prove that
1/(sec A - tan A) =sec A + tan A​

Answers

Answer 1

Answer:

Step-by-step explanation:

let s estimate the following

[tex](secA-tanA)(secA+tanA)=sec^2A-tan^2A=\dfrac{1}{cos^2A}-\dfrac{sin^2A}{cos^2A}=\dfrac{1-sin^2A}{cos^2A}=\dfrac{cos^2A}{cos^2A}=1[/tex]

as [tex]cos^2A+sin^2A=1[/tex]

it means that

[tex]\dfrac{1}{secA-tanA}=secA+tanA[/tex]

hope this helps


Related Questions

find the are of the kite.
a. 96 ft^2
b.192 ft^2
c.64 ft^2
d.348 ft^2

Answers

Answer:

A

Step-by-step explanation:

The area of a kite is half of the product of the length of the diagonals, or in this case 16*12/2=96 square feet. Hope this helps!

Answer:

a. 96 ft^2

Step-by-step explanation:

You can cut the kite into 2 equal triangle halves vertically.

Then you can use the triangle area formula and multiply it by 2 since there are 2 triangles.

[tex]\frac{1}{2} *12*8*2=\\6*8*2=\\48*2=\\96ft^2[/tex]

The kite's area is a. 96 ft^2.

According to a Harris Poll in 2009, 72% of those who drive and own cell phones say they use them to talk while they are driving. If you wish to conduct a survey in your city to determine what percent of the drivers with cell phones use them to talk while driving, how large a sample should be if you want your estimate to be within 0.02 with 95% confidence.

Answers

Answer:

We need a sample of at least 1937.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

The margin of error is:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

For this problem, we have that:

[tex]\pi = 0.72[/tex]

95% confidence level

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].

How large a sample should be if you want your estimate to be within 0.02 with 95% confidence.

We need a sample of at least n.

n is found when M = 0.02. So

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

[tex]0.02 = 1.96\sqrt{\frac{0.72*0.28}{n}}[/tex]

[tex]0.02\sqrt{n} = 1.96\sqrt{0.72*0.28}[/tex]

[tex]\sqrt{n} = \frac{1.96\sqrt{0.72*0.28}}{0.02}[/tex]

[tex](\sqrt{n})^{2} = (\frac{1.96\sqrt{0.72*0.28}}{0.02})^{2}[/tex]

[tex]n = 1936.16[/tex]

Rounding up to the nearest number.

We need a sample of at least 1937.

In a certain community, eight percent of all adults over age 50 have diabetes. If a health service in this community correctly diagnosis 95% of all persons with diabetes as having the disease and incorrectly diagnoses ten percent of all persons without diabetes as having the disease, find the probabilities that:

Answers

Complete question is;

In a certain community, 8% of all people above 50 years of age have diabetes. A health service in this community correctly diagnoses 95% of all person with diabetes as having the disease, and incorrectly diagnoses 10% of all person without diabetes as having the disease. Find the probability that a person randomly selected from among all people of age above 50 and diagnosed by the health service as having diabetes actually has the disease.

Answer:

P(has diabetes | positive) = 0.442

Step-by-step explanation:

Probability of having diabetes and being positive is;

P(positive & has diabetes) = P(has diabetes) × P(positive | has diabetes)

We are told 8% or 0.08 have diabetes and there's a correct diagnosis of 95% of all the persons with diabetes having the disease.

Thus;

P(positive & has diabetes) = 0.08 × 0.95 = 0.076

P(negative & has diabetes) = P(has diabetes) × (1 –P(positive | has diabetes)) = 0.08 × (1 - 0.95)

P(negative & has diabetes) = 0.004

P(positive & no diabetes) = P(no diabetes) × P(positive | no diabetes)

We are told that there is an incorrect diagnoses of 10% of all persons without diabetes as having the disease

Thus;

P(positive & no diabetes) = 0.92 × 0.1 = 0.092

P(negative &no diabetes) =P(no diabetes) × (1 –P(positive | no diabetes)) = 0.92 × (1 - 0.1)

P(negative &no diabetes) = 0.828

Probability that a person selected having diabetes actually has the disease is;

P(has diabetes | positive) =P(positive & has diabetes) / P(positive)

P(positive) = 0.08 + P(positive & no diabetes)

P(positive) = 0.08 + 0.092 = 0.172

P(has diabetes | positive) = 0.076/0.172 = 0.442

The probability are "0.168 and 0.452".

Using formula:

[tex]P(\text{diabetes diagnosis})\\[/tex]:

[tex]=\text{P(having diabetes and have been diagnosed with it)}\\ + \text{P(not have diabetes and yet be diagnosed with diabetes)}[/tex]

[tex]=0.08 \times 0.95+(1-0.08) \times 0.10 \\\\=0.08 \times 0.95+0.92 \times 0.10 \\\\=0.076+0.092\\\\=0.168[/tex]

[tex]\text{P(have been diagnosed with diabetes)}[/tex]:

[tex]=\frac{\text{P(have diabetic and been diagnosed as having insulin)}}{\text{P(diabetes diagnosis)}}[/tex]

[tex]=\frac{0.08\times 0.95}{0.168} \\\\=\frac{0.076}{0.168} \\\\=0.452\\[/tex]

Learn more about the probability:

brainly.com/question/18849788

Which fraction is equivalent to 20%?​

Answers

Answer:

1/5

Step-by-step explanation:

20*5 = 100, so 20 is 1/5

Use the given function f(x)=|x| to graph g(x) =|x+2|-4

Answers

Answer:

  see the attachment for a graph

Step-by-step explanation:

The vertex of f(x) is (0, 0). The transformation g(x) = f(x -h) +k moves the vertex to (h, k). That is, the graph is translated right by h units, and up by k units.

Your transformation has h = -2, and k = -4. That is, the original graph is translated left 2 units and down 4 units. The result is the blue curve in the attachment.

Please answer this correctly

Answers

Answer:

Hiking: 28%

Canoeing: 16%

Swimming: 24%

Fishing: 32%

Step-by-step explanation:

21 + 12 + 18 + 24 = 75 (there are 75 campers)

21 out of 75 = 28%

12 out of 75 = 16%

18 out of 75 = 24%

24 out of 75 = 32%

Hope this helps!

Please mark Brainliest if correct

What is the greatest integer value of y for whic 5y - 20 < 0 ?

Answers

Answer:

3

Step-by-step explanation:

Step 1: Isolate y

5y < 20

y < 4

When we figure out the inequality, we see that y has to be less than 4. Therefore, the highest integer value will have to be 3.

How many different triangles can you make if you are given
these three lengths for sides?

Answers

Answer:

Step-by-step explanation:

i think its 3

Answer:

0

Step-by-step explanation:

You cannot make any triangles with this angle

If an image of a triangle is congruent to the pre-image, what is the scale factor of the dilation?
0.1
1/2
1
10

Answers

The scale factor of the dilation is 1 because the image and pre-image share the SAME everything (lengths, area, etc.). So if you multiply one of the image’s length by any number other than one, the pre-image will change.

Find all real solutions of the equation.
x7 + 64x4 = 0

Answers

Answer:

Let's solve your equation step-by-step.

[tex]x^7+64x^4=0[/tex]

Step 1: Factor left side of equation.

[tex]x^4(x+4)(x^2-4x+16)=0[/tex]

Step 2: Set factors equal to 0.

[tex]x^4=0[/tex]  or  [tex]x+4=0[/tex]  or  [tex]x^2-4x+16=0[/tex] 

[tex]x^4=0[/tex]  or  [tex]x=0[/tex]  

Answer:

x=0 or x=0 or x=−4

I hope this help you :)

Which of the following is not an undefined term?
point, ray, line, plane

Answers

Answer:

Step-by-step explanation:

Ray

Answer:

ray

Step-by-step explanation:

ray is a part of a line that has an endpoint in one side and extends indefinitely on the opposite side. hence, the answer is ray

hope this helps

A population has a mean of 200 and a standard deviation of 50. Suppose a sample of size 100 is selected and x is used to estimate μ. (Round your answers to four decimal places.)

Required:
a. What is the probability that the sample mean will be within +/- 5 of the population mean (to 4 decimals)?
b. What is the probability that the sample mean will be within +/- 10 of the population mean (to 4 decimals)?

Answers

Answer:

a) 0.6426 = 64.26% probability that the sample mean will be within +/- 5 of the population mean.

b) 0.9544 = 95.44% probability that the sample mean will be within +/- 10 of the population mean.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question, we have that:

[tex]\mu = 200, \sigma = 50, n = 100, s = \frac{50}{\sqrt{100}} = 5[/tex]

a. What is the probability that the sample mean will be within +/- 5 of the population mean (to 4 decimals)?

This is the pvalue of Z when X = 200 + 5 = 205 subtracted by the pvalue of Z when X = 200 - 5 = 195.

Due to the Central Limit Theorem, Z is:

[tex]Z = \frac{X - \mu}{s}[/tex]

X = 205

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{205 - 200}{5}[/tex]

[tex]Z = 1[/tex]

[tex]Z = 1[/tex] has a pvalue of 0.8413.

X = 195

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{195 - 200}{5}[/tex]

[tex]Z = -1[/tex]

[tex]Z = -1[/tex] has a pvalue of 0.1587.

0.8413 - 0.1587 = 0.6426

0.6426 = 64.26% probability that the sample mean will be within +/- 5 of the population mean.

b. What is the probability that the sample mean will be within +/- 10 of the population mean (to 4 decimals)?

This is the pvalue of Z when X = 210 subtracted by the pvalue of Z when X = 190.

X = 210

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{210 - 200}{5}[/tex]

[tex]Z = 2[/tex]

[tex]Z = 2[/tex] has a pvalue of 0.9772.

X = 195

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{190 - 200}{5}[/tex]

[tex]Z = -2[/tex]

[tex]Z = -2[/tex] has a pvalue of 0.0228.

0.9772 - 0.0228 = 0.9544

0.9544 = 95.44% probability that the sample mean will be within +/- 10 of the population mean.

(a): The required probability is [tex]P(195 < \bar{x} < 205)=0.6826[/tex]

(b): The required probability is [tex]P(190 < \bar{x} < 200)=0.9544[/tex]

Z-score:

A numerical measurement that describes a value's relationship to the mean of a group of values.

Given that,

mean=200

Standard deviation=50

[tex]n=100[/tex]

[tex]\mu_{\bar{x}}=200[/tex]

[tex]\sigma{\bar{x}} =\frac{\sigma}{\sqrt{n} } \\=\frac{50}{\sqrt{100} }\\ =5[/tex]

Part(a):

within [tex]5=200\pm 5=195,205[/tex]

[tex]P(195 < \bar{x} < 205)=P(-1 < z < 1)\\=P(z < 1)-P(z < -1)\\=0.8413-0.1587\\=0.6826[/tex]

Part(b):

within [tex]10=200\pm 10=190,200[/tex]

[tex]P(190 < \bar{x} < 200)=P(-1 .98 < z < 1.98)\\=P(z < 2)-P(z < -2)\\=0.9772-0.0228\\=0.9544[/tex]

Learn more about the topic Z-score:

https://brainly.com/question/5512053

A line passes through the points P(1,-6,7) and Q(-9,10,-5) find the standard parametric equations for the line, written using the base point P(1,-6,7) and the components of the vector PQ rightarrow.
x = _________, y = _________, z = __________.

Answers

Answer:

[tex]x = 1-10t\\y = -6+16t\\z = 7-12t[/tex]

Step-by-step explanation:

We are given the coordinates of points P(1,-6,7) and Q(-9,10,-5).

The values in the form of ([tex]x,y,z[/tex]) are:

[tex]x_1=1\\x_2=-9\\y_1=-6\\,y_2=10\\z_1=7\\z_2=-5[/tex]

[tex]$\vec{PQ}$[/tex] can be written as the difference of values of x, y and z axis of the two points i.e. change in axis.

[tex]\vec{PQ}=<x_2-x_1,y_2-y_1,z_2-z_1>[/tex]

[tex]\vec{PQ} = <(-9-1), 10-(-6),(-5-7)>\\\Rightarrow \vec{PQ} = <-10, 16,-12>[/tex]

The equation of line in vector form can be written as:

[tex]\vec{r} (t) = <1,-6,7> + t<-10,16,-12>[/tex]

The standard parametric equation can be written as:

[tex]x = 1-10t\\y = -6+16t\\z = 7-12t[/tex]

Que es el teorema del factor

Answers

Answer:

En álgebra, el teorema del factor es un teorema que vincula factores y ceros de un polinomio. Es un caso especial del teorema del resto polinómico.

Step-by-step explanation:

pls help me I would be happy if do

Answers

Answer:

a prism is a three dimensional shape with the same width all the way through.

Step-by-step explanation:

Step-by-step explanation:

i think this will help.

13. Two points P and Q, 10 m apart on level ground,
are due West of the foot B of a tree TB. Given that
TPB = 23° and TQB = 32°, find the height of tree​

Answers

Answer: height = 13.24 m

Step-by-step explanation:

Draw a picture (see image below), then set up the proportions to find the length of QB.  Then input QB into either of the equations to find h.

Given: PQ = 10

          ∠TPB = 23°

          ∠TQB = 32°

[tex]\tan P=\dfrac{opposite}{adjacent}\qquad \qquad \tan Q=\dfrac{opposite}{adjacent}\\\\\\\tan 23^o=\dfrac{h}{10+x}\qquad \qquad \tan 32^o=\dfrac{h}{x}\\\\\\\underline{\text{Solve each equation for h:}}\\\tan 23^o(10+x)=h\qquad \qquad \tan 32^o(x)=h\\\\\\\underline{\text{Set the equations equal to each other and solve for x:}}\\\tan23^o(10+x)=\tan32^o(x)\\0.4245(10+x)=0.6249x\\4.245+0.4245x=0.6249x\\4.245=0.2004x\\21.18=x[/tex]

[tex]\underline{\text{In put x = 21.18 into either equation and solve for h:}}\\h=\tan 32^o(x)\\h=0.6249(2.118)\\\large\boxed{h=13.24}[/tex]

dakota received a bonus check for $2,500 and is going to deposit the money into a bank account that receives 5.5% compounded annually. What is dakotas account balance after five years?

Answers

Answer: $3267.40

Step-by-step explanation:

A = P (1+r/n)^nt

A= 2500 (1+0.055)^nt

A= 2500 x 1.30696

A = 3267.40

given the diagram below what is cos (45degree)?

Answers

Answer:

[tex]1/\sqrt{2}[/tex]

Answer:

B

Step-by-step explanation:

finding angle measures between intersecting lines.

Answers

Answer: x=45°

Step-by-step explanation:

Angles opposite from each other are equal. The angle 160 degrees in red on the bottom encompasses two angles: BEG and CEG. Angle BEG is on the opposite side as FEA which means it is equal to x.

Since angle FED on the other side is 115, you subtract 115 from 160 to get 45 degrees.

Answer: x=45°

The angle BEG, which is opposite to the angle FEA, is determined to be 45 degrees.

According to the information provided, in a figure with an angle of 160 degrees (red angle on the bottom), there are two angles labeled as BEG and CEG. It is stated that the angle BEG is opposite to the angle FEA, making them equal, so we can represent this angle as x.

Additionally, it is mentioned that the angle FED on the other side measures 115 degrees.

To find the value of x, we subtract 115 degrees from the angle of 160 degrees.
=160-115
= 45

Thus, the solution is x = 45°.

For more details about the angle visit the link below: https://brainly.com/question/16959514

#SPJ4

A woman has a collection of video games and anime. she has 50 anime DVDs, and she has 70 video games. which it adds up to 120 items. if you divide them by 5, how many items does she have all together?

Answers

She has 24 items

Hope this helps you:)

Answer:

24

Step-by-step explanation:

Since you are given almost everything, you just simply divide by 5=>

120/5 = 24

Hope this helps

Can someone please explain how to do this problem? The websites instructions are very poor. Rewrite [tex]\frac{2}{x^{2} -x-12}[/tex] and [tex]\frac{1}{x^{2}-16 }[/tex] as equivalent rational expressions with the lowest common denominator.

Answers

Answer: x = -5

Step-by-step explanation:

If you factor each denominator, you can find the LCM.

[tex]\dfrac{2}{x^2-x-12}=\dfrac{1}{x^2-16}\\\\\\\dfrac{2}{(x-4)(x+3)}=\dfrac{1}{(x-4)(x+4)}\\\\\\\text{The LCM is (x-4)(x+4)(x+3)}\\\\\\\dfrac{2}{(x-4)(x+3)}\bigg(\dfrac{x+4}{x+4}\bigg)=\dfrac{1}{(x-4)(x+4)}\bigg(\dfrac{x+3}{x+3}\bigg)\\\\\\\dfrac{2(x+4)}{(x-4)(x+4)(x+3)}=\dfrac{1(x+3)}{(x-4)(x+4)(x+3)}\\[/tex]

Now that the denominators are equal, we can clear the denominator and set the numerators equal to each other.

2(x + 4) = 1(x + 3)

2x + 8 = x + 3

x  + 8 =       3

x        =      -5

5. The probability that a defect will occur over the surface of a semiconductor chip is 0.2. Assuming the occurrences of defects are independent, what is the probability that two out of nine chips selected with replacement will be defective

Answers

Answer:

P(X=2) = 0.302

Step-by-step explanation:

With the conditions mentioned in the question, we can model this variable as a binomial random variable, with parameters n=9 and p=0.2.

The probability of having k defective items in the sample of nine chips is:

[tex]P(x=k) = \dbinom{n}{k} p^{k}(1-p)^{n-k}\\\\\\P(x=k) = \dbinom{9}{k} 0.2^{k} 0.8^{9-k}\\\\\\[/tex]

Then, the probability of having 2 defective chips in the sample is:

[tex]P(x=2) = \dbinom{9}{2} p^{2}(1-p)^{7}=36*0.04*0.2097=0.302\\\\\\[/tex]

The blenders produced by a company have a normally distributed life span with a mean of 8.2 years and a standard deviation of 1.3 years. What warranty should be provided so that the company is replacing at most 6% of their blenders sold?

Answers

Answer:

A warranty of 6.185 years should be provided.

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 8.2, \sigma = 1.3[/tex]

What warranty should be provided so that the company is replacing at most 6% of their blenders sold?

The warranty should be the 6th percentile, which is X when Z has a pvalue of 0.06. So X when Z = -1.55.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.55 = \frac{X - 8.2}{1.3}[/tex]

[tex]X - 8.2 = -1.55*1.3[/tex]

[tex]X = 6.185[/tex]

A warranty of 6.185 years should be provided.

A film distribution manager calculates that 4% of the films released are flops. If the manager is correct, what is the probability that the proportion of flops in a sample of 667 released films would be greater than 5%

Answers

Answer:

9.34%

Step-by-step explanation:

p = 4%, or 0.04

n = Sample size = 667

u = Expected value = n * p = 667 * 0.04 = 26.68

SD = Standard deviation = [tex]\sqrt{np(1-p)} =\sqrt{667*0.04*(1-0.04)}[/tex] = 5.06

Now, the question is if the manager is correct, what is the probability that the proportion of flops in a sample of 667 released films would be greater than 5%?

This statement implies that the p-vlaue of Z when X = 5% * 667 = 33.35

Since,

Z = (X - u) / SD

We have;

Z = (33.35 - 26.68) / 5.06

Z = 1.32

From the Z-table, the p-value of 1.32 is 0.9066

1 - 0.9066 = 0.0934, or 9.34%

Therefore, the probability that the proportion of flops in a sample of 667 released films would be greater than 5% is 9.34%.

How many solutions does 6-3x=4-x-3-2x have?

Answers

Answer:

no solutions

Step-by-step explanation:

6-3x=4-x-3-2x

Combine like terms

6-3x =1 -3x

Add 3x to each side

6 -3x+3x = 1-3x+3x

6 =1

This is not true so there are no solutions

Answer:

No solutions.

Step-by-step explanation:

6 - 3x = 4 - x - 3 - 2x

Add or subtract like terms if possible.

6 - 3x = -3x + 1

Add -1 and 3x on both sides.

6 - 1 = -3x + 3x

5 = 0

There are no solutions.

A line has a slope of -3/2 and has a y-intercept of 3. What is the x-intercept of the line?

Answers

Answer:

x = 2

Step-by-step explanation:

the equation of the line can be found using the slope intercept form

y = mx +b

y= -3/2 x + 3

x intercept is found by setting y=0 bc that will give you the x-value at which the line crosses the x -axis so

0 = -3/2x+3 (subtract the 3 on both sides) would cancel out the + 3 and would

-3 = -3/2 x  (divide by -3/2 on both sides to cancel out the -3/2)  

x = 2

Initially 100 milligrams of a radioactive substance was present. After 6 hours the mass had decreased by 3%. If the rate of decay is proportional to the amount of the substance present at time t, determine the half-life of the radioactive substance. (Round your answer to one decimal place.)

Answers

The radioactive compound has a half-life of around 3.09 hours.

The period of time needed for a radioactive substance's initial quantity to decay by half is known as its half-life. The half-life of a drug may be calculated as follows if the rate of decay is proportionate to the amount of the substance existing at time t:

Let t be the half-life of the substance, then after t hours, the amount of the substance present will be,

100 mg × [tex]\dfrac{1}{2}[/tex] = 50 mg.

At time 6 hours, the amount of the substance present is,

100 mg × (1 - 3%) = 97 mg.

Given that the amount of material available determines how quickly something degrades,

The half-life can be calculated as follows:

[tex]t = 6 \times \dfrac{50}{ 97} = 3.09 \ hours[/tex]

Therefore, the half-life of the radioactive substance is approximately 3.09 hours.

Learn more about half-life:

brainly.com/question/24710827

#SPJ12

A well known social media company is looking to expand their online presence by creating another platform. They know that they current average 2,500,000 users each day, with a standard deviation of 625,000 users. If they randomly sample 50 days to analyze the use of their existing technology, identify each of the following, rounding to the nearest whole number if necessary:
(a) Mean users.
(b) Standard deviation.
(c) Sample mean.

Answers

Using the Central Limit Theorem, it is found that the measures are given by:

a) 2,500,000.

b) 88,388.35.

c) 2,500,000.

What does the Central Limit Theorem state?

By the Central Limit Theorem, the sampling distribution of sample means of size n for a population of mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] has the same mean as the population, but with standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]

Hence, we have that for options a and c, the mean is of 2,500,000 users, while for option b, the standard deviation is given by:

[tex]s = \frac{\sigma}{\sqrt{n}} = \frac{625000}{\sqrt{50}} = 88,388.35.[/tex]

More can be learned about the Central Limit Theorem at https://brainly.com/question/24663213

Lard-O potato chips guarantees that all snack-sized bags of chips are between 16 and 17 ounces. The machine that fills the bags has an output with a mean of 16.5 and a standard deviation of 0.25 ounces. Construct a control chart for the Lard-O example using 3 sigma limits if samples of size 5 are randomly selected from the process. The center line is ____. The standard deviation of the sample mean is ____. The UCL

Answers

Answer:

- The center line is at 16.5 ounces.

- The standard deviation of the sample mean = 0.112 ounce.

- The UCL = 16.836 ounces.

- The LCL = 16.154 ounces.

Step-by-step explanation:

The Central limit theorem allows us to write for a random sample extracted from a normal population distribution with each variable independent of one another that

Mean of sampling distribution (μₓ) is approximately equal to the population mean (μ).

μₓ = μ = 16.5 ounces

And the standard deviation of the sampling distribution is given as

σₓ = (σ/√N)

where σ = population standard deviation = 0.25 ounce

N = Sample size = 5

σₓ = (0.25/√5) = 0.1118033989 = 0.112 ounce

Now using the 3 sigma limit rule that 99.5% of the distribution lies within 3 standard deviations of the mean, the entire distribution lies within

(μₓ ± 3σₓ)

= 16.5 ± (3×0.112)

= 16.5 ± (0.336)

= (16.154, 16.836)

Hope this Helps!!!

Please answer this correctly

Answers

Answer:

The second graph.

Step-by-step explanation:

0-9: 6 numbers

10-19: 2 numbers

20-29: 1 number

30-39: 3 numbers

40-49: 1 number

50-59: 2 numbers

60-69: 0 numbers

70-79: 5 numbers

80-89: 3 numbers

90-99: 1 number

Other Questions
which of the following is equivalent to this?a: b over a divided by d over cb: a over b divided by d over c c: b over a divided by d over cd: b over a divided by c over dplease help me! What are the zeros of f(x) = x^2 + x - 20?A. x= -4 and x = 5B. x= -2 and x = 10C. x= -5 and x = 4O D. x= -10 and x = 2 Assume the random variable X has a binomial distribution with the given probability of obtaining a success. Find the following probability, given the number of trials and the probability of obtaining a success. Round your answer to four decimal places. P(X2), n=5, p=0.8 Demand for dishwasher water pumps is 8 per day. The standard deviation of demand is 3 per day, and the order lead time is four days. The service level is 95%. What should the reorder point be? Solve the formula 27a+1/2b=4 for a. What are the main arguments of If black english isnt a language, then tell me what it? Select all that apply Was Charless execution justified? Was it the right thing to do? Why/why not? cules fueron las acciones principales del personaje "Don quijote de la mancha"? PLEASE HELP WILL GIVE BRAINLIEST IF CORRECTTo support a shelf, the diameter of a bolt can measure anywhere from 0.2 cm less than 1.5 cm to 0.2 cm greater than 1.5 cm. Which graph represents the possible measures of the diameter of the bolt? Recall that Wiesel was a teenager when he wasdeported to Auschwitz. How does that point ofview add to the power of this passage? Eva invested $10,000 in a savings account. If the interest rate is 3.5%, how much will be in the account in 10 years bycompounding continuously? Round to the nearest cent. For each of the following errors, considered individually, indicate whether the error would cause the adjusted trial balance totals to be unequal. If the error would cause the adjusted trial balance totals to be unequal, indicate whether the debit or credit total is higher and by how much.a. The adjustment for accrued wages of $5,200 was journalized as a debit to Wages Expense for $5,200 and a credit to Accounts Payable for $5,200.b. The entry for $1,125 of supplies used during the period was journalized as a debit to Supplies Expense of $1,125 and a credit to Supplies of $1,152. Paul, a Caucasian male, works as a tennis coach with Jenneta, an African-American female. There is a well-known stereotype in the tennis community that women cant serve as fast as men can. Based on the summaries of these two studies, which of the following statements would be most likely to decrease the speed of Jennetas serve because of the effects of stereotype threat? Check all that apply. Wow, Jenneta, did you see how fast Venus Williams served the ball last week? Okay, Jenneta, lets have some fun today! Ive got some tricks to show you that will really improve your serve. On January 1 of the current year (Year 1), our company acquired a truck for $75,000. The estimated useful life of the truck is 5 years or 100,000 miles. The residual value at the end of 5 years is estimated to be $5,000. The actual mileage for the truck was 22,000 miles in Year 1 and 27,000 miles in Year 2. What is the depreciation expense for the second year of use (Year 2) if we use the units of production method Which property of equality was used to solve this equation? x 5 = -14 x 5 + 5 = -14 + 5 x = -9 A.) addition property of equality B.) subtraction property of equality C.) multiplication property of equality D.) division property of equality I'll give BRAINLIEST!! Using the frequency table below, what is the probability of people that are not boys? 10% 20% 30% 50% When $\frac{1}{1111}$ is expressed as a decimal, what is the sum of the first 40 digits after the decimal point? Triangle E G F is cut by line H J. Line H J goes from side E G through side G F. Lines E F and H J are parallel. Using the side-splitter theorem, which segment length would complete the proportion? StartFraction G H Over H E EndFraction = StartFraction question mark Over J F EndFraction GF JH GJ EF 4. Rational, irrational (4 points) (1) (2 points) Prove or disprove that if x y is an irrational number, then x or y is also an irrational number. (2) (2 points) Prove that if x 2 is irrational, then x is irrational. (Hint: try a proof by contrapositive)