2. (08.03 LC)
Identifying the values a, b, and c is the first step in using the Quadratic Formula to find solution(s) to a quadratic equation.
What are the values a, b, and c in the following quadratic equation? (1 point)
-6x²=-9x+7
a=9,b=7, c = 6
a=-9,b=7, c = -6
a=-6, b=9, c = -7
a=-6, b=-9, c = 7

Answers

Answer 1

Answer: The quadratic equation -6x²=-9x+7 has the values a=-6, b=9, and c=-7.

Step-by-step explanation:


Related Questions

Give three examples of Bernoulli rv's (other than those in the text). (Select all that apply.) X=1 if a randomly selected lightbulb needs to be replaced and X=0 otherwise. X - the number of food items purchased by a randomly selected shopper at a department store and X=0 if there are none. X= the number of lightbulbs that needs to be replaced in a randomly selected building and X=0 if there are none. X= the number of days in a year where the high temperature exceeds 100 degrees and X=0 if there are none. X=1 if a randomly selected shopper purchases a food item at a department store and X=0 otherwise. X=1 if a randomly selected day has a high temperature of over 100 degrees and X=0 otherwise.

Answers

A Bernoulli distribution represents the probability distribution of a random variable with only two possible outcomes.

Three examples of Bernoulli rv's are as follows:

X = 1 if a randomly selected lightbulb needs to be replaced and X = 0 otherwise X = 1 if a randomly selected shopper purchases a food item at a department store and X = 0 otherwise X = 1 if a randomly selected day has a high temperature of over 100 degrees and X = 0 otherwise. These are the Bernoulli random variables. A Bernoulli trial is a random experiment that has two outcomes: success and failure. These trials are used to create Bernoulli random variables (r.v. ) that follow a Bernoulli distribution.

In Bernoulli's distribution, p denotes the probability of success, and q = 1 - p denotes the probability of failure. It's a type of discrete probability distribution that describes the probability of a single Bernoulli trial. the above three Bernoulli rv's that are different from those given in the text.

A Bernoulli distribution represents the probability distribution of a random variable with only two possible outcomes.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

Determine limx→[infinity]​f(x) and limx→−[infinity]​f(x) for the following function. Then give the horizontal asymptotes of f, if any. f(x)=36x+66x​ Evaluate limx→[infinity]​f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. limx→[infinity]​36x+66x​=( Simplify your answer. ) B. The limit does not exist and is neither [infinity] nor −[infinity]. Evaluate limx→−[infinity]​f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. limx→−[infinity]​36x+66x​= (Simplify your answer.) B. The limit does not exist and is neither [infinity] nor −[infinity]. Give the horizontal asymptotes of f, if any. Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. A. The function has one horizontal asymptote, (Type an equation.) B. The function has two horizontal asymptotes. The top asymptote is and the bottom asymptote is (Type equations.) C. The function has no horizontal asymptotes.

Answers

The limit limx→[infinity]​f(x) = 36, limx→−[infinity]​f(x) = 36. The function has one horizontal asymptote, y = 36. Option (a) is correct.

Given function is f(x) = 36x + 66x⁻¹We need to evaluate limx→∞​f(x) and limx→-∞​f(x) and find horizontal asymptotes, if any.Evaluate limx→∞​f(x):limx→∞​f(x) = limx→∞​(36x + 66x⁻¹)= limx→∞​(36x/x + 66/x⁻¹)We get  ∞/∞ form and hence we apply L'Hospital's rulelimx→∞​f(x) = limx→∞​(36 - 66/x²) = 36

The limit exists and is finite. Hence the correct choice is A) limx→∞​36x+66x​=36.Evaluate limx→−∞​f(x):limx→-∞​f(x) = limx→-∞​(36x + 66x⁻¹)= limx→-∞​(36x/x + 66/x⁻¹)

We get -∞/∞ form and hence we apply L'Hospital's rulelimx→-∞​f(x) = limx→-∞​(36 + 66/x²) = 36

The limit exists and is finite. Hence the correct choice is A) limx→−∞​36x+66x​=36.  Hence the horizontal asymptote is y = 36. Hence the correct choice is A) The function has one horizontal asymptote, y = 36.

The limit limx→[infinity]​f(x) = 36, limx→−[infinity]​f(x) = 36. The function has one horizontal asymptote, y = 36.

To know more about function visit :

https://brainly.com/question/30594198

#SPJ11

Assuming the population has an approximate normal distribution, if a sample size n = 30 has a sample mean = 41 with a sample standard deviation s = 10, find the margin of error at a 98% confidence level.
("Margin of error" is the same as "EBM - Error Bound for a population Mean" in your text and notesheet.) Round the answer to two decimal places.

Answers

The margin of error at a 98% confidence level is approximately 4.26.To find the margin of error (EBM - Error Bound for a Population Mean) at a 98% confidence level.

We need to use the formula:

Margin of Error = Z * (s / sqrt(n))

where Z is the z-score corresponding to the desired confidence level, s is the sample standard deviation, and n is the sample size.

For a 98% confidence level, the corresponding z-score is 2.33 (obtained from the standard normal distribution table).

Plugging in the values into the formula:

Margin of Error = 2.33 * (10 / sqrt(30))

Calculating the square root and performing the division:

Margin of Error ≈ 2.33 * (10 / 5.477)

Margin of Error ≈ 4.26

Therefore, the margin of error at a 98% confidence level is approximately 4.26.

Learn more about margin of error here:

https://brainly.com/question/29100795


#SPJ11

3 of 25 After running a coiled tubing unit for 81 minutes, Tom has 9,153 feet of coiled tubing in the well. After running the unit another 10 minutes, he has 10,283 feet of tubing in the well. His call sheet shows he needs a total of 15,728 feet of tubing in the well. How many more feet of coiled tubing does he need to run into the well? feet 4 of 25 Brendan is running coiled tubing in the wellbore at a rate of 99.4 feet a minute. At the end of 8 minutes he has 795.2 feet of coiled tubing inside the wellbore. After 2 more minutes he has run an additional 198.8 feet into the wellbore. How many feet of coiled tubing did Brendan run in the wellbore altogether? 5 of 25 Coiled tubing is being run into a 22,000 foot wellbore at 69.9 feet per minute. It will take a little more than 5 hours to reach the bottom of the well. After the first four hours, how deep, in feet, is the coiled tubing? feet

Answers

3) The extra number of feet of coiled tubing Tom needs to run into the well is: 5445 ft

4) The total length of coiled tubing Brendan ran in the wellbore is: 994 ft

5) The distance that the coiled tubing has reached after the first four hours is:  a depth of 16,776 feet in the well.

How to solve Algebra Word Problems?

3) Initial amount of coiled tubing he had after 81 minutes = 9,153 feet

Amount of tubing after another 10 minutes = 10,283 feet

The total tubing required = 15,728 feet.

The extra number of feet of coiled tubing Tom needs to run into the well is: Needed tubing length - Current tubing length

15,728 feet - 10,283 feet = 5,445 feet

4) Speed at which Brendan is running coiled tubing = 99.4 feet per minute.

Coiled tubing inside the wellbore after 8 minutes is: 795.2 feet

Coiled tubing inside the wellbore after 2 more minutes is: 198.8 feet

The total length of coiled tubing Brendan ran in the wellbore is:

Total length = Initial length + Additional length

Total length =  795.2 feet + 198.8 feet

Total Length = 994 feet

5) Rate at which coiled tubing is being run into a 22,000-foot wellbore = 69.9 feet per minute. After the first four hours, we need to determine how deep the coiled tubing has reached.

A time of 4 hours is same as 240 minutes

Thus, the distance covered in the first four hours is:

Distance = Rate * Time

Distance = 69.9 feet/minute * 240 minutes

Distance = 16,776 feet

Read more about Algebra Word Problems at: https://brainly.com/question/21405634

#SPJ4

Prove:d2x К 1 dr² = ((d+ 2)² (d-2)²) dt2 m
(a) Classify this ODE and explain why there is little hope of solving it as is.
(b) In order to solve, let's assume (c) We want to expand the right-hand side function in an appropriate Taylor series. What is the "appropriate" Taylor series? Let the variable that we are expanding in be called z. What quantity is playing the role of z? And are we expanding around z = 0 (Maclaurin series) or some other value of z? [HINT: factor a d² out of the denominator of both terms.] Also, how many terms in the series do we need to keep? [HINT: we are trying to simplify the ODE. How many terms in the series do you need in order to make the ODE look like an equation that you know how to solve?]
(d) Expand the right-hand side function of the ODE in the appropriate Taylor series you described in part (c). [You have two options here. One is the "direct" approach. The other is to use one series to obtain a different series via re-expanding, as you did in class for 2/3. Pick one and do it. If you feel up to the challenge, do it both ways and make sure they agree.]
(e) If all went well, your new, approximate ODE should resemble the simple harmonic oscillator equation. What is the frequency of oscillations of the solutions to that equation in terms of K, m, and d?
(f) Finally, comment on the convergence of the Taylor series you used above. Is it convergent? Why or why not? If it is, what is its radius of convergence? How is this related to the very first step where you factored d² out of the denominator? Could we have factored 2 out of the denominator instead? Explain.

Answers

a. The general solution differs from the usual form due to the non-standard roots of the characteristic equation.

b. To solve the ODE, we introduce a new variable and rewrite the equation.

c. The "appropriate" Taylor series is derived by expanding the function in terms of a specific variable.

d. Expanding the right-hand side function of the ODE using the appropriate Taylor series.

e. The new, approximate ODE resembles the equation for simple harmonic motion.

f. The convergence and radius of convergence of the Taylor series used.

(a) The ODE is a homogeneous second-order ODE with constant coefficients. We know that for such equations, the characteristic equation has roots of the form r = λ ± iμ, which gives the general solution  c1e^(λt) cos(μt) + c2e^(λt) sin(μt). However, the characteristic equation of this ODE is (d² + 1/r²), which has roots of the form r = ±i/r. These roots are not of the form λ ± iμ, so the general solution is not the usual one. In fact, it involves hyperbolic trigonometric functions and is not easy to find.

(b) We let y = x'' so that we can rewrite the ODE as y' = -r²y + f(t), where f(t) = (d²/dr²)(1/r²)x(t). We will solve for y(t) and then integrate twice to get x(t).

(c) The "appropriate" Taylor series is f(z) = (1 + z²/2 + z⁴/24 + ...)d²/dr²(1/r²)x(t) evaluated at z = rt, which is playing the role of t. We are expanding around z = 0, since that is where the coefficient of d²/dr² is 1. We only need to keep the first two terms of the series, since we only need to simplify the ODE.

(d) We have f(z) = (1 + z²/2)d²/dr²(x(t)/r²) = (1 + z²/2)d²/dt²(x(t)/r²). Using the chain rule, we get d²/dt²(x(t)/r²) = [d²/dt²x(t)]/r² - 2(d/dt x(t))(d/dr)(1/r) + 2(d/dt x(t))(d/dr)(1/r)². Substituting this expression into the previous one gives y' = -r²y + (1 + rt²/2)d²/dt²(x(t)/r²).

(e) The new, approximate ODE is y' = -r²y + (1 + rt²/2)y. This is the equation for simple harmonic motion with frequency sqrt(2 + r²)/(2mr).

(f) The Taylor series is convergent since the function we are expanding is analytic everywhere. Its radius of convergence is infinite. We factored d² out of the denominator since that is the coefficient of x'' in the ODE. We could not have factored 2 out of the denominator since that would have changed the ODE and the subsequent calculations.

Learn more about Taylor series:

https://brainly.com/question/31140778

#SPJ11

Solve the problem. Show your work. There are 95 students on a field trip and 19 students on each buls. How many buses of students are there on the field trip?

Answers

Sorry for bad handwriting

if i was helpful Brainliests my answer ^_^

The cost of operating a Frisbee company in the first year is $10,000 plus $2 for each Frisbee. Assuming the company sells every Frisbee it makes in the first year for $7, how many Frisbees must the company sell to break even? A. 1,000 B. 1,500 C. 2,000 D. 2,500 E. 3,000

Answers

The revenue can be calculated by multiplying the selling price per Frisbee ($7) , company must sell 2000 Frisbees to break even. The answer is option C. 2000.

In the first year, a Frisbee company's operating cost is $10,000 plus $2 for each Frisbee.

The company sells each Frisbee for $7.

The number of Frisbees the company must sell to break even is the point where its revenue equals its expenses.

To determine the number of Frisbees the company must sell to break even, use the equation below:

Revenue = Expenseswhere, Revenue = Price of each Frisbee sold × Number of Frisbees sold

Expenses = Operating cost + Cost of producing each Frisbee

Using the values given in the question, we can write the equation as:

To break even, the revenue should be equal to the cost.

Therefore, we can set up the following equation:

$7 * x = $10,000 + $2 * x

Now, we can solve this equation to find the value of x:

$7 * x - $2 * x = $10,000

Simplifying:

$5 * x = $10,000

Dividing both sides by $5:

x = $10,000 / $5

x = 2,000

7x = 2x + 10000

Where x represents the number of Frisbees sold

Multiplying 7 on both sides of the equation:7x = 2x + 10000  

5x = 10000x = 2000

For more related questions on revenue:

https://brainly.com/question/29567732

#SPJ8

Find the lines that are (a) tangent and (b) normal to the curve y=2x^(3) at the point (1,2).

Answers

The equations of the lines that are (a) tangent and (b) normal to the curve y = 2x³ at the point (1, 2) are:

y = 6x - 4 (tangent)y

= -1/6 x + 13/6 (normal)

Given, the curve y = 2x³.

Let's find the slope of the curve y = 2x³.

Using the Power Rule of differentiation,

dy/dx = 6x²

Now, let's find the slope of the tangent at point (1, 2) on the curve y = 2x³.

Substitute x = 1 in dy/dx

= 6x²

Therefore,

dy/dx at (1, 2) = 6(1)²

= 6

Hence, the slope of the tangent at (1, 2) is 6.The equation of the tangent line in point-slope form is y - y₁ = m(x - x₁).

Substituting the given values,

m = 6x₁

= 1y₁

= 2

Thus, the equation of the tangent line to the curve y = 2x³ at the point

(1, 2) is: y - 2 = 6(x - 1).

Simplifying, we get, y = 6x - 4.

To find the normal line, we need the slope.

As we know the tangent's slope is 6, the normal's slope is the negative reciprocal of 6.

Normal's slope = -1/6

Now we can use point-slope form to find the equation of the normal at

(1, 2).

y - y₁ = m(x - x₁)

Substituting the values of the point (1, 2) and

the slope -1/6,y - 2 = -1/6(x - 1)

Simplifying, we get,

y = -1/6 x + 13/6

Therefore, the equations of the lines that are (a) tangent and (b) normal to the curve y = 2x³ at the point (1, 2) are:

y = 6x - 4 (tangent)y

= -1/6 x + 13/6 (normal)

To know more about Power Rule, visit:

https://brainly.com/question/30226066

#SPJ11

Consider an inverted conical tank (point down) whose top has a radius of 3 feet and that is 2 feet deep. The tank is initially empty and then is filled at a constant rate of 0.75 cubic feet per minute. Let V = f(t) denote the volume of water (in cubic feet) at time t in minutes, and let h = g(t) denote the depth of the water (in feet) at time t. It turns out that the formula for the function g is g(t) = (t/π)1/3
a. In everyday language, describe how you expect the height function h = g(t) to behave as time increases.
b. For the height function h = g(t) = (t/π)1/3, compute AV(0,2), AV[2,4], and AV4,6). Include units on your results.
c. Again working with the height function, can you determine an interval [a, b] on which AV(a,b) = 2 feet per minute? If yes, state the interval; if not, explain why there is no such interval.
d. Now consider the volume function, V = f(t). Even though we don't have a formula for f, is it possible to determine the average rate of change of the volume function on the intervals [0,2], [2, 4], and [4, 6]? Why or why not?

Answers

a. As time increases, the height function h = g(t) is expected to increase gradually. Since the formula for g(t) is (t/π)^(1/3), it indicates that the depth of the water is directly proportional to the cube root of time. Therefore, as time increases, the cube root of time will also increase, resulting in a greater depth of water in the tank.

b. To compute the average value of V(t) on the given intervals, we need to find the change in volume divided by the change in time. The average value AV(a, b) is given by AV(a, b) = (V(b) - V(a))/(b - a).

AV(0,2):

V(0) = 0 (initially empty tank)

V(2) = 0.75 * 2 = 1.5 cubic feet (constant filling rate)

AV(0,2) = (1.5 - 0)/(2 - 0) = 0.75 cubic feet per minute

AV[2,4]:

V(2) = 1.5 cubic feet (end of previous interval)

V(4) = 0.75 * 4 = 3 cubic feet

AV[2,4] = (3 - 1.5)/(4 - 2) = 0.75 cubic feet per minute

AV[4,6]:

V(4) = 3 cubic feet (end of previous interval)

V(6) = 0.75 * 6 = 4.5 cubic feet

AV[4,6] = (4.5 - 3)/(6 - 4) = 0.75 cubic feet per minute

c. To determine an interval [a, b] on which AV(a,b) = 2 feet per minute, we need to find a range of time during which the volume increases by 2 cubic feet per minute. However, since the volume function is not explicitly given and we only have the height function, we cannot directly compute the average rate of change of volume. Therefore, we cannot determine an interval [a, b] where AV(a, b) = 2 feet per minute based solely on the height function.

d. Although we don't have a formula for the volume function f(t), we can still determine the average rate of change of volume on the intervals [0, 2], [2, 4], and [4, 6]. This can be done by calculating the change in volume divided by the change in time, similar to how we computed the average value for the height function. The average rate of change of volume represents the average filling rate of the tank over a specific time interval.

Learn more about average value click here: brainly.com/question/28123159

#SPJ11

find the standard form of the equation of the parabola given that the vertex at (2,1) and the focus at (2,4)

Answers

Thus, the standard form of the equation of the parabola with the vertex at (2, 1) and the focus at (2, 4) is [tex]x^2 - 4x - 12y + 16 = 0.[/tex]

To find the standard form of the equation of a parabola given the vertex and focus, we can use the formula:

[tex](x - h)^2 = 4p(y - k),[/tex]

where (h, k) represents the vertex of the parabola, and (h, k + p) represents the focus.

In this case, we are given that the vertex is at (2, 1) and the focus is at (2, 4).

Comparing the given information with the formula, we can see that the vertex coordinates match (h, k) = (2, 1), and the y-coordinate of the focus is k + p = 1 + p = 4. Therefore, p = 3.

Now, substituting the values into the formula, we have:

[tex](x - 2)^2 = 4(3)(y - 1).[/tex]

Simplifying the equation:

[tex](x - 2)^2 = 12(y - 1).[/tex]

Expanding the equation:

[tex]x^2 - 4x + 4 = 12y - 12.[/tex]

Rearranging the equation:

[tex]x^2 - 4x - 12y + 16 = 0.[/tex]

To know more about equation,

https://brainly.com/question/29116672

#SPJ11

Consider randomly selecting a student at USF, and let A be the event that the selected student has a Visa card and B be the analogous event for MasterCard. Suppose that Pr(A)=0.6 and Pr(B)=0.4 (a) Could it be the case that Pr(A∩B)=0.5 ? Why or why not? (b) From now on, suppose that Pr(A∩B)=0.3. What is the probability that the selected student has at least one of these two types of cards? (c) What is the probability that the selected student has neither type of card? (d) Calculate the probability that the selected student has exactly one of the two types of cards.

Answers

the value of F, when testing the null hypothesis H₀: σ₁² - σ₂² = 0, is approximately 1.7132.

Since we are testing the null hypothesis H₀: σ₁² - σ₂² = 0, where σ₁² and σ₂² are the variances of populations A and B, respectively, we can use the F-test to calculate the value of F.

The F-statistic is calculated as F = (s₁² / s₂²), where s₁² and s₂² are the sample variances of populations A and B, respectively.

Given:

n₁ = n₂ = 25

s₁² = 197.1

s₂² = 114.9

Plugging in the values, we get:

F = (197.1 / 114.9) ≈ 1.7132

To know more about variances visit:

brainly.com/question/13708253

#SPJ11

Problem 5. Imagine it is the summer of 2004 and you have just started your first (sort-of) real job as a (part-time) reservations sales agent for Best Western Hotels & Resorts 1
. Your base weekly salary is $450, and you receive a commission of 3% on total sales exceeding $6000 per week. Let x denote your total sales (in dollars) for a particular week. (a) Define the function P by P(x)=0.03x. What does P(x) represent in this context? (b) Define the function Q by Q(x)=x−6000. What does Q(x) represent in this context? (c) Express (P∘Q)(x) explicitly in terms of x. (d) Express (Q∘P)(x) explicitly in terms of x. (e) Assume that you had a good week, i.e., that your total sales for the week exceeded $6000. Define functions S 1

and S 2

by the formulas S 1

(x)=450+(P∘Q)(x) and S 2

(x)=450+(Q∘P)(x), respectively. Which of these two functions correctly computes your total earnings for the week in question? Explain your answer. (Hint: If you are stuck, pick a value for x; plug this value into both S 1

and S 2

, and see which of the resulting outputs is consistent with your understanding of how your weekly salary is computed. Then try to make sense of this for general values of x.)

Answers

(a) function P(x) represents the commission you earn based on your total sales x.

(b) The function Q(x) represents the amount by which your total sales x exceeds $6000.

(c) The composition (P∘Q)(x) represents the commission earned after the amount by which total sales exceed $6000 has been determined.

(d) The composition (Q∘P)(x) represents the amount by which the commission is subtracted from the total sales.

(e) S1(x) = 450 + 0.03(x − 6000) correctly computes your total earnings for the week by considering both the base salary and the commission earned on sales exceeding $6000.

(a) In this context, the function P(x) represents the commission you earn based on your total sales x. It is calculated as 3% of the total sales amount.

(b) The function Q(x) represents the amount by which your total sales x exceeds $6000. It calculates the difference between the total sales and the threshold of $6000.

(c) The composition (P∘Q)(x) represents the commission earned after the amount by which total sales exceed $6000 has been determined. It can be expressed as (P∘Q)(x) = P(Q(x)) = P(x − 6000) = 0.03(x − 6000).

(d) The composition (Q∘P)(x) represents the amount by which the commission is subtracted from the total sales. It can be expressed as (Q∘P)(x) = Q(P(x)) = Q(0.03x) = 0.03x − 6000.

(e) The function S1(x) = 450 + (P∘Q)(x) correctly computes your total earnings for the week. It takes into account the base salary of $450 and adds the commission earned after subtracting $6000 from the total sales. This is consistent with the understanding that your total earnings include both the base salary and the commission.

Function S2(x) = 450 + (Q∘P)(x) does not correctly compute your total earnings for the week. It adds the commission first and then subtracts $6000 from the total sales, which would result in an incorrect calculation of earnings.

To learn more about functions: https://brainly.com/question/11624077

#SPJ11

6. (i) Find the image of the triangle region in the z-plane bounded by the lines x=0, y=0 and x+y=1 under the transformation w=(1+2 i) z+(1+i) . (ii) Find the image of the region boun

Answers

i. We create a triangle in the w-plane by connecting these locations.

ii. We create a quadrilateral in the w-plane by connecting these locations.

(i) To find the image of the triangle region in the z-plane bounded by the lines x=0, y=0, and x+y=1 under the transformation w=(1+2i)z+(1+i), we can substitute the vertices of the triangle into the transformation equation and examine the resulting points in the w-plane.

Let's consider the vertices of the triangle:

Vertex 1: (0, 0)

Vertex 2: (1, 0)

Vertex 3: (0, 1)

For Vertex 1: z = 0

w = (1+2i)(0) + (1+i) = 1+i

For Vertex 2: z = 1

w = (1+2i)(1) + (1+i) = 2+3i

For Vertex 3: z = i

w = (1+2i)(i) + (1+i) = -1+3i

Now, let's plot these points in the w-plane:

Vertex 1: (1, 1)

Vertex 2: (2, 3)

Vertex 3: (-1, 3)

Connecting these points, we obtain a triangle in the w-plane.

(ii) To find the image of the region bounded by 1≤x≤2 and 1≤y≤2 under the transformation w=z², we can substitute the boundary points of the region into the transformation equation and examine the resulting points in the w-plane.

Let's consider the boundary points:

Point 1: (1, 1)

Point 2: (2, 1)

Point 3: (2, 2)

Point 4: (1, 2)

For Point 1: z = 1+1i

w = (1+1i)² = 1+2i-1 = 2i

For Point 2: z = 2+1i

w = (2+1i)² = 4+4i-1 = 3+4i

For Point 3: z = 2+2i

w = (2+2i)² = 4+8i-4 = 8i

For Point 4: z = 1+2i

w = (1+2i)² = 1+4i-4 = -3+4i

Now, let's plot these points in the w-plane:

Point 1: (0, 2)

Point 2: (3, 4)

Point 3: (0, 8)

Point 4: (-3, 4)

Connecting these points, we obtain a quadrilateral in the w-plane.

Learn more about triangle on:

https://brainly.com/question/11070154

#SPJ11

Evaluate ∫3x^2sin(x^3 )cos(x^3)dx by
(a) using the substitution u=sin(x^3) and
(b) using the substitution u=cos(x^3)
Explain why the answers from (a) and (b) are seemingly very different.

Answers

The answers from (a) and (b) are seemingly very different because the limits of integration would be different due to the different values of sin⁻¹u and cos⁻¹u.

Given integral:

∫3x²sin(x³)cos(x³)dx

(a) Using the substitution

u=sin(x³)

Substituting u=sin(x³),

we get

x³=sin⁻¹(u)

Differentiating both sides with respect to x, we get

3x²dx = du

Thus, the given integral becomes

∫u du= (u²/2) + C

= (sin²(x³)/2) + C

(b) Using the substitution

u=cos(x³)

Substituting u=cos(x³),

we get

x³=cos⁻¹(u)

Differentiating both sides with respect to x, we get

3x²dx = -du

Thus, the given integral becomes-

∫u du= - (u²/2) + C

= - (cos²(x³)/2) + C

Thus, the answers from (a) and (b) are seemingly very different because the limits of integration would be different due to the different values of sin⁻¹u and cos⁻¹u.

To know more about integration visit:

https://brainly.com/question/31744185

#SPJ11

Graph the quadratic function of y=-4x^2-4x-1y=−4x 2 −4x−1

Answers

The graph of the quadratic function y = -4x^2 - 4x - 1 is a downward-opening parabola. To graph the quadratic function, we can analyze its key features, such as the vertex, axis of symmetry, and the direction of the parabola.

Vertex: The vertex of a quadratic function in the form y = ax^2 + bx + c is given by the coordinates (-b/2a, f(-b/2a)). In this case, a = -4 and b = -4. So, the x-coordinate of the vertex is -(-4)/(2(-4)) = 1/2. Substituting this x-value into the equation, we can find the y-coordinate:

f(1/2) = -4(1/2)^2 - 4(1/2) - 1 = -4(1/4) - 2 - 1 = -1.

Therefore, the vertex is (1/2, -1).

Axis of symmetry: The axis of symmetry is a vertical line passing through the vertex. In this case, the axis of symmetry is x = 1/2.

Direction of the parabola: Since the coefficient of the x^2 term is -4 (negative), the parabola opens downward.

With this information, we can plot the graph of the quadratic function.

The graph of the quadratic function y = -4x^2 - 4x - 1 is a downward-opening parabola. The vertex is located at (1/2, -1), and the axis of symmetry is the vertical line x = 1/2.

To know more about parabola , visit;

https://brainly.com/question/11911877

#SPJ11

Write the balanced net ionic equation for the reaction that occurs in the following case: {Cr}_{2}({SO}_{4})_{3}({aq})+({NH}_{4})_{2} {CO}_{

Answers

The balanced net ionic equation for the reaction between Cr₂(SO₄)3(aq) and (NH₄)2CO₃(aq) is Cr₂(SO₄)3(aq) + 3(NH4)2CO₃(aq) -> Cr₂(CO₃)3(s). This equation represents the chemical change where solid Cr₂(CO₃)3 is formed, and it omits the spectator ions (NH₄)+ and (SO₄)2-.

To write the balanced net ionic equation, we first need to write the complete balanced equation for the reaction, and then eliminate any spectator ions that do not participate in the overall reaction.

The balanced complete equation for the reaction between Cr₂(SO₄)₃(aq) and (NH₄)2CO₃(aq) is:

Cr₂(SO₄)₃(aq) + 3(NH₄)2CO₃(aq) -> Cr₂(CO₃)₃(s) + 3(NH₄)2SO₄(aq)

To write the net ionic equation, we need to eliminate the spectator ions, which are the ions that appear on both sides of the equation without undergoing any chemical change. In this case, the spectator ions are (NH₄)+ and (SO₄)₂-.

The net ionic equation for the reaction is:

Cr₂(SO₄)3(aq) + 3(NH₄)2CO₃(aq) -> Cr₂(CO₃)3(s)

In the net ionic equation, only the species directly involved in the chemical change are shown, which in this case is the formation of solid Cr₂(CO₃)₃.

To know more about net ionic equation refer here:

https://brainly.com/question/13887096#

#SPJ11

A United Nations report shows the mean family income for Mexican migrants to the United States is $26,450 per year. A FLOC (Farm Labor Organizing Committee) evaluation of 23 Mexican family units reveals a mean to be $37,190 with a sample standard deviation of $10,700. Does this information disagree with the United Nations report? Apply the 0.01 significance level.

(a) State the null hypothesis and the alternate hypothesis.

H0: µ = ________

H1: µ ? _________

(b) State the decision rule for .01 significance level. (Round your answers to 3 decimal places.)

Reject H0 if t is not between_______ and __________.

(c) Compute the value of the test statistic. (Round your answer to 2 decimal places.)

Value of the test statistic __________

(d) Does this information disagree with the United Nations report? Apply the 0.01 significance level.

Answers

(a) Null hypothesis (H₀): µ = $26,450

Alternate hypothesis (H1): µ ≠ $26,450

Reject H₀ if t is not between -2.807 and 2.807.

(c) Value of the test statistic 3.184.

(d) The information disagrees with the United Nations report at the 0.01 significance level since the calculated t-value falls outside the critical value range.

(a) State the null hypothesis and the alternate hypothesis:

The mean family income for Mexican migrants is $26,450 per year

H₀: µ = $26,450

The mean family income for Mexican migrants is not equal to $26,450 per year.

H₁: µ ≠ $26,450.

(b)

Reject H₀ if t is not between -2.807 and 2.807 (critical values for a two-tailed t-test with 22 degrees of freedom and a significance level of 0.01).

(c) Compute the value of the test statistic:

To compute the test statistic (t-value), we need the sample mean, the hypothesized population mean, the sample standard deviation, and the sample size.

Sample mean (X) = $37,190

Hypothesized population mean (µ) = $26,450

Sample standard deviation (s) = $10,700

Sample size (n) = 23

t-value = (X - µ) / (s / √n)

= ($37,190 - $26,450) / ($10,700 / √23)

= ($37,190 - $26,450) / ($10,700 / √23)

= $10,740 / ($10,700 / √23)

= 3.184

The calculated t-value is approximately 3.184.

d.  To determine if this information disagrees with the United Nations report, we compare the calculated t-value with the critical values for a two-tailed t-test with 22 degrees of freedom and a significance level of 0.01.

The critical values for a two-tailed t-test with a significance level of 0.01 and 22 degrees of freedom are approximately -2.807 and 2.807.

Since the calculated t-value of 3.184 falls outside the range -2.807 to 2.807, we reject the null hypothesis (H0) and conclude that there is evidence to suggest a disagreement with the United Nations report.

Therefore, based on the provided data and significance level, the information disagrees with the United Nations report.

To learn more on Statistics click:

https://brainly.com/question/30218856

#SPJ4

Two friends, Hayley and Tori, are working together at the Castroville Cafe today. Hayley works every 8 days, and Tori works every 4 days. How many days do they have to wait until they next get to work

Answers

Hayley and Tori will have to wait 8 days until they next get to work together.

To determine the number of days they have to wait until they next get to work together, we need to find the least common multiple (LCM) of their work cycles, which are 8 days for Hayley and 4 days for Tori.

The LCM of 8 and 4 is the smallest number that is divisible by both 8 and 4. In this case, it is 8, as 8 is divisible by both 8 and 4.

Therefore, Hayley and Tori will have to wait 8 days until they next get to work together.

We can also calculate this by considering the cycles of their work schedules. Hayley works every 8 days, so her work days are 8, 16, 24, 32, and so on. Tori works every 4 days, so her work days are 4, 8, 12, 16, 20, 24, and so on. The common day in both schedules is 8, which means they will next get to work together on day 8.

Hence, the answer is that they have to wait 8 days until they next get to work together.

To know more about Number visit-

brainly.com/question/3589540

#SPJ11

Latifa opens a savings account with AED 450. Each month, she deposits AED 125 into her account and does not withdraw any money from it. Write an equation in slope -intercept form of the total amount y

Answers

Therefore, the equation in slope-intercept form for the total amount, y, as a function of the number of months, x, is y = 125x + 450.

To write the equation in slope-intercept form, we need to express the total amount, y, as a function of the number of months, x. Given that Latifa opens her savings account with AED 450 and deposits AED 125 each month, the equation can be written as:

y = 125x + 450

In this equation: The coefficient of x, 125, represents the slope of the line. It indicates that the total amount increases by AED 125 for each month. The constant term, 450, represents the y-intercept. It represents the initial amount of AED 450 in the savings account.

To know more about equation,

https://brainly.com/question/29027288

#SPJ11

an experiment consists of choosing a colored urn with equally likely probability and then drawing a ball from that urn. in the brown urn, there are 24 brown balls and 11 white balls. in the yellow urn, there are 18 yellow balls and 8 white balls. in the white urn, there are 18 white balls and 16 blue balls. what is the probability of choosing the yellow urn and a white ball? a) exam image b) exam image c) exam image d) exam image e) exam image f) none of the above.

Answers

The probability of choosing the yellow urn and a white ball is 3/13.

To find the probability of choosing the yellow urn and a white ball, we need to consider the probability of two events occurring:

Choosing the yellow urn: The probability of choosing the yellow urn is 1/3 since there are three urns (brown, yellow, and white) and each urn is equally likely to be chosen.

Drawing a white ball from the yellow urn: The probability of drawing a white ball from the yellow urn is 18/(18+8) = 18/26 = 9/13, as there are 18 yellow balls and 8 white balls in the yellow urn.

To find the overall probability, we multiply the probabilities of the two events:

P(Yellow urn and white ball) = (1/3) × (9/13) = 9/39 = 3/13.

Therefore, the probability of choosing the yellow urn and a white ball is 3/13.

To know more about probability click here :

https://brainly.com/question/19538755

#SPJ4

If matrix A has det(A)=−2, and B is the matrix foed when two elementary row operations are perfoed on A, what is det(B) ? det(B)=−2 det(B)=4 det(B)=−4 More infoation is needed to find the deteinant. det(B)=2

Answers

The determinant of the matrix B is (a) det(A) = -2

How to calculate the determinant of the matrix B

from the question, we have the following parameters that can be used in our computation:

det(A) = -2

We understand that

B is the matrix formed when two elementary row operations are performed on A

By definition;

The determinant of a matrix is unaffected by elementary row operations.

using the above as a guide, we have the following:

det(B) = det(A) = -2.

Hence, the determinant of the matrix B is -2

Read more about matrix at

https://brainly.com/question/11989522

#SPJ1

Post Test: Solving Quadratic Equations he tlles to the correct boxes to complete the pairs. Not all tlles will be used. each quadratic equation with its solution set. 2x^(2)-8x+5=0,2x^(2)-10x-3=0,2

Answers

The pairs of quadratic equations with their respective solution sets are:(1) `2x² - 8x + 5 = 0` with solution set `x = {2 ± (sqrt(6))/2}`(2) `2x² - 10x - 3 = 0` with solution set `x = {5 ± sqrt(31)}/2`.

The solution of each quadratic equation with its corresponding equation is given below:Quadratic equation 1: `2x² - 8x + 5 = 0`The quadratic formula for the equation is `x = [-b ± sqrt(b² - 4ac)]/(2a)`Comparing the equation with the standard quadratic form `ax² + bx + c = 0`, we can say that the values of `a`, `b`, and `c` for this equation are `2`, `-8`, and `5`, respectively.Substituting the values in the quadratic formula, we get: `x = [8 ± sqrt((-8)² - 4(2)(5))]/(2*2)`Simplifying the expression, we get: `x = [8 ± sqrt(64 - 40)]/4`So, `x = [8 ± sqrt(24)]/4`Now, simplifying the expression further, we get: `x = [8 ± 2sqrt(6)]/4`Dividing both numerator and denominator by 2, we get: `x = [4 ± sqrt(6)]/2`Simplifying the expression, we get: `x = 2 ± (sqrt(6))/2`Therefore, the solution set for the given quadratic equation is `x = {2 ± (sqrt(6))/2}`Quadratic equation 2: `2x² - 10x - 3 = 0`Comparing the equation with the standard quadratic form `ax² + bx + c = 0`, we can say that the values of `a`, `b`, and `c` for this equation are `2`, `-10`, and `-3`, respectively.We can use either the quadratic formula or factorization method to solve this equation.Using the quadratic formula, we get: `x = [10 ± sqrt((-10)² - 4(2)(-3))]/(2*2)`Simplifying the expression, we get: `x = [10 ± sqrt(124)]/4`Now, simplifying the expression further, we get: `x = [5 ± sqrt(31)]/2`Therefore, the solution set for the given quadratic equation is `x = {5 ± sqrt(31)}/2`Thus, the pairs of quadratic equations with their respective solution sets are:(1) `2x² - 8x + 5 = 0` with solution set `x = {2 ± (sqrt(6))/2}`(2) `2x² - 10x - 3 = 0` with solution set `x = {5 ± sqrt(31)}/2`.

Learn more about equation :

https://brainly.com/question/29657992

#SPJ11

Use synthetic division to find the result when 4x^(4)-9x^(3)+14x^(2)-12x-1 is divided by x-1. If there is a remainder, express the Fesult in the form q(x)+(r(x))/(b(x)).

Answers

A synthetic division to find the result q(x) + (r(x))/(b(x)) the result is 4x³ - 5x² + 9x - 3 - 4/(x - 1)

To perform synthetic division, to set up the polynomial and the divisor in the correct format.

Given polynomial: 4x² - 9x³ + 14x² - 12x - 1

Divisor: x - 1

To set up the synthetic division, the coefficients of the polynomial in descending order of powers of x, including zero coefficients if any term is missing.

Coefficients: 4, -9, 14, -12, -1 (Note that the coefficient of x^3 is -9, not 0)

Next,  the synthetic division tableau:

The numbers in the row beneath the line represent the coefficients of the quotient polynomial. The last number, -4, is the remainder.

Therefore, the result of dividing 4x² - 9x³ + 14x² - 12x - 1 by x - 1 is:

Quotient: 4x³- 5x²+ 9x - 3

Remainder: -4

To know more about  synthetic here

https://brainly.com/question/31673428

#SPJ4

A machine cell uses 196 pounds of a certain material each day. Material is transported in vats that hold 26 pounds each. Cycle time for the vats is about 2.50 hours. The manager has assigned an inefficiency factor of 25 to the cell. The plant operates on an eight-hour day. How many vats will be used? (Round up your answer to the next whole number.)

Answers

The number of vats to be used is 8

Given: Weight of material used per day = 196 pounds

Weight of each vat = 26 pounds

Cycle time for each vat = 2.5 hours

Inefficiency factor assigned by manager = 25%

Time available for each day = 8 hours

To calculate the number of vats to be used, we need to calculate the time required to transport the total material by the available vats.

So, the number of vats required = Total material weight / Weight of each vat

To calculate the total material weight transported in 8 hours, we need to calculate the time required to transport the weight of one vat.

Total time to transport one vat = Cycle time for each vat / Inefficiency factor

Time to transport one vat = 2.5 / 1.25

(25% inefficiency = 1 - 0.25 = 0.75 efficiency factor)

Time to transport one vat = 2 hours

Total number of vats required = Total material weight / Weight of each vat

Total number of vats required = 196 / 26 = 7.54 (approximately)

Therefore, the number of vats to be used is 8 (rounded up to the next whole number).

Answer: 8 vats will be used.

To know more about vats visit:

https://brainly.com/question/20628016

#SPJ11

public class BinarySearch \{ public static void main(Stringll args) f int [1]yl ist ={1,2,3,7,10,12,20}; int result = binarysearch ( inylist, 20); if (result =−1 ) System, out, println("Not found:"); else System.out.println("The index of the input key is " + result+ ". "): y public static int binarysearch(int]l List, int key) \{ int low =0; int high = iist. length −1 while (high >= low) \& int mid =( low + high )/2; if (key < List [mid] high = mid −1; else if (key =1 ist [ mid ] ) return inid; else low = mid +1; return −1; // Not found \} l TASK 4: Binary Search in descending order We have learned and practiced the implementation of the binary search approach that works on an array in ascending order. Now let's think about how to modify the above code to make it work on an array in descending order. Name your new binary search method as "binarysearch2". Implement your own code in Eclipse, and ensure it runs without errors. Submit your source code file (.java file) and your console output screenshot. Hint: In the ascending order case, our logic is as follows: int mid =( low + high )/2 if ( key < list [mid] ) else if (key = ist [mid]) return mid; In the descending order case; what should our logic be like? (Swap two lines in the above code.)

Answers

The task involves modifying the given code to implement binary search on an array in descending order. The logic of the code needs to be adjusted accordingly.

The task requires modifying the existing code to perform binary search on an array sorted in descending order. In the original code, the logic for the ascending order was based on comparing the key with the middle element of the list. However, in the descending order case, we need to adjust the logic.

To implement binary search on a descending array, we need to swap the order of the conditions in the code. Instead of checking if the key is less than the middle element, we need to check if the key is greater than the middle element. Similarly, the condition for equality also needs to be adjusted.

The modified code for binary search in descending order would look like this:

public static int binarysearch2(int[] list, int key) {

   int low = 0;

   int high = list.length - 1;

   while (high >= low) {

       int mid = (low + high) / 2;

       if (key > list[mid])

           high = mid - 1;

       else if (key < list[mid])

           low = mid + 1;

       else

           return mid;

   }

   return -1; // Not found

}

By swapping the conditions, we ensure that the algorithm correctly searches for the key in a descending ordered array.

For more information on array visit: brainly.com/question/30891254

#SPJ11

Cycling and Running Solve the following problems. Write an equation for each problem. 5 Tavon is training also and runs 2(1)/(4) miles each day for 5 days. How many miles does he run in 5 days?

Answers

Tavon runs 2(1)/(4) miles each day for 5 days.We can use the following formula to solve the above problem: Total distance = distance covered in one day × number of days.

So, the equation for the given problem is: Total distance covered = Distance covered in one day × Number of days Now, substitute the given values in the above equation, Distance covered in one day = 2(1)/(4) miles Number of days = 5 Total distance covered = Distance covered in one day × Number of days= 2(1)/(4) × 5= 12.5 miles. Therefore, Tavon runs 12.5 miles in 5 days.

Learn more about Distance:

brainly.com/question/26550516

#SPJ11

1. Which of the following are differential cquations? Circle all that apply. (a) m dtdx =p (c) y ′ =4x 2 +x+1 (b) f(x,y)=x 2e 3xy (d) dt 2d 2 z​ =x+21 2. Determine the order of the DE:dy/dx+2=−9x.

Answers

The order of the given differential equation dy/dx + 2 = -9x is 1.

The differential equations among the given options are:

(a) m dtdx = p

(c) y' = 4x^2 + x + 1

(d) dt^2 d^2z/dx^2 = x + 2

Therefore, options (a), (c), and (d) are differential equations.

Now, let's determine the order of the differential equation dy/dx + 2 = -9x.

The order of a differential equation is determined by the highest order derivative present in the equation. In this case, the highest order derivative is dy/dx, which is a first-order derivative.

Learn more about differential equation here

https://brainly.com/question/32645495

#SPJ11

Solve the equation.
2x+3-2x = -+²x+5
42
If necessary:
Combine Terms
Apply properties:
Add
Multiply
Subtract
Divide

Answers

The solution to the equation is -1.5 or -3/2.

How to solve equations?

We have the equation:

x² + 3-2x= 1+ x² +5

Combine Terms and subtract x² from both sides:

x² - x² + 3 -2x = 1 + 5 + x² - x²

3 -2x = 1 + 5

Add:

3 -2x = 6

Combine Terms and subtract 3 from both sides:

-2x + 3 -3 = 6 - 3

-2x = 3

Dividing by -2 we get:

x = 3/(-2)

x = -3/2

x = -1.5

Learn more about equations on:

brainly.com/question/19297665

#SPJ1

15. Considering the following square matrices P
Q
R

=[ 5
1

−2
4

]
=[ 0
−4

7
9

]
=[ 3
8

8
−6

]

85 (a) Show that matrix multiplication satisfies the associativity rule, i.e., (PQ)R= P(QR). (b) Show that matrix multiplication over addition satisfies the distributivity rule. i.e., (P+Q)R=PR+QR. (c) Show that matrix multiplication does not satisfy the commutativity rule in geteral, s.e., PQ

=QP (d) Generate a 2×2 identity matrix. I. Note that the 2×2 identity matrix is a square matrix in which the elements on the main dingonal are 1 and all otber elements are 0 . Show that for a square matrix, matris multiplioation satiefies the rules P1=IP=P. 16. Solve the following system of linear equations using matrix algebra and print the results for unknowna. x+y+z=6
2y+5z=−4
2x+5y−z=27

Answers

Matrix multiplication satisfies the associativity rule A. We have (PQ)R = P(QR).

B. We have (P+Q)R = PR + QR.

C. We have PQ ≠ QP in general.

D. We have P I = IP = P.

E. 1/51 [-29 12 17; 10 -3 -2; 25 -10 -7]

(a) We have:

(PQ)R = ([5 1; -2 4] [0 -4; 7 9]) [3 8; 8 -6]

= [(-14) 44; (28) (-20)] [3 8; 8 -6]

= [(-14)(3) + 44(8) (-14)(8) + 44(-6); (28)(3) + (-20)(8) (28)(8) + (-20)(-6)]

= [244 112; 44 256]

P(QR) = [5 1; -2 4] ([0 7; -4 9] [3 8; 8 -6])

= [5 1; -2 4] [56 -65; 20 -28]

= [5(56) + 1(20) 5(-65) + 1(-28); -2(56) + 4(20) -2(-65) + 4(-28)]

= [300 -355; 88 -134]

Thus, we have (PQ)R = P(QR).

(b) We have:

(P+Q)R = ([5 1; -2 4] + [0 -4; 7 9]) [3 8; 8 -6]

= [5 -3; 5 13] [3 8; 8 -6]

= [5(3) + (-3)(8) 5(8) + (-3)(-6); 5(3) + 13(8) 5(8) + 13(-6)]

= [-19 46; 109 22]

PR + QR = [5 1; -2 4] [3 8; 8 -6] + [0 -4; 7 9] [3 8; 8 -6]

= [5(3) + 1(8) (-2)(8) + 4(-6); (-4)(3) + 9(8) (7)(3) + 9(-6)]

= [7 -28; 68 15]

Thus, we have (P+Q)R = PR + QR.

(c) We have:

PQ = [5 1; -2 4] [0 -4; 7 9]

= [5(0) + 1(7) 5(-4) + 1(9); (-2)(0) + 4(7) (-2)(-4) + 4(9)]

= [7 -11; 28 34]

QP = [0 -4; 7 9] [5 1; -2 4]

= [0(5) + (-4)(-2) 0(1) + (-4)(4); 7(5) + 9(-2) 7(1) + 9(4)]

= [8 -16; 29 43]

Thus, we have PQ ≠ QP in general.

(d) The 2×2 identity matrix is given by:

I = [1 0; 0 1]

For any square matrix P, we have:

P I = [P11 P12; P21 P22] [1 0; 0 1]

= [P11(1) + P12(0) P11(0) + P12(1); P21(1) + P22(0) P21(0) + P22(1)]

= [P11 P12; P21 P22] = P

Similarly, we have:

IP = [1 0; 0 1] [P11 P12; P21 P22]

= [1(P11) + 0(P21) 1(P12) + 0(P22); 0(P11) + 1(P21) 0(P12) + 1(P22)]

= [P11 P12; P21 P22] = P

Thus, we have P I = IP = P.

(e) The system of linear equations can be written in matrix form as:

[1 1 1; 0 2 5; 2 5 -1] [x; y; z] = [6; -4; 27]

We can solve for [x; y; z] using matrix inversion:

[1 1 1; 0 2 5; 2 5 -1]⁻¹ = 1/51 [-29 12 17; 10 -3 -2; 25 -10 -7]

Learn more about matrix from

https://brainly.com/question/27929071

#SPJ11

using the curve fitting technique, determine the cubic fit for the following data. use the matlab commands polyfit, polyval and plot (submit the plot with the data below and the fitting curve).

Answers

The MATLAB commands polyfit, polyval and plot data is used .

To determine the cubic fit for the given data using MATLAB commands, we can use the polyfit and polyval functions. Here's the code to accomplish that:

x = [10 20 30 40 50 60 70 80 90 100];

y = [10.5 20.8 30.4 40.6 60.7 70.8 80.9 90.5 100.9 110.9];

% Perform cubic curve fitting

coefficients = polyfit( x, y, 3 );

fitted_curve = polyval( coefficients, x );

% Plotting the data and the fitting curve

plot( x, y, 'o', x, fitted_curve, '-' )

title( 'Fitting Curve' )

xlabel( 'X-axis' )

ylabel( 'Y-axis' )

legend( 'Data', 'Fitted Curve' )

To know more about  MATLAB commands click here :

https://brainly.com/question/31964830

#SPJ4

The complete question is :

Using the curve fitting technique, determine the cubic fit for the following data. Use the MATLAB commands polyfit, polyval and plot (submit the plot with the data below and the fitting curve). Include plot title "Fitting Curve," and axis labels: "X-axis" and "Y-axis."

x = 10 20 30 40 50 60 70 80 90 100

y = 10.5 20.8 30.4 40.6  60.7 70.8 80.9 90.5 100.9 110.9

Other Questions
Which of the following was NOT a result of the European contact with sub-Saharan Africa after 1500?Select one:a. Trade patterns in west Africa shifted from the Mediterranean to the Atlanticb. Regional kingdoms lost all influence in west Africa and were replaced by European governmentsc. European weapons played an increasing role in the tribal conflicts between north and south.d. Trade shifted in west Africa from Muslim to European handse. Seizure of slaves for European use affected many regions deeply after you eat a protein bar, the initial chemical reactions that must occur for the amino acids in the protein bar to be converted into protein in your body cells would be Consider the ODE dxdy=2sech(4x)y7x4y,x>0,y>0. Using the substitution u=y6, the ODE can be written as dxdu (give your answer in terms of u and x only). During the year, ACC 210 LLC recorded a net loss of $500 paid; $103 in dividends; and purchased treasury stock with a par value of $20 at a cost of $95. If the balance of Retained Earnings at the beginning of the year was $470 (normal balance), what is the balance of Retained Earnings at the end of the year?A. B. $867C. D. E. correct answer not shown question 1 - What are the main parts of a businessreport, write it down in order of when it should beplaced.question 2 - In your own words explain what arecommendation is used for, use an example can someone help with this its php coursefor user inputs in PHP variables its could be anything its does not matter1.Create a new PHP file called lab3.php2.Inside, add the HTML skeleton code and call its title "LAB Week 3"3.Within the body tag, add a heading-1 tag with the name "Welcome to your Food Preferences" and close it4.Add a single line comment that says "Data from the user, favourite Dish, Dessert and Fruit"5.Within the PHP scope, create a new variable that get the favourite dish from the user and call it "fav_dish", also gets the color of the dish.6.Within the PHP scope, create a new variable that get the favourite dessert from the user and call it "fav_dessert" also gets the color of the dessert.7.Within the PHP scope, create a new variable that get the favourite fruit from the user and call it "fav_fruit" also gets the color of the fruit.8.Add a single line comment that says "Check if the user input data"9.Create a built-in function that checks if the variables with the attribute "fav_dish,"fav_dessert" and "fav_fruit" have been set and is not NULL10.Create an associative array and store "fav_dish":"color", "fav_dessert":"color" and "fav_fruit":"color".11.Print out just one of the values from the associative array.12.To loop through and print all the values of associative array, use a foreach loop.13.Display the message "Your favourite food colors are: ".14.Ask the user to choose a least favourite food from the array.15.Use array function array_search with the syntax: array_search($value, $array [, $strict]) to find the user input for least_fav(Use text field to take input from user).16.Display the message "Your least favourite from from these is: (least_fav):(color)". How many ways can you create words using the letters U,S,C where (i) each letter is used at least once; (ii) the total length is 6 ; (iii) at least as many U 's are used as S 's; (iv) at least as many S 's are used as C 's; (v) and the word is lexicographically first among all of its rearrangements. On September 1, 202t, Dayight Donuts signed a $245.000,10% skethoreh note payable with the amount boeroned plus accrued irterest due six months later on Match 12022 Daylift Donuts theuld report interest payable at December 31. 2021, in the amourt of (Do not round your intermediate cakulations) Minisie chice 10. 512,250 14,0183. 38.657. the changes) Select one: a. Decrease in the Price Level b. Increase in government spending c. Decrease in expected inflation d. Fall in nominal money supply Write a function that does this IN PYTHON:Given any two lists A and B, determine if:List A is equal to list B; orList A contains list B (A is a superlist of B); orList A is contained by list B (A is a sublist of B); orNone of the above is true, thus lists A and B are unequalSpecifically, list A is equal to list B if both lists have the same values in the sameorder. List A is a superlist of B if A contains a sub-sequence of values equal to B.List A is a sublist of B if B contains a sub-sequence of values equal to A. how and why where africanized honey bees originally imported to brazil The events surrounding Tinker v. Des Moines involved a school. Which statement best explains why the Supreme Court ruled in the students favor? 4.Please help!!Ancient astronomers typically practiced both astronomy and astrology. but the two are not the same. Classify the following items as belonging to astronomy, astrology, or both. In presence of external economies of scale, a country's industry with cumulative output to date will experience a unit cost. lower; lower higher; constant higher; higher higher; lower Wendy's cupcakes cost P^(10) a box. If the cupcakes are sold for P^(16), what is the percent of mark -up based on cost? According to some economists, the relatively high unemployment in some Euro area countries stems from efforts by those countries to ______.For those holding this view, these efforts promote high unemployment byA. deterring firms from hiring workers.B. discouraging the unemployed from taking jobs quickly.C. creating rigidities in the labor market that block its efficient operation.D. all of the above.Other economists contend that the problem is not the degree of protection afforded workers but rather the manner in which the protection is ______ it is a windy day and there are waves on the surface of the open ocean. the wave crests are 40 feet apart and 5 feet above the troughs as they pass a school of fish. the waves push on fish and making them accelerate. the fish do not like this jostling, so to avoid it almost completely the fish should swim what defines the rights of an occupation and acceptable activities allowed within the profession? The diagram below shows the bones in the forelimbs of three different organisms.undefinedHow does this support that the organisms developed from a common ancestor and then experienced divergent evolution?Question 17 options:Each organism has very different bones present today, and the changes are a result of adapting to the different environment that each organism lives in today.Each organism has the same number and type of bones present, however mutations created adaptations that allowed them to survive in different environments.Each organism has the same number and type of bones present, however the changing environmental conditions caused changes in the bones to allow each to survive.Each organism has very different bones present today, but the original bones would also have been different so each organism could survive its environment.Question 18 (2 points) A project consists of an annual investment 47,000.00 for four years, with no residual values. The annual revenue forecast is R$ 110,000.00 in the 6 years following the conclusion of the investments, then R$ 120,000.00 per year for 6 years and, finally, R$ 160,000.00 per year in 6 years. The forecast annual costs (including taxes) is R$70,000.00 in the 6 years following the completion of the investments, then R$80,000.00 per year for 6 years and, finally, R$100,000.00 per year in 6 years . Assume that the minimum attractiveness rate is 12% p.a. and calculate the capital efficiency ratio (NPV / PVI) for that project..