brainly.com/question/31702678
#SPJ11
Find the curvature of r(t) at the point (1, 1, 1).
r (t) = (t. t^2.t^3)
k=
The given parameterized equation is r(t) = (t, t², t³) To determine the curvature of r(t) at the point (1, 1, 1), we need to follow the below steps.
Find the first derivative of r(t) using the power rule. r'(t) = (1, 2t, 3t²)
Find the second derivative of r(t) using the power rule.r''(t) = (0, 2, 6t)
Calculate the magnitude of r'(t). |r'(t)| = √(1 + 4t² + 9t⁴)
Compute the magnitude of r''(t). |r''(t)| = √(4 + 36t²)
Calculate the curvature (k) of the curve. k = |r'(t) x r''(t)| / |r'(t)|³, where x represents the cross product of two vectors.
k = |(1, 2t, 3t²) x (0, 2, 6t)| / (1 + 4t² + 9t⁴)³
k = |(-12t², -6t, 2)| / (1 + 4t² + 9t⁴)³
k = √(144t⁴ + 36t² + 4) / (1 + 4t² + 9t⁴)³
Now, we can find the curvature of r(t) at point (1,1,1) by replacing t with 1.
k = √(144 + 36 + 4) / (1 + 4 + 9)³
k = √184 / 14³
k = 0.2922 approximately.
Therefore, the curvature of r(t) at the point (1, 1, 1) is approximately 0.2922.
To know more about equation visit:
https://brainly.com/question/29657983
#SPJ11
A two-level, NOR-NOR circuit implements the function f(a,b,c,d)=(a+d ′
)(b ′
+c+d)(a ′
+c ′
+d ′
)(b ′
+c ′
+d). (a) Find all hazards in the circuit. (b) Redesign the circuit as a two-level, NOR-NOR circuit free of all hazards and using a minimum number of gates.
The given expression representing a two-level NOR-NOR circuit is simplified using De Morgan's theorem, and the resulting expression is used to design a hazard-free two-level NOR-NOR circuit with a minimum number of gates by identifying and sharing common terms among the product terms.
To analyze the circuit for hazards and redesign it to eliminate those hazards, let's start by simplifying the given expression and then proceed to construct a hazard-free two-level NOR-NOR circuit.
(a) Simplifying the expression f(a, b, c, d) = (a + d')(b' + c + d)(a' + c' + d')(b' + c' + d):
Using De Morgan's theorem, we can convert the expression to its equivalent NAND form:
f(a, b, c, d) = (a + d')(b' + c + d)(a' + c' + d')(b' + c' + d)
= (a + d')(b' + c + d)(a' + c' + d')(b' + c' + d)'
= [(a + d')(b' + c + d)(a' + c' + d')]'
Expanding the expression further, we have:
f(a, b, c, d) = (a + d')(b' + c + d)(a' + c' + d')
= a'b'c' + a'b'c + a'cd + a'd'c' + a'd'c + a'd'cd
(b) Redesigning the circuit as a two-level NOR-NOR circuit free of hazards and using a minimum number of gates:
The redesigned circuit will eliminate hazards and use a minimum number of gates to implement the simplified expression.
To achieve this, we'll use the Boolean expression and apply algebraic manipulations to construct the circuit. However, since the expression is not in a standard form (sum-of-products or product-of-sums), it may not be possible to create a two-level NOR-NOR circuit directly. We'll use the available algebraic manipulations to simplify the expression and design a circuit with minimal gates.
After simplifying the expression, we have:
f(a, b, c, d) = a'b'c' + a'b'c + a'cd + a'd'c' + a'd'c + a'd'cd
From this simplified expression, we can see that it consists of multiple product terms. Each product term can be implemented using two-level NOR gates. The overall circuit can be constructed by cascading these NOR gates.
To minimize the number of gates, we'll identify common terms that can be shared among the product terms. This will help reduce the overall gate count.
Here's the redesigned circuit using a minimum number of gates:
```
----(c')----
| |
----a--- NOR NOR---- f
| | |
| ----(b')----(d')
|
----(d')
```
In this circuit, the common term `(a'd')` is shared among the product terms `(a'd'c')`, `(a'd'c)`, and `(a'd'cd)`. Similarly, the common term `(b'c)` is shared between `(a'b'c)` and `(a'd'c)`. By sharing these common terms, we can minimize the number of gates required.
The redesigned circuit is a two-level NOR-NOR circuit free of hazards, implementing the function `f(a, b, c, d) = (a + d')(b' + c + d)(a' + c' + d')(b' + c' + d)`.
Note: The circuit diagram above represents a high-level logic diagram and does not include specific gate configurations or interconnections. To obtain the complete circuit implementation, the NOR gates in the diagram need to be realized using appropriate gate-level connections and configurations.
To know more about De Morgan's theorem, refer to the link below:
https://brainly.com/question/33579333#
#SPJ11
Complete Question:
A two-level, NOR-NOR circuit implements the function f(a, b, c, d) = (a + d′)(b′ + c + d)(a′ + c′ + d′)(b′ + c′ + d).
(a) Find all hazards in the circuit.
(b) Redesign the circuit as a two-level, NOR-NOR circuit free of all hazards and using a minimum number of gates.
Find dy/dx for the following function, and place your answer in the box below: x^3+xe^y=2√ y+y^2
The derivative dy/dx of the function x^3 + xe^y = 2√(y + y^2) is (3x^2 + e^y) / (xe^y - 2y - 1).
To find dy/dx for the given function x^3 + xe^y = 2√(y + y^2), we differentiate both sides of the equation with respect to x using the chain rule and product rule.
Differentiating x^3 + xe^y with respect to x, we obtain 3x^2 + e^y + xe^y * dy/dx.
Differentiating 2√(y + y^2) with respect to x, we have 2 * (1/2) * (2y + 1) * dy/dx.
Setting the two derivatives equal to each other, we get 3x^2 + e^y + xe^y * dy/dx = (2y + 1) * dy/dx.
Rearranging the equation to solve for dy/dx, we have dy/dx = (3x^2 + e^y) / (xe^y - 2y - 1).
Therefore, the derivative dy/dx of the function x^3 + xe^y = 2√(y + y^2) is (3x^2 + e^y) / (xe^y - 2y - 1).
To find the derivative dy/dx for the given function x^3 + xe^y = 2√(y + y^2), we need to differentiate both sides of the equation with respect to x. This can be done using the chain rule and product rule of differentiation.
Differentiating x^3 + xe^y with respect to x involves applying the product rule. The derivative of x^3 is 3x^2, and the derivative of xe^y is xe^y * dy/dx (since e^y is a function of y, we multiply by the derivative of y with respect to x, which is dy/dx).
Next, we differentiate 2√(y + y^2) with respect to x using the chain rule. The derivative of √(y + y^2) is (1/2) * (2y + 1) * dy/dx (applying the chain rule by multiplying the derivative of the square root function by the derivative of the argument inside, which is y).
Setting the derivatives equal to each other, we have 3x^2 + e^y + xe^y * dy/dx = (2y + 1) * dy/dx.
To solve for dy/dx, we rearrange the equation, isolating dy/dx on one side:
dy/dx = (3x^2 + e^y) / (xe^y - 2y - 1).
Therefore, the derivative dy/dx of the function x^3 + xe^y = 2√(y + y^2) is (3x^2 + e^y) / (xe^y - 2y - 1).
Learn more about product rule here:
brainly.com/question/29198114
#SPJ11
If n(B) = 380,
n(A ∩ B ∩ C) = 115,
n(A ∩ B ∩ CC) = 135,
and n(AC∩
B ∩ C) = 95,
what is n(AC∩
B ∩ CC)?
If \( n(B)=380, n(A \cap B \cap C)=115, n\left(A \cap B \cap C^{C}\right)=135 \), and \( n\left(A^{C} \cap B \cap C\right)=95 \), what is \( n\left(A^{C} \cap B \cap C^{C}\right) \) ?
1. The given values, we have: n(AC ∩ B ∩ CC) = 35.
2. n(A' ∩ B ∩ C') = 0.
To answer the first question, we can use the inclusion-exclusion principle:
n(A ∩ B) = n(B) - n(B ∩ AC) (1)
n(B ∩ AC) = n(A ∩ B ∩ C) + n(A ∩ B ∩ CC) (2)
n(AC ∩ B ∩ C) = n(A ∩ B ∩ C) (3)
Using equation (2) in equation (1), we get:
n(A ∩ B) = n(B) - (n(A ∩ B ∩ C) + n(A ∩ B ∩ CC))
Substituting the given values, we have:
n(A ∩ B) = 380 - (115 + 135) = 130
Now, to find n(AC ∩ B ∩ CC), we can use a similar approach:
n(B ∩ CC) = n(B) - n(B ∩ C) (4)
n(B ∩ C) = n(A ∩ B ∩ C) + n(AC ∩ B ∩ C) (5)
Substituting the given values, we have:
n(B ∩ C) = 115 + 95 = 210
Using equation (5) in equation (4), we get:
n(B ∩ CC) = 380 - 210 = 170
Finally, we can use the inclusion-exclusion principle again to find n(AC ∩ B ∩ CC):
n(AC ∩ B) = n(B) - n(A ∩ B)
n(AC ∩ B ∩ CC) = n(B ∩ CC) - n(A ∩ B ∩ CC)
Substituting the values we previously found, we have:
n(AC ∩ B ∩ CC) = 170 - 135 = 35
Therefore, n(AC ∩ B ∩ CC) = 35.
To answer the second question, we can use a similar approach:
n(B ∩ C) = n(A ∩ B ∩ C) + n(AC ∩ B ∩ C) (6)
n(AC ∩ B ∩ C) = 95 (7)
Using equation (7) in equation (6), we get:
n(B ∩ C) = n(A ∩ B ∩ C) + 95
Substituting the given values, we have:
210 = 115 + 95 + n(A ∩ B ∩ CC)
Solving for n(A ∩ B ∩ CC), we get:
n(A ∩ B ∩ CC) = 210 - 115 - 95 = 0
Therefore, n(A' ∩ B ∩ C') = 0.
Learn more about inclusion-exclusion from
https://brainly.com/question/30995367
#SPJ11
Curt and Melanie are mixing 70% of blue paint and 30% of yellow paint to make seafoam green paint in a 1. 5 quarts bucket. Use the percent equation to find out how much yellow paint they should use
Curt and Melanie should use 0.45 quarts (or 0.45 * 32 = 14.4 ounces) of yellow paint to make seafoam green paint in a 1.5 quarts bucket.
To find out how much yellow paint Curt and Melanie should use, we need to determine the percentage of yellow paint in the seafoam green paint.
Since seafoam green paint is a mixture of 70% blue paint and 30% yellow paint, the remaining percentage will be the percentage of yellow paint.
Let's calculate it:
Percentage of yellow paint = 100% - Percentage of blue paint
Percentage of yellow paint = 100% - 70%
Percentage of yellow paint = 30%
Now we can use the percent equation to find out how much yellow paint should be used in a 1.5 quarts bucket.
Let "x" represent the amount of yellow paint to be used in quarts.
30% of 1.5 quarts = x quarts
0.30 * 1.5 = x
0.45 = x
Therefore, Curt and Melanie should use 0.45 quarts (or 0.45 * 32 = 14.4 ounces) of yellow paint to make seafoam green paint in a 1.5 quarts bucket.
Learn more about green paint from
https://brainly.com/question/28996629
#SPJ11
Solve each of following DE subject to given conditions, if any. 1. , (lny)y′=−x²y,y(0)=e. Choose the right answer from the following possible answers: a. 1/2ln(y)=−1/2x³+C b. 1/3(ln(y))2=−1/3x³+1/2 c. ln(y²)=x³+21 d. None of the above
we cannot determine a specific solution for the given differential equation with the given initial condition. Hence the correct answer is d) None of the above.
To solve the given differential equation (lny)y' = -x^2y, we can separate the variables and integrate both sides.
(lny)dy = -x^2ydx
Integrating both sides:
∫(lny)dy = ∫(-x^2y)dx
Integrating the left side using integration by parts:
[ ylny - ∫(1/y)dy ] = ∫(-x^2y)dx
Simplifying:
ylny - ∫(1/y)dy = -∫(x^2y)dx
Using the integral of 1/y and integrating the right side:
ylny - ln|y| = -∫(x^2y)dx
Simplifying further:
ln(y^y) - ln|y| = -∫(x^2y)dx
Combining the logarithmic terms:
ln(y^y/|y|) = -∫(x^2y)dx
Simplifying the expression inside the logarithm:
ln(|y|) = -∫(x^2y)dx
At this point, we cannot proceed to find a closed-form solution since the integral on the right side is not straightforward to evaluate. Additionally, the given initial condition y(0) = e cannot be directly incorporated into the solution process.
Therefore, we cannot determine a specific solution for the given differential equation with the given initial condition. Hence, the correct answer is d) None of the above.
To know more about differential equations, visit;
https://brainly.com/question/1164377
#SPJ11
Consider the x
ˉ
control chart based on control limits μ 0
±2.81σ/ n
. a) What is the probability of a false alarm? b) What is the ARL when the process is in control? c) What is the ARL when n=4 and the process mean has shifted to μ 1
=μ 0
+σ? d) How do the values of parts (a) and (b) compare to the corresponding values for a 3-sigma chart?
On an x-bar control chart with control limits of μ0 ± 2.81σ/n, the probability of a false alarm is 0.0025, the ARL is 370 when the process is in control, and the ARL is 800
when n=4 and the process mean has shifted to μ1=μ0+σ.
In comparison to a 3-sigma chart, the values of parts (a) and (b) are much better.
a) The probability of a false alarm is 0.0025. Let's see how we came up with this answer below. Probability of false alarm (α) = P (X > μ0 + Zα/2σ/ √n) + P (X < μ0 - Zα/2σ/ √n)= 0.0025 (by using Z tables)
b) When the process is in control, the ARL (average run length) is 370. To get the ARL, we have to use the formula ARL0 = 1 / α
= 1 / 0.0025
= 400.
c) If n = 4 and the process mean has shifted to
μ1 = μ0 + σ, then the ARL can be calculated using the formula
ARL1 = 2 / α
= 800.
d) The values of parts (a) and (b) are much better than those for a 3-sigma chart. 3-sigma charts are not effective at detecting small shifts in the mean because they have a low probability of detection (POD) and a high false alarm rate. The Xbar chart is better at detecting small shifts in the mean because it has a higher POD and a lower false alarm rate.
Conclusion: On an x-bar control chart with control limits of μ0 ± 2.81σ/n, the probability of a false alarm is 0.0025, the ARL is 370 when the process is in control, and the ARL is 800
when n=4 and the process mean has shifted to
μ1=μ0+σ.
In comparison to a 3-sigma chart, the values of parts (a) and (b) are much better.
To know more about probability visit
https://brainly.com/question/32004014
#SPJ11
What transformation would standardize a N(100,100) distribution?
To standardize a normal distribution, we must subtract the mean and divide by the standard deviation. This transforms the data to a distribution with a mean of zero and a standard deviation of one.
In this case, we have a normal distribution with a mean of 100 and a standard deviation of 100, which we want to standardize.We can use the formula:Z = (X - μ) / σwhere X is the value we want to standardize, μ is the mean, and σ is the standard deviation. In our case, X = 100, μ = 100, and σ = 100.
Substituting these values, we get:Z = (100 - 100) / 100 = 0Therefore, standardizing a N(100,100) distribution would result in a standard normal distribution with a mean of zero and a standard deviation of one.
When it comes to probability, standardization is a critical tool. In probability, standardization is the method of taking data that is on different scales and standardizing it to a common scale, making it easier to compare. A standardized normal distribution is a normal distribution with a mean of zero and a standard deviation of one.The standardization of a normal distribution N(100,100) is shown here. We can use the Z-score method to standardize any normal distribution. When the mean and standard deviation of a distribution are known, the Z-score formula may be used to determine the Z-score for any data value in the distribution.
Z = (X - μ) / σWhere X is the value we want to standardize, μ is the mean of the distribution, and σ is the standard deviation of the distribution.
When we use this equation to standardize the N(100,100) distribution, we get a standard normal distribution with a mean of 0 and a standard deviation of 1.The standard normal distribution is vital in statistical analysis. It allows us to compare and analyze data that is on different scales. We can use the standard normal distribution to calculate probabilities of events happening in a population. To calculate a Z-score, we take the original data value and subtract it from the mean of the distribution, then divide that by the standard deviation. When we standardize the N(100,100) distribution, we can use this formula to calculate Z-scores and analyze data.
To standardize a N(100,100) distribution, we subtract the mean and divide by the standard deviation, which results in a standard normal distribution with a mean of zero and a standard deviation of one.
To know more about standard deviation :
brainly.com/question/29115611
#SPJ11
Fill in the blank. The ________ is the probability of getting a test statistic at least as extreme as the one representing the sample data, assuming that the null hypothesis is true.
A. p-value
B. Critical value
C. Level of significance
D. Sample proportion
The p-value is the probability of getting a test statistic at least as extreme as the one representing the sample data, assuming that the null hypothesis is true.
The p-value is the probability of obtaining a test statistic that is as extreme as, or more extreme than, the one observed from the sample data, assuming that the null hypothesis is true. It is a measure of the evidence against the null hypothesis provided by the data. The p-value is used in hypothesis testing to make decisions about the null hypothesis. If the p-value is less than the predetermined level of significance (alpha), typically 0.05, it suggests that the observed data is unlikely to occur by chance alone under the null hypothesis. This leads to rejecting the null hypothesis in favor of the alternative hypothesis. On the other hand, if the p-value is greater than the significance level, there is insufficient evidence to reject the null hypothesis.For more questions on probability :
https://brainly.com/question/13786078
#SPJ8
The Munks agreed to monthly payments rounded up to the nearest $100 on a mortgage of $175000 amortized over 15 years. Interest for the first five years was 6.25% compounded semiannually. After 60 months, as permitted by the mortgage agreement, the Munks increased the rounded monthly payment by 10%. 1. a) Determine the mortgage balance at the end of the five-year term.(Points =4 )
2. b) If the interest rate remains unchanged over the remaining term, how many more of the increased payments will amortize the mortgage balance?(Points=4) 3. c) How much did the Munks save by exercising the increase-in-payment option?(Points=4.5)
The Munks saved $4444 by exercising the increase-in-payment option.
a) The first step is to compute the payment that would be made on a $175000 15-year loan at 6.25 percent compounded semi-annually over five years. Using the formula:
PMT = PV * r / (1 - (1 + r)^(-n))
Where PMT is the monthly payment, PV is the present value of the mortgage, r is the semi-annual interest rate, and n is the total number of periods in months.
PMT = 175000 * 0.03125 / (1 - (1 + 0.03125)^(-120))
= $1283.07
The Munks pay $1300 each month, which is rounded up to the nearest $100. At the end of five years, the mortgage balance will be $127105.28.
b) Over the remaining 10 years of the mortgage, the balance of $127105.28 will be amortized with payments of $1430 each month. The Munks pay an extra $130 per month, which is 10% of their new payment.
The additional $130 per month will be amortized by the end of the mortgage term.
c) Without the increase-in-payment option, the Munks would have paid $1283.07 per month for the entire 15-year term, for a total of $231151.20. With the increase-in-payment option, they paid $1300 per month for the first five years and $1430 per month for the remaining ten years, for a total of $235596.00.
To know more about compounded visit:
https://brainly.com/question/26550786
#SPJ11
How many four person committees are possible from a group of 9 people if: a. There are no restrictions? b. Both Tim and Mary must be on the committee? c. Either Tim or Mary (but not both) must be on the committee?
In either case, there are a total of 35 + 35 = 70 possible four-person committees when either Tim or Mary (but not both) must be on the committee.
a. If there are no restrictions, we can choose any four people from a group of nine. The number of four-person committees possible is given by the combination formula:
C(9, 4) = 9! / (4! * (9 - 4)!) = 9! / (4! * 5!) = 9 * 8 * 7 * 6 / (4 * 3 * 2 * 1) = 126
Therefore, there are 126 possible four-person committees without any restrictions.
b. If both Tim and Mary must be on the committee, we can select two more members from the remaining seven people. We fix Tim and Mary on the committee and choose two additional members from the remaining seven.
The number of committees is given by:
C(7, 2) = 7! / (2! * (7 - 2)!) = 7! / (2! * 5!) = 7 * 6 / (2 * 1) = 21
Therefore, there are 21 possible four-person committees when both Tim and Mary must be on the committee.
c. If either Tim or Mary (but not both) must be on the committee, we need to consider two cases: Tim is selected but not Mary, and Mary is selected but not Tim.
Case 1: Tim is selected but not Mary:
In this case, we select one more member from the remaining seven people.
The number of committees is given by:
C(7, 3) = 7! / (3! * (7 - 3)!) = 7! / (3! * 4!) = 7 * 6 * 5 / (3 * 2 * 1) = 35
Case 2: Mary is selected but not Tim:
Similarly, we select one more member from the remaining seven people.
The number of committees is also 35.
Therefore, in either case, there are a total of 35 + 35 = 70 possible four-person committees when either Tim or Mary (but not both) must be on the committee.
To know more about number, visit:
https://brainly.com/question/3589540
#SPJ11
a person 6ft tall is standing near a street light so that he is (4)/(10) of the distance from the pole to the tip of his shadows. how high above the ground is the light bulb
Using the laws of triangle and trigonometry ,The height of the light bulb is (4x - 6)/6.
Given a person 6ft tall is standing near a street light so that he is (4)/(10) of the distance from the pole to the tip of his shadows. We have to find the height above the ground of the light bulb.From the given problem,Let AB be the height of the light bulb and CD be the height of the person.Now, the distance from the pole to the person is 6x and the distance from the person to the tip of his shadow is 4x.Let CE be the height of the person's shadow. Then DE is the height of the person and AD is the length of the person's shadow.Now, using similar triangles;In triangle CDE, we haveCD/DE=CE/ADE/DE=CE/AE ...(1)In triangle ABE, we haveAE/BE=CE/AB ...(2)Now, CD = 6 ft and DE = 6 ft.So, from equation (1),CD/DE=1=CE/AE ...(1)Also, BE = 4x - 6, AE = 6x.So, from equation (2),AE/BE=CE/AB=>6x/(4x - 6)=1/AB=>AB=(4x - 6)/6 ...(2)Now, CD = 6 ft and DE = 6 ft.Thus, AB = (4x - 6)/6.
Let's learn more about trigonometry:
https://brainly.com/question/13729598
#SPJ11
How patriotic are you? Would you say extremely patriotic, very patriotic, somewhat patriotic, or not especially patriotic? Below is the data from Gallup polls that asked this question of a random sample of U.S. adults in 1999 and a second independent random sample in 2010. We conducted a chi-square test of homogeneity to determine if there are statistically significant differences in the distribution of responses for these two years. In this results table, the observed count appears above the expected count in each cell. 1999 994 extremely patriotic very patriotic somewhat patriotic not especially patriotic Total 193 466 284 257.2 443.8 237.3 55.72 324 426 193 611004 259.8 448.2 239.7 517 892 477 112 1998 2010 56.28 Total Chi-Square test: Statistic DF Value P-value Chi-square 3 53.19187) <0.0001 If we included an exploratory data analysis with the test of homogeneity, the percentages most appropriate as part of this analysis for the Extremely Patriotic group are
a. 193/1517 compared to 994/1998 b. 193/1998 compared to 324/1998 c. 193/517 compared to 324/517 d. 193/994 compared to 324/1004
The appropriate percentages for the Extremely Patriotic group are 19.42% in 1999 and 32.27% in 2010, corresponding to option d: 193/994 compared to 324/1004.
To calculate the appropriate percentages for the Extremely Patriotic group, we need to compare the counts from the 1999 and 2010 samples.
In 1999:
Number of Extremely Patriotic responses: 193
Total number of respondents: 994
In 2010:
Number of Extremely Patriotic responses: 324
Total number of respondents: 1004
Now we can calculate the percentages:
Percentage for 1999: (193 / 994) × 100 = 19.42%
Percentage for 2010: (324 / 1004) × 100 = 32.27%
Therefore, the appropriate percentages as part of the exploratory data analysis for the Extremely Patriotic group are:
19.42% compared to 32.27% (option d: 193/994 compared to 324/1004).
To know more about appropriate percentages:
https://brainly.com/question/28984529
#SPJ4
In two independent means confidence intervals, when the result is (t,+) , group 1 is largef. This would mean that the population mean from group one is larger. True False
The given statement when conducting two independent means confidence intervals, when the result is (t,+), group 1 is larger, this would mean that the population mean from group one is larger is True.
Independent mean refers to a sample drawn from a population whose size is less than 10% of the population size or the sample is drawn without replacement. A confidence interval provides a range of values that is likely to contain an unknown population parameter.
If the confidence interval for two independent means is (t,+), then group 1 is larger.
It means that the population mean of group one is larger than the population mean of group two.
The interval with a t-statistic provides the limits for the population parameter.
In this case, the t-value is positive.
The interval includes zero, so it is plausible that the difference is zero.
But because the t-value is positive, the population mean for group 1 is larger.
The confidence interval provides a range of values for the true difference between the two population means.
The true value is likely to be within the confidence interval with a certain probability.
To know more about the independent mean visit:
brainly.com/question/30112112
#SPJ11
Q3
Find an equation of the line that contains the given pair of points. The equation of the line is (21,26),(2,7) (Simplify your answer. Type your answer in slope-intercept form.)
The equation of the line passing through the points (21, 26) and (2, 7) in slope-intercept form is y = (19/19)x + (7 - (19/19)2), which simplifies to y = x + 5.
To find the equation of the line, we can use the slope-intercept form of a linear equation, which is y = mx + b, where m represents the slope and b represents the y-intercept.
First, we need to find the slope (m) of the line. The slope is calculated using the formula: m = (y₂ - y₁) / (x₂ - x₁), where (x₁, y₁) and (x₂, y₂) are the coordinates of the two points on the line.
Let's substitute the coordinates (21, 26) and (2, 7) into the slope formula:
m = (7 - 26) / (2 - 21) = (-19) / (-19) = 1
Now that we have the slope (m = 1), we can find the y-intercept (b) by substituting the coordinates of one of the points into the slope-intercept form.
Let's choose the point (2, 7):
7 = (1)(2) + b
7 = 2 + b
b = 7 - 2 = 5
Finally, we can write the equation of the line in slope-intercept form:
y = 1x + 5
Therefore, the equation of the line that contains the given pair of points (21, 26) and (2, 7) is y = x + 5.
Learn more about slope-intercepts here:
brainly.com/question/30216543
#SPJ11
The weight of an energy bar is approximately normally distributed with a mean of 42.40 grams with a standard deviation of 0.035 gram.
If a sample of 25 energy bars is selected, what is the probability that the sample mean weight is less than 42.375 grams?
the probability that the sample mean weight is less than 42.375 grams is approximately 0. (rounded to three decimal places).
To find the probability that the sample mean weight is less than 42.375 grams, we can use the Central Limit Theorem and approximate the distribution of the sample mean with a normal distribution.
The mean of the sample mean weight is equal to the population mean, which is 42.40 grams. The standard deviation of the sample mean weight, also known as the standard error of the mean, is calculated by dividing the population standard deviation by the square root of the sample size:
Standard Error of the Mean = standard deviation / √(sample size)
Standard Error of the Mean = 0.035 / √(25)
Standard Error of the Mean = 0.035 / 5
Standard Error of the Mean = 0.007
Now, we can calculate the z-score for the given sample mean weight of 42.375 grams using the formula:
z = (x - μ) / σ
where x is the sample mean weight, μ is the population mean, and σ is the standard error of the mean.
Plugging in the values, we have:
z = (42.375 - 42.40) / 0.007
z = -0.025 / 0.007
z = -3.5714
Using a standard normal distribution table or a calculator, we find that the probability of obtaining a z-score less than -3.5714 is very close to 0.
To know more about distribution visit:
brainly.com/question/32696998
#SPJ11
Question 5 (1 point ) a ,x-intercept (s): 1y-intercept (s): 1&3 b ,x-intercept (s): 6y-intercept (s): 6&18 c ,x-intercept (s): 1 & 3y-intercept (s): 1 d ,x-intercept (s): 6 & 18y-intercept (s): - 18 Question 6 ( 1 point )
The given question deals with x and y intercepts of various graphs. In order to understand and solve the question, we first need to understand the concept of x and y intercepts of a graph.
It is the point where the graph of a function crosses the x-axis. In other words, it is a point on the x-axis where the value of y is zero-intercept: It is the point where the graph of a function crosses the y-axis.
Now, let's come to the Given below are different sets of x and y intercepts of four different graphs: x-intercept (s): 1y-intercept (s): 1& x-intercept (s): 6y-intercept (s): 6&18c) x-intercept (s): 1 & 3y-intercept (s): 1x-intercept (s): 6 & 18y-intercept (s).
To know more about crosses visit:
https://brainly.com/question/12037474
#SPJ11
A rectangular swimming pool 50 ft long. 10 ft wide, and 8 ft deep is filled with water to a depth of 5 ft. Use an integral to find the work required to pump all the water out over the top. (Take as the density of water = 62.4lb/ft³.) Work
The work required to pump all the water out over the top of the pool is 468,000 foot-pounds (ft-lb).
To find the work required to pump all the water out of the rectangular swimming pool, we can calculate the weight of the water and then use the work formula.
First, let's calculate the volume of the pool that is filled with water:
Volume = length × width × depth
Volume = 50 ft × 10 ft × 5 ft
Volume = 2500 ft³
Next, let's calculate the weight of the water using the density of water:
Weight = Volume × density
Weight = 2500 ft³ × 62.4 lb/ft³
Weight = 156,000 lb
Now, let's calculate the work required to pump all the water out. Work is equal to the force applied multiplied by the distance over which the force is applied. In this case, the force required is the weight of the water, and the distance is the height from which the water is pumped.
Work = Force × Distance
Work = Weight × Height
The height from which the water is pumped is the depth of the pool minus the depth to which the pool is filled:
Height = 8 ft - 5 ft
Height = 3 ft
Substituting the values:
Work = 156,000 lb × 3 ft
Work = 468,000 ft-lb
Therefore, the work required to pump all the water out over the top of the pool is 468,000 foot-pounds (ft-lb).
for such more question on weight
https://brainly.com/question/22008756
#SPJ8
Quadrilateral ijkl is similar to quadrilateral mnop. Find the measure of side no. Round your answer to the nearest tenth if necessary.
The length of side NO is approximately 66.9 units.
Given
See attachment for quadrilaterals IJKL and MNOP
We have to determine the length of NO.
From the attachment, we have:
KL = 9
JK = 14
OP = 43
To do this, we make use of the following equivalent ratios:
JK: KL = NO: OP
Substitute values for JK, KL and OP
14:9 = NO: 43
Express as fraction,
14/9 = NO/43
Multiply both sides by 43
43 x 14/9 = (NO/43) x 43
43 x 14/9 = NO
(43 x 14)/9 = NO
602/9 = NO
66.8889 = NO
Hence,
NO ≈ 66.9 units.
To learn more about quadrilaterals visit:
https://brainly.com/question/11037270
#SPJ4
The complete question is:
Consider that we want to design a hash function for a type of message made of a sequence of integers like this M=(a 1
,a 2
,…,a t
). The proposed hash function is this: h(M)=(Σ i=1
t
a i
)modn where 0≤a i
(M)=(Σ i=1
t
a i
2
)modn c) Calculate the hash function of part (b) for M=(189,632,900,722,349) and n=989.
For the message M=(189,632,900,722,349) and n=989, the hash function gives h(M)=824 (based on the sum) and h(M)=842 (based on the sum of squares).
To calculate the hash function for the given message M=(189,632,900,722,349) using the formula h(M)=(Σ i=1 to t a i )mod n, we first find the sum of the integers in M, which is 189 + 632 + 900 + 722 + 349 = 2792. Then we take this sum modulo n, where n=989. Therefore, h(M) = 2792 mod 989 = 824.
For the second part of the hash function, h(M)=(Σ i=1 to t a i 2)mod n, we square each element in M and find their sum: (189^2 + 632^2 + 900^2 + 722^2 + 349^2) = 1067162001. Taking this sum modulo n=989, we get h(M) = 1067162001 mod 989 = 842.So, for the given message M=(189,632,900,722,349) and n=989, the hash function h(M) is 824 (based on the sum) and 842 (based on the sum of squares).
Therefore, For the message M=(189,632,900,722,349) and n=989, the hash function gives h(M)=824 (based on the sum) and h(M)=842 (based on the sum of squares).
To learn more about integers click here
brainly.com/question/18365251
#SPJ11
A proposed bus fare would charge Php 11.00 for the first 5 kilometers of travel and Php 1.00 for each additional kilometer over the proposed fare. Find the proposed fare for a distance of 28 kilometer
If a proposed bus fare would charge Php 11.00 for the first 5 kilometers of travel and Php 1.00 for each additional kilometer over the proposed fare, then the proposed fare for a distance of 28 kilometers is Php 34.
To find the proposed fare for a distance of 28 kilometers, follow these steps:
We know that the fare for the first 5 kilometers is Php 11.00. Therefore, the fare for the remaining 23 kilometers is: 23 x Php 1.00 = Php 23.00Hence, the total proposed fare for a distance of 28 kilometers would be the sum of fare for the first 5 kilometers and fare for the remaining 23 kilometers. Therefore, the proposed fare would be Php 11.00 + Php 23.00 = Php 34Therefore, the proposed fare for a distance of 28 kilometers is Php 34.
Learn more about sum:
brainly.com/question/17695139
#SPJ11
How many 4-digit number can be formed from digits 0 through 9 if
no digit can be repeated and the number should contain digits 2 and
6.
Therefore, there are 112 different 4-digit numbers that can be formed using digits 0 through 9, with no repeated digits, and containing digits 2 and 6.
To form a 4-digit number using digits 0 through 9, with no repeated digits and the number must contain digits 2 and 6, we can break down the problem into several steps:
Step 1: Choose the position for digit 2. Since the number must contain digit 2, there is only one option for this position.
Step 2: Choose the position for digit 6. Since the number must contain digit 6, there is only one option for this position.
Step 3: Choose the remaining two positions for the other digits. There are 8 digits left to choose from (0, 1, 3, 4, 5, 7, 8, 9), and we need to select 2 digits without repetition. The number of ways to do this is given by the combination formula, which is denoted as C(n, r). In this case, n = 8 (number of available digits) and r = 2 (number of positions to fill). Therefore, the number of ways to choose the remaining two digits is C(8, 2).
Step 4: Arrange the chosen digits in the selected positions. Since each position can only be occupied by one digit, the number of ways to arrange the digits is 2!.
Putting it all together, the total number of 4-digit numbers that can be formed is:
1 * 1 * C(8, 2) * 2!
Calculating this, we have:
1 * 1 * (8! / (2! * (8-2)!)) * 2!
Simplifying further:
1 * 1 * (8 * 7 / 2) * 2
Which gives us:
1 * 1 * 28 * 2 = 56 * 2 = 112
Learn more about digits here
https://brainly.com/question/30142622
#SPJ11