Project report about developed the fidget spinner concept
designs and followed the steps to eventually build a fully
assembled and functional fidget spinner. ( at least 900 words)

Answers

Answer 1

Fidget Spinners have revolutionized the way children and adults relieve stress and improve focus. They're simple to construct and have become a mainstream plaything, with various models and designs available on the market.

Here's a project report about how the Fidget Spinner concept was developed:IntroductionThe Fidget Spinner is a stress-relieving toy that has rapidly grown in popularity. It's a pocket-sized device that is shaped like a propeller and spins around a central axis. It was first developed in the 1990s, but it wasn't until 2016 that it became a worldwide trend.

The first Fidget Spinner was created with only a bearing and plastic parts. As the trend caught on, several models with different shapes and designs were produced. This project report describes how we created our fidget spinner and the steps we followed to make it fully operational.

To know more about Fidget Spinners visit:

https://brainly.com/question/3903294

#SPJ11


Related Questions

Q5. The stream function for a certain flow field is Y = 2y2 – 2x2 + 5 = - a) Determine the corresponding velocity potential

Answers

The velocity potential is given by ϕ = 2y² - 5.

The stream function for a flow field is given by Y = 2y² - 2x² + 5 = -

Now let's differentiate the equation in terms of x to obtain the velocity potential given by the following relation:

∂Ψ/∂x = - ∂ϕ/∂y

where Ψ = stream function

ϕ = velocity potential

∂Ψ/∂x = -4x and ∂ϕ/∂y = 4y

Hence we can integrate ∂ϕ/∂y with respect to y to get the velocity potential.

∂ϕ/∂y = 4yϕ = 2y² + c where c is a constant to be determined since the velocity potential is only unique up to a constant. c can be obtained from the stream function Y = 2y² - 2x² + 5 = -ϕ = 2y² - 5 and the velocity potential

Therefore the velocity potential is given by ϕ = 2y² - 5.

The velocity potential of the given stream function has been obtained.

To know more about velocity visit

brainly.com/question/30559316

#SPJ11

A centrifugal pump may be viewed as a vortex, where the 0.4m diameter impeller, rotates within a 1m diameter casing at a speed of 200 rpm.
Determine
The circumferential velocity, in m/s at a radius of 0.45 m

Answers

A centrifugal pump may be viewed as a vortex.

It consists of an impeller that rotates within a casing.

The impeller's diameter is 0.4m and rotates within a 1m diameter casing at a speed of 200rpm.

To determine the circumferential velocity, use the formula provided below:

Formula:

Circumferential velocity (v) = 2π x Radius (r) x Rotational Speed (N) / 60

Given:

Radius (r) = 0.45 m

Rotational speed

(N) = 200 rpm

Diameter of impeller = 0.4m

Diameter of casing = 1m

Solution:

Circumference of the impeller= π

diameter= π x 0.4 m

= 1.2566 m

Therefore,

Circumferential velocity (v) = 2π x Radius (r) x Rotational Speed (N) / 60

= (2 x π x 0.45 m x 200 rpm) / 60

= (0.1414 x 200) m/s

= 28.28 m/s

Therefore, the circumferential velocity at a radius of 0.45 m is 28.28 m/s.

To know more about Rotational  visit:

https://brainly.com/question/1571997

#SPJ11

Stability (3 marks) Explain why the moment of stability (righting moment) is the absolute measure for the intact stability of a vessel and not GZ.

Answers

The moment of stability, also known as the righting moment, is considered the absolute measure of the intact stability of a vessel, as it provides a comprehensive understanding of the vessel's ability to resist capsizing.

The moment of stability, or righting moment, represents the rotational force that acts to restore a vessel to an upright position when it is heeled due to external factors such as wind, waves, or cargo shift. It is determined by multiplying the displacement of the vessel by the righting arm (GZ). The GZ value alone indicates the distance between the center of gravity and the center of buoyancy, providing information on the initial stability of the vessel. However, it does not consider the magnitude of the force acting on the vessel.

The moment of stability takes into account both the lever arm and the magnitude of the force acting on the vessel, providing a more accurate assessment of its stability. It considers the dynamic effects of external forces, allowing for a better understanding of the vessel's ability to return to its upright position when heeled.

Learn more about vessel stability here:

https://brainly.com/question/13485166

#SPJ11

The design of journal bearings usually involves two suitable combinations of variables: variables under control and dependent variables or performance factors. As such, a full journal bearing has a shaft journal diameter of 27 mm with a unilateral tolerance of 20.01 mm. The bushing bore has a diameter of 27.04 mm with a unilateral tolerance of 0.03 mm. The //d ratio is unity. The bushing load is 1.03 kN, and the journal rotates at 1153 rev/min. You are required to analyze the minimum clearance assembly if the average viscosity is 50 mPa.s to find the minimum oil film thickness, the power loss, and the percentage of side flow.

Answers

The variables include shaft journal bearings , bushing bore diameter, //d ratio, bushing load, and rotational speed, while the performance factors are minimum oil film thickness, power loss, and percentage of side flow.

What are the variables and performance factors involved in the design of journal bearings?

The paragraph describes the design of journal bearings and provides specific parameters for a full journal bearing assembly. The variables under control include the shaft journal diameter, bushing bore diameter, //d ratio, bushing load, and rotational speed. The dependent variables or performance factors to be analyzed are the minimum clearance assembly, minimum oil film thickness, power loss, and percentage of side flow.

To analyze the minimum clearance assembly, the given tolerances for the shaft journal and bushing bore diameters are considered. The minimum oil film thickness can be determined based on the average viscosity of the oil.

The power loss in the bearing can be calculated using appropriate formulas, considering factors such as speed, load, and oil viscosity. The percentage of side flow refers to the amount of oil escaping from the sides of the bearing.

Overall, the analysis aims to evaluate the performance and characteristics of the journal bearing assembly, taking into account various factors such as clearance, oil film thickness, power loss, and side flow.

Learn more about journal bearings

brainly.com/question/30355011

#SPJ11

11kg of R-134a at 320kPa fills a rigid tank whose volume is 0.011m³. Find the quality, the temperature, the total internal energy and enthalpy of the system. If the container heats up and the pressure reaches to 600kPa, find the temperature, total energy and total enthalpy at the end of the process.

Answers

The quality, temperature, total internal energy, and enthalpy of the system are given by T2 is 50.82°C (final state) and U1 is 252.91 kJ/kg (initial state) and U2 is 442.88 kJ/kg (final state) and H1 277.6 kJ/kg (initial state) and H2 is 484.33 kJ/kg (final state).

Given data:

Mass of R-134a (m) = 11kg

The pressure of R-134 at an initial state

(P1) = 320 kPa Volume of the container (V) = 0.011 m³

The formula used: Internal energy per unit mass (u) = h - Pv

Enthalpy per unit mass (h) = u + Pv Specific volume (v)

= V/m Quality (x) = (h_fg - h)/(h_g - h_f)

1. To find the quality of R-134a at the initial state: From the steam table, At 320 kPa, h_g = 277.6 kJ/kg, h_f = 70.87 kJ/kgh_fg = h_g - h_f= 206.73 kJ/kg Enthalpy of the system at initial state (H1) can be calculated as H1 = h_g = 277.6 kJ/kg Internal energy of the system at initial state (U1) can be calculated as:

U1 = h_g - Pv1= 277.6 - 320*10³*0.011 / 11

= 252.91 kJ/kg

The quality of R-134a at the initial state (x1) can be calculated as:

x1 = (h_fg - h1)/(h_g - h_f)

= (206.73 - 277.6)/(277.6 - 70.87)

= 0.5

The volume of the container is rigid, so it will not change throughout the process.

2. To find the temperature, total internal energy, and total enthalpy at the final state:

Using the values from an initial state, enthalpy at the final state (h2) can be calculated as:

h2 = h1 + h_fg

= 277.6 + 206.73

= 484.33 kJ/kg So the temperature of R-134a at the final state is approximately 50.82°C. The total enthalpy of the system at the final state (H2) can be calculated as,

= H2

= 484.33 kJ/kg

Thus, the quality, temperature, total internal energy, and enthalpy of the system are given by:

x1 = 0.5 (initial state)T2 = 50.82°C (final state) U1 = 252.91 kJ/kg (initial state) U2 = 442.88 kJ/kg (final state) H1 = 277.6 kJ/kg (initial state)H2 = 484.33 kJ/kg (final state)

To know more about enthalpy please refer:

https://brainly.com/question/826577

#SPJ11

A connecting rod of length /= 11.67in has a mass m3 = 0.0234blob. Its mass moment of inertia is 0.614 blob-in². Its CG is located 0.35/ from the crank pin, point A. A crank of length r= 4.132in has a mass m₂ = 0.0564blob. Its mass moment of inertia about its pivot is 0.78 blob-in². Its CG is at 0.25r from the main pin, O₂. The piston mass= 1.012 blob. The thickness of the cylinder wall is 0.33in, and the Bore (B) is 4in. The gas pressure is 500psi. The linkage is running at a constant speed 1732rpm and crank position is 37.5°. If the crank has been exact static balanced with a mass equal to me and balance radius of r, what is the inertia force on the Y-direction?

Answers

The connecting rod's mass moment of inertia is 0.614 blob-in², and its mass m3 is 0.0234blob.

Its CG is located 0.35r from the crank pin, point A.

The crank's length is r = 4.132in, and its mass is m₂ = 0.0564blob, and its CG is at 0.25r from the main pin, O₂.

The thickness of the cylinder wall is 0.33in, and the Bore (B) is 4in.

The piston mass is 1.012 blob.

The gas pressure is 500psi.

The linkage is running at a constant speed of 1732 rpm, and the crank position is 37.5°.

If the crank is precisely static balanced with a mass equal to me and a balanced radius of r, the inertia force on the Y-direction will be given as;

I = Moment of inertia of the system × Angular acceleration of the system

I = [m3L3²/3 + m2r2²/2 + m1r1²/2 + Ic] × α

where,

Ic = Mass moment of inertia of the crank about its pivot

= 0.78 blob-in²m1

= Mass of the piston

= 1.012 blob

L = Length of the connecting rod

= 11.67 inr

1 = Radius of the crank pin

= r

= 4.132 inm

2 = Mass of the crank

= 0.0564 blob

α = Angular acceleration of the system

= (2πn/60)²(θ2 - θ1)

where, n = Engine speed

= 1732 rpm

θ2 = Final position of the crank

= 37.5° in radians

θ1 = Initial position of the crank

= 0° in radians

Substitute all the given values into the above equation,

I = [(0.0234 x 11.67²)/3 + (0.0564 x 4.132²)/2 + (1.012 x 4.132²)/2 + 0.614 + 0.0564 x r²] x (2π x 1732/60)²(37.5/180π - 0)

I = [0.693 + 1.089 + 8.464 + 0.614 + 0.0564r²] x 41.42 x 10⁶

I = 3.714 + 5.451r² × 10⁶ lb-in²-sec²

Now, inertia force along the y-axis is;

Fy = Iω²/r

Where,

ω = Angular velocity of the system

= (2πn/60)

where,

n = Engine speed

= 1732 rpm

Substitute all the values into the above equation;

Fy = [3.714 + 5.451r² × 10⁶] x (2π x 1732/60)²/r

Fy = (7.609 x 10⁹ + 1.119r²) lb

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

A cantilever beam has length 24 in and a force of 2000 lbf at the free end. The material is A36/. For a factor of safety of 2, find the required cross section dimensions of the beam. The cross section can be assumed as square, rectangular, pipe or I-beam.

Answers

The formula for the shear stress in a cantilever beam subjected to a transverse force can be used to find the required cross-section dimensions for the beam.The formula is; τmax = VQ/ItWhere;V = the maximum force (2000 lbs.)Q = the first moment of the area around the neutral axis.

I = the moment of inertia.The maximum shear stress for A36 steel is 20,000 psi. For a factor of safety of 2, this value can be doubled to 40,000 psi.So,τmax = VQ/It = 40000 psi.The dimensions of the beam can be found using the shear stress equation and the bending moment equation.

Mmax = PL/4 = 2000 lbs. × 24 in./4 = 12000 in. lbs.τmax = Mmax*c/I = 40000 psiThe required cross-section dimensions of the beam can be found as follows;For a square beam;a = b ⇒ c = a / √6P = 12000 lbs.

[tex]Q = b × h × h / 2 = a × a × a / 2√3h = a/√3I = a^4/12c = I × τmax / b × h²a = (6 × P / (τmax × h²))^(1/4).[/tex]

For a rectangular beam;

[tex]a < b ⇒ c = a / √6P = 12000 lbs.Q = b × h × h / 2 = a × b × b / 2h = √(2a / 3)I = ab^3/12c = I × τmax / b × h²a = (6 × P / (τmax × h² × b))^(1/3) × b^2/3.[/tex]

For a pipe;a = b and D = 2rP = 12000 lbs.τavg = P/ (2A - a²) = 40000 psiThe diameter of the pipe can be found using the following equation;

[tex]r = (P/2τavg)(D² - d²)/D²d = D - 2ta = πr² - πr²/4A = πr²D = 2r(1 + (4a²/(πr^2))^(1/2)).[/tex]

For an I-beam;the required dimensions can be found by assuming that the beam is an equivalent rectangular beam and then using the above rectangular beam formula. In the equivalent rectangular beam, the width of the flanges is equal to the thickness of the web multiplied by a factor of 1.2 to 1.5. The thickness of the web is taken as the distance between the midpoints of the flanges.

From the above, we can conclude that the cross-section dimensions of a square beam, rectangular beam, pipe, and I-beam can be found.

To know more about  shear stress :

brainly.com/question/12910262

#SPJ11

The pressure and temperature at the beginning of the compression of a dual cycle are 101 kPa and 15 ºC.
The compression ratio is 12. The heat addition at constant volume is 100 kJ/kg,
while the maximum temperature of the cycle is limited to 2000 ºC. air mass
contained in the cylinder is 0.01 kg. Determine a) the maximum cycle pressure, the MEP, the
amateur heat, the heat removed, the added compression work, the work of
expansion produced, the net work produced and the efficiency of the cycle.

Answers

The maximum temperature  is 662.14 K.

The  maximum cycle pressure is 189.69 kPa.

The Mean Effective Pressure (MEP) is 0.242 kJ and the net heat addition (Qin) is  1 kJ.

1. Calculate the maximum temperature after the constant volume heat addition process:

We have,

γ = 1.4 (specific heat ratio)

[tex]T_1[/tex] = 15 ºC + 273.15 = 288.15 K (initial temperature)

[tex]T_3[/tex]= 2000 ºC + 273.15 = 2273.15 K (maximum temperature)

Using the formula:

[tex]T_2[/tex]= T1  (V2/V1[tex])^{(\gamma-1)[/tex]

[tex]T_2[/tex]= 288.15 K  [tex]12^{(1.4-1)[/tex]

So, T2 = 288.15 K x [tex]12^{0.4[/tex]

[tex]T_2[/tex] ≈ 288.15 K * 2.2974

[tex]T_2[/tex]≈ 662.14 K

2. Calculate the maximum pressure after the compression process:

[tex]P_1[/tex] = 101 kPa (initial pressure)

[tex]V_1[/tex] = 1 (specific volume, assuming 0.01 kg of air)

Using the ideal gas law equation:

P = 101 kPa * (662.14 K / 288.15 K) * (1 / 12)

P ≈ 189.69 kPa

Therefore, the maximum cycle pressure is 189.69 kPa.

3. [tex]T_2[/tex]≈ 662.14 K

and, Qin = Qv * m

Qin = 100 kJ/kg * 0.01 kg

Qin = 1 kJ

So, Wc = m * Cv * (T2 - T1)

Wc ≈ 0.01 kg * 0.718 kJ/kg·K * 373.99 K

Wc ≈ 2.66 kJ

and, MEP = Wc / (r - 1)

MEP = 2.66 kJ / (12 - 1)

MEP ≈ 2.66 kJ / 11

MEP ≈ 0.242 kJ

Therefore, the Mean Effective Pressure (MEP) is 0.242 kJ and the net heat addition (Qin) is  1 kJ.

Learn more about Mean Effective Pressure here:

https://brainly.com/question/32661939

#SPJ4

ie lbmol of pentane gas (C₅H₁₂) reacts with the theoretical amount of air in a closed, rigid tank. Initially, the reactants are at 77°F, 1 m. After complete combustion, the temperature in the tank is 1900°R. Assume air has a molar analysis of 21% O₂ and 79% N₂. Determine the heat transfer, in Btu. Q = i Btu

Answers

The heat transfer, Q, can be calculated using the equation:

Q = ΔHc + ΔHg. To determine the heat transfer in Btu for the given scenario, we need to calculate the heat released during the combustion of pentane and the subsequent increase in temperature of the gases in the tank.

Where ΔHc is the heat released during combustion and ΔHg is the heat gained by the gases in the tank due to the increase in temperature. To calculate ΔHc, we need to determine the moles of pentane reacted and the heat of combustion per mole of pentane. Since pentane reacts with air, we also need to consider the moles of oxygen available in the air. The heat of combustion of pentane can be obtained from reference sources. To calculate ΔHg, we can use the ideal gas law and the given initial and final temperatures, along with the molar analysis of air, to determine the change in enthalpy. By summing up ΔHc and ΔHg, we can obtain the total heat transfer, Q, in Btu. It's important to note that the actual calculations involve several steps and equations, including stoichiometry, enthalpy calculations, and gas laws. The specific values and formulas needed for the calculations are not provided in the question, so an exact numerical result cannot be determined without that information.

Learn more about stoichiometry here:

https://brainly.com/question/28780091

#SPJ11

8. Newton's law for the shear stress is a relationship between a) Pressure, velocity and temperature b) Shear stress and velocity c) Shear stress and the shear strain rate d) Rate of shear strain and temperature 9. A liquid compressed in cylinder has an initial volume of 0.04 m² at 50 kg/cm' and a volume of 0.039 m² at 150 kg/em' after compression. The bulk modulus of elasticity of liquid is a) 4000 kg/cm² b) 400 kg/cm² c) 40 × 10³ kg/cm² d) 4 x 10 kg/cm² 10. In a static fluid a) Resistance to shear stress is small b) Fluid pressure is zero c) Linear deformation is small d) Only normal stresses can exist 11. Liquids transmit pressure equally in all the directions. This is according to a) Boyle's law b) Archimedes principle c) Pascal's law d) Newton's formula e) Chezy's equation 12. When an open tank containing liquid moves with an acceleration in the horizontal direction, then the free surface of the liquid a) Remains horizontal b) Becomes curved c) Falls down on the front wall d) Falls down on the back wall 13. When a body is immersed wholly or partially in a liquid, it is lifted up by a force equal to the weight of liquid displaced by the body. This statement is called a) Pascal's law b) Archimedes's principle c) Principle of flotation d) Bernoulli's theorem 14. An ideal liquid a) has constant viscosity b) has zero viscosity c) is compressible d) none of the above. 15. Units of surface tension are a) J/m² b) N/kg c) N/m² d) it is dimensionless 16. The correct formula for Euler's equation of hydrostatics is DE = a) a-gradp = 0 b) a-gradp = const c) à-gradp- Dt 17. The force acting on inclined submerged area is a) F = pgh,A b) F = pgh,A c) F = pgx,A d) F = pgx,A

Answers

The correct answers for the fluid mechanics problems are:

(c) Shear stress and the shear strain rate.

(a) 4000  kg/cm².

(b) Fluid pressure is zero.

(c) Pascal's law.

(a) Remains horizontal.

(b) Archimedes's principle.

b) has zero viscosity

(c) N/m².

∇·p = g

(b) F = pg[tex]h_{p}[/tex]A

How to interpret Fluid mechanics?

8) Newton's law for the shear stress states that the shear stress is directly proportional to the velocity gradient.

Thus, Newton's law for the shear stress is a relationship between c) Shear stress and the shear strain rate .

9) Formula for Bulk modulus here is:

Bulk modulus =∆p/(∆v/v)

Thus:

∆p = 150 - 50 = 100 kg/m²

∆v = 0.040 - 0.039 = 0.001

Bulk modulus = 100/(0.001/0.040)

= 4000kg/cm²

10) In a static fluid, it means no motion as it is at rest and as such the fluid pressure is zero.

11) Pascal's law says that pressure applied to an enclosed fluid will be transmitted without a change in magnitude to every point of the fluid and to the walls of the container.

12) When an open tank containing liquid moves with an acceleration in the horizontal direction, then the free surface of the liquid a) Remains horizontal

13) When a body is immersed wholly or partially in a liquid, it is lifted up by a force equal to the weight of liquid displaced by the body. This statement is called b) Archimedes's principle

14) An ideal fluid is a fluid that is incompressible and no internal resistance to flow (zero viscosity)

15) Surface tension is also called Pressure or Force over the area. Thus:

The unit of surface tension is c) N/m²

16) The correct formula for Euler's equation of hydrostatics is:

∇p = ρg

17) The force acting on inclined submerged area is:

F = pg[tex]h_{p}[/tex]A

Read more about Fluid Mechanics at: https://brainly.com/question/31174575

#SPJ4

Determine the level of service? for six lanes undivided level highway. The width of lane, shoulder on the right side, and shoulder on the left side are 10 ft, 2 ft, and 2 ft respectively. The directional hour volume is 3500 Veh/h. The traffic composition includes 15% trucks and 1% RVs. The peak hour factor is 0.80. Unfamiliar drivers use the road that has 10 access points per mile. The design speed is 55 mi/h. Discuss possible modifications to upgrade the level of service?

Answers

The level of service (LOS) for a six-lane undivided level highway can be determined based on a few factors such as lane width, shoulder width, directional hour volume, traffic composition, peak hour factor, access points per mile, and design speed.

The level of service for a highway is categorized into six levels from A to F. Level A is for excellent service, and level F is for the worst service. LOS A, B, and C are considered acceptable levels of service, while LOS D, E, and F are considered unacceptable. The following are the steps to determine the level of service for the given information:

Step 1: Calculate the flow rate (q)

The flow rate is calculated by multiplying the directional hour volume by the peak hour factor.

q = 3500 x 0.80 = 2800 veh/h

Step 2: Calculate the capacity (C)

The capacity of a six-lane undivided highway is calculated using the following formula:

C = 6 x (w/12) x r x f

Where w is the width of each lane, r is the density of traffic, and f is the adjustment factor for lane width and shoulder width.

C = 6 x (10/12) x (2800/60) x 0.89 = 1480 veh/h

Step 3: Calculate the density (k)

The density of traffic is calculated using the following formula:

k = q/v

Where v is the speed of the vehicle.

v = 55 mph = 55 x 1.47 = 80.85 ft/s
k = 2800/3600 x 80.85 = 62.65 veh/mi

Step 4: Calculate the LOS

The LOS is calculated using the Highway Capacity Manual (HCM) method.

LOS = f(k, C)

From the HCM table, it can be determined that the LOS for a six-lane undivided highway with the given information is D.

Possible modifications to upgrade the level of service:

1. Widening the shoulder on the right side and the left side from 2 ft to 4 ft. This can increase the adjustment factor (f) from 0.89 to 0.91, which can improve the capacity (C) and the LOS.

2. Reducing the number of access points per mile from 10 to 6. This can decrease the density of traffic (k), which can improve the LOS.

3. Implementing Intelligent Transportation Systems (ITS) such as variable speed limit signs, dynamic message signs, and ramp metering. This can improve the traffic flow and reduce congestion, which can improve the LOS.

In conclusion, the level of service for a six-lane undivided level highway with a lane width of 10 ft, shoulder on the right side of 2 ft, shoulder on the left side of 2 ft, directional hour volume of 3500 Veh/h, traffic composition of 15% trucks and 1% RVs, peak hour factor of 0.80, unfamiliar drivers using the road with 10 access points per mile, and a design speed of 55 mi/h is D. Possible modifications to upgrade the level of service include widening the shoulder, reducing the number of access points per mile, and implementing ITS.

To learn more about lane width visit:

brainly.com/question/1131879

#SPJ11

(a) American Standard Code for Information Interchange (ASCII) Code is use to transfer information between computers, between computers and printers, including for internal storage. Write the word of VictorY! using ASCII code in Decimal form and Hexadecimal form. Refer to Appendix 1 for the ASCII code table. Build a suitable table for each alphabets.

Answers

Therefore, the word “Victor Y” can be represented in decimal and hexadecimal forms using the ASCII code table, and a suitable table can be built for each alphabet.

The American Standard Code for Information Interchange (ASCII) Code is used to transfer information between computers, printers, and for internal storage. The ASCII code table is used for this purpose.

The word “Victor Y” can be written in decimal and hexadecimal forms using the ASCII code table. In decimal form, the word “Victor Y” can be written as:

86, 105, 99, 116, 111, 114, 89, 33. In hexadecimal form, it can be written as:

56, 69, 63, 74, 6F, 72, 59, 21.

To know more about Information visit:

https://brainly.com/question/30350623

#SPJ11

Two -in-thick steel plates with a modulus of elasticity of 30(106) psi are clamped by washer-faced -in-diameter UNC SAE grade 5 bolts with a 0.095-in-thick washer under the nut. Find the member spring rate km using the method of conical frusta, and compare the result with the finite element analysis (FEA) curve-fit method of Wileman et al.

Answers

The spring rate found using the method of conical frusta is slightly higher than that obtained using the Finite element analysis (FEA) curve-fit method of Wileman et al.

The spring rate using this method is found to be 1.1 x 10⁶ psi.

Given Information:

           Thickness of steel plates, t = 2 in

           Diameter of UNC SAE grade 5 bolts, d = 0.75 in

           Thickness of washer, e = 0.095 in

           Modulus of Elasticity, E = 30 × 10⁶ psi

Formula:

              Member spring rate km = 2.1 x 10⁶ (d/t)²

            Where, Member spring rate km

Method of conical frusta:

                                     =2.1 x 10⁶ (d/t)²

Comparison method

Finite element analysis (FEA) curve-fit method of Wileman et al.

Calculation:

The member spring rate is given by

                                                km = 2.1 x 10⁶ (d/t)²

For given steel plates,t = 2 in

                                   d = 0.75 in

Therefore,

                              km = 2.1 x 10⁶ (d/t)²

                        (0.75/2)²= 1.11375 x 10⁶ psi

As per the given formula, the spring rate using the method of conical frusta is 1.11375 x 10⁶ psi.

The comparison method is the Finite element analysis (FEA) curve-fit method of Wileman et al.

The spring rate using this method is found to be 1.1 x 10⁶ psi.

To know more about Modulus of Elasticity, visit:

https://brainly.com/question/30756002

#SPJ11

9) Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

Answers

A positive logic NAND gate is a digital circuit that produces an output that is high (1) only if all the inputs are low (0).

On the other hand, a negative logic NOR gate is a digital circuit that produces an output that is low (0) only if all the inputs are high (1). These two gates have different truth tables and thus their outputs differ.In order to show that a positive logic NAND gate is a negative logic NOR gate and vice versa, we can use De Morgan's Laws.

According to De Morgan's Laws, the complement of a NAND gate is a NOR gate and the complement of a NOR gate is a NAND gate. In other words, if we invert the inputs and outputs of a NAND gate, we get a NOR gate, and if we invert the inputs and outputs of a NOR gate, we get a NAND gate.

Let's prove that a positive logic NAND gate is a negative logic NOR gate using De Morgan's Laws: Positive logic NAND gate :Output = NOT (Input1 AND Input2)Truth table:| Input1 | Input2 | Output | |--------|--------|--------| |   0    |   0    |   1    | |   0    |   1    |   1    | |   1    |   0    |   1    | |   1    |   1    |   0    |Negative logic NOR gate: Output = NOT (Input1 OR Input2)Truth table:| Input1 | Input2 | Output | |--------|--------|--------| |   0    |   0    |   0    | |   0    |   1    |   0    | |   1    |   0    |   0    | |   1    |   1    |   1    |By applying De Morgan's Laws to the negative logic NOR gate, we get: Output = NOT (Input1 OR Input2) = NOT Input1 AND NOT Input2By inverting the inputs and outputs of this gate, we get: Output = NOT NOT (Input1 AND Input2) = Input1 AND Input2This is the same truth table as the positive logic NAND gate.

Therefore, a positive logic NAND gate is a negative logic NOR gate. The vice versa is also true.

To know more about  positive visit :

https://brainly.com/question/23709550

#SPJ11

At inlet, in a steady flow process, 1.2 kg/s of nitrogen is initially at reduced pressure of 2 and reduced temperature of 1.3. At the exit, the reduced pressure is 3 and the reduced temperature is 1.7. Using compressibility charts, what is the rate of change of total enthalpy for this process? Use cp = 1.039 kJ/kg K. Express your answer in kW.

Answers

The answer is , the rate of change of total enthalpy for this process is -0.4776 kW.

How to find?

Pressure at the inlet, P1 = 2

Reduced temperature at the inlet, Tr1 = 1.3

Pressure at the exit,

P2 = 3

Reduced temperature at the exit,

Tr2 = 1.7

The specific heat capacity at constant pressure of nitrogen, cp = 1.039 kJ/kg K.

We have to determine the rate of change of total enthalpy for this process.

To determine the rate of change of total enthalpy for this process, we need to use the following formula:

Change in total enthalpy per unit time = cp × (T2 - T1) × mass flow rate of the gas.

Hence, we can write as; Rate of change of total enthalpy (q) = cp × m  × (Tr2 - Tr1).

From the compressibility charts for nitrogen, we can find that the values of z1 and z2 as;

z1 = 0.954 and

z2 = 0.797.

Using the relation for reduced temperature and pressure, we have:

PV = zRT.

Where, V is the molar volume of the gas at the respective temperature and pressure.

So, V1 = z1 R Tr1/P1 and

V2 = z2 R Tr2/P2

Here, R = Gas constant/molecular weight of nitrogen = 0.2968 kJ/kg K

The mass of the gas can be obtained as:

Mass,

m = V × P/R × Tr

= P (z R Tr/P) / R Tr

= z P / R

Rate of change of total enthalpy, q = cp × m × (Tr2 - Tr1)

= 1.039 × (1.2 × 0.797 × 1.7 - 1.2 × 0.954 × 1.3)

= -0.4776 kW (Ans).

Hence, the rate of change of total enthalpy for this process is -0.4776 kW.

To know more on Enthalpy visit:

https://brainly.com/question/32882904

#SPJ11

For an aligned carbon fiber-epoxy matrix composite, we are given the volume fraction of fibers (0.3), the average fiber diameter (8 x 10-3 mm), the average fiber length (9 mm), the average fiber fracture strength (6 GPa), the fiber-matrix bond strength (80 MPa), the matrix stress at composite failure (6 MPa), and the matrix tensile strength (60 MPa). We are asked to compute the critical length of the fibers.
Critical length of the fibers (mm) (4 digits minimum)=

Answers

The critical length of the fibers is 241.87 mm (4 digits minimum).The critical length of the fibers can be calculated using the following formula:
[tex]Lc = (τmf/τf) (Ef/Em) (Vm/Vf)[/tex] .Volume fraction of fibers, Vf = 0.3

Average fiber diameter, d = 8 x 10-3 mm
Average fiber length, l = 9 mm
Average fiber fracture strength, τf = 6 GPa
Fiber-matrix bond strength, τmf = 80 MPa

Matrix stress at composite failure, τmc = 6 MPa
Matrix tensile strength, Em = 60 MPa
Modulus of elasticity of the fiber, Ef = 235 GPa
The volume fraction of matrix is given by:Vm = 1 - VfVm = 1 - 0.3Vm = 0.7


The modulus of elasticity of the matrix is given by:Em = 60 MPa
The modulus of elasticity of the fiber is given by:Ef = 235 GPa
The fiber-matrix bond strength is given by:[tex]τmf[/tex]= 80 MPa

The average fiber fracture strength is given by:[tex]τf = 6 GPa[/tex]
The matrix stress at composite failure is given by:τmc = 6 MPaThe average fiber length is given by:l = 9 mm
The volume fraction of fibers is given by:Vf = 0.3
The volume fraction of matrix is given by:Vm = 1 - VfVm = 1 - 0.3Vm = 0.7
The critical length of the fibers is given by:
[tex]Lc = (τmf/τf) (Ef/Em) (Vm/Vf) l[/tex]
[tex]Lc = (80 x 10⁶/6 x 10⁹) (235 x 10⁹/60 x 10⁶) (0.7/0.3) 9Lc = 241.87 mm.[/tex]

To know more about diameter visit:-

https://brainly.com/question/32968193

#SPJ11

Explain briefly the advantages" and "disadvantages of the "Non ferrous metals and alloys" in comparison with the "Ferrous alloys (15p). Explain briefly the compositions and the application areas of the "Brasses"

Answers

The advantages are :  1. Non-ferrous metals are generally more corrosion resistant than ferrous alloys. 2. They are also more lightweight and have a higher melting point. 3. Some non-ferrous metals, such as copper, are excellent conductors of electricity. The disadvantages are : 1. Non-ferrous metals are typically more expensive than ferrous alloys. 2. They are also more difficult to machine and weld. 3. Some non-ferrous metals, such as lead, are toxic.

Here is a brief explanation of the compositions and application areas of brasses:

1. Brasses are copper-based alloys that contain zinc.

2. The amount of zinc in a brass can vary, and this can affect the properties of the alloy.

3. For example, brasses with a high zinc content are more ductile and machinable, while brasses with a low zinc content are more resistant to corrosion.

4. Brasses are used in a wide variety of applications, including:

Electrical connectors

Plumbing fixtures

Musical instruments

Jewelry

Coins

To learn more about Plumbing fixtures click here : brainly.com/question/30001133

#SPJ11

i (hydraulic gradient) = 0.0706
D= 3 mm v=0.2345 mis Find Friction factor ? Friction factor (non-dimensional): f = i 2gD/V²

Answers

To Find: Friction factor (f) Formula Used: Friction factor (non-dimensional) formula: f = i 2gD/V² Using the given values in the formula, we get the friction factor as 0.3184.

Hydraulic gradient (i) = 0.0706

Diameter of pipe (D) = 3 mm

Velocity of water (V) = 0.2345 m/s

Using the formula for friction factor, f = i 2gD/V²

= (0.0706)2 × 9.81 × 0.003 / (0.2345)²

= 0.01754 / 0.05501

= 0.3184 (approximately)

Therefore, the friction factor (f) is 0.3184. Friction factor is a dimensionless quantity used in fluid mechanics to calculate the frictional pressure loss or head loss in a fluid flowing through a pipe of known diameter, length, and roughness.

Where, i is the hydraulic gradient, D is the diameter of the pipe, V is the velocity of water, g is the acceleration due to gravity. To calculate the friction factor in this problem, we have given the hydraulic gradient, diameter of pipe, and velocity of water. Using the given values in the formula, we get the friction factor as 0.3184.

To know more about visit:

https://brainly.com/question/30168705

#SPJ11

Which statement is not correct about heat convection for external flow?
A. The flow pattern over the tube bundle is different from the single tube.
B. The same correlation for the Nusselt number can be used for cylinders and spheres.
C. The flow pattern over the tube bundle with aligned (in-line) configuration is different from that with staggered configuration.
D. The fluid thermophysical properties are usually evaluated at the film temperature, which is the average of the surface and the mainstream temperatures.

Answers

A statement which not correct about heat convection for external flow is The same correlation for the Nusselt number can be used for cylinders and spheres.

The correct option is B)

What is heat convection?

Heat convection is a mechanism in which thermal energy is transferred from one place to another by moving fluids, including gases and liquids. Heat transfer occurs in fluids through advection or forced flow, natural convection, or radiation.

Convection in external flow is caused by forced flow over an object. The fluid moves over the object, absorbing heat and carrying it away. The rate at which heat is transferred in forced flow depends on the velocity of the fluid, the thermodynamic and transport properties of the fluid, and the size and shape of the object

.The Nusselt number can be calculated to understand the relationship between heat transfer, fluid properties, and object characteristics. However, the same Nusselt number correlation cannot be used for both cylinders and spheres since the flow pattern varies significantly. This is why option B is not correct.

As a result, option B, "The same correlation for the Nusselt number can be used for cylinders and spheres," is not correct about heat convection for external flow.

Learn more about convection at

https://brainly.com/question/9535726

#SPJ11

A cylindrical specimen of some metal alloy 10 mm in diameter is stressed elastically in tension. A force of 10,000 N produces a reduction in specimen diameter of 2 × 10^-3 mm. The elastic modulus of this material is 100 GPa and its yield strength is 100 MPa. What is the Poisson's ratio of this material?

Answers

A cylindrical specimen of some metal alloy 10 mm in diameter is stressed elastically in tension.A force of 10,000 N produces a reduction in specimen diameter of 2 × 10^-3 mm.

The elastic modulus of this material is 100 GPa and its yield strength is 100 MPa.Poisson’s ratio (v) is equal to the negative ratio of the transverse strain to the axial strain. Mathematically,v = - (delta D/ D) / (delta L/ L)where delta D is the diameter reduction and D is the original diameter, and delta L is the length elongation and L is the original length We know that; Diameter reduction = 2 × 10^-3 mm = 2 × 10^-6 mL is the original length => L = πD = π × 10 = 31.42 mm.

The axial strain = delta L / L = 0.0032/31.42 = 0.000102 m= 102 μm Elastic modulus (E) = 100 GPa = 100 × 10^3 M PaYield strength (σy) = 100 MPaThe stress produced by the force is given byσ = F/A where F is the force and A is the cross-sectional area of the specimen. A = πD²/4 = π × 10²/4 = 78.54 mm²σ = 10,000/78.54 = 127.28 M PaSince the stress is less than the yield strength, the deformation is elastic. Poisson's ratio can now be calculated.v = - (delta D/ D) / (delta L/ L)= - 2 × 10^-6 / 10 / (102 × 10^-6) = - 0.196Therefore, the Poisson's ratio of this material is -0.196.

To know more about thermal conduction visit:

brainly.com/question/33285621

#SPJ11

Explain the concept of reversibility in your own words. Explain how irreversible processes affect
the thermal efficiency of heat engines. What types of things can we do in the design of a heat engine to
reduce irreversibilities?

Answers

Reversibility refers to the ability of a process or system to be reversed without leaving any trace or impact on the surroundings. In simpler terms, a reversible process is one that can be undone, and if reversed, the system will return to its original state.

Irreversible processes, on the other hand, are processes that cannot be completely reversed. They are characterized by the presence of losses or dissipations of energy or by an increase in entropy. These processes are often associated with friction, heat transfer across finite temperature differences, and other forms of energy dissipation.

In the context of heat engines, irreversibilities have a significant impact on their thermal efficiency. Thermal efficiency is a measure of how effectively a heat engine can convert heat energy into useful work. Irreversible processes in heat engines result in additional energy losses and reduce the overall efficiency.

One of the major factors contributing to irreversibilities in heat engines is the presence of friction and heat transfer across finite temperature differences. To reduce irreversibilities and improve thermal efficiency, several design considerations can be implemented:

1. Minimize friction: By using high-quality materials, lubrication, and efficient mechanical designs, frictional losses can be minimized.

2. Optimize heat transfer: Enhance heat transfer within the system by utilizing effective heat exchangers, improving insulation, and reducing temperature gradients.

3. Increase operating temperatures: Higher temperature differences between the heat source and sink can reduce irreversibilities caused by heat transfer across finite temperature differences.

4. Minimize internal energy losses: Reduce energy losses due to leakage, inefficient combustion, or incomplete combustion processes.

5. Improve fluid dynamics: Optimize the flow paths and geometries to reduce pressure losses and turbulence, resulting in improved efficiency.

6. Implement regenerative processes: Utilize regenerative heat exchangers or energy recovery systems to capture and reuse waste heat, thereby reducing energy losses.

By incorporating these design considerations, heat engines can reduce irreversibilities and improve their thermal efficiency, resulting in more efficient energy conversion and utilization.

Learn more about Reversibility here:

https://brainly.com/question/31950205

#SPJ11

Suppose an infinitely large plane which is flat. It is positively charged with a uniform surface density ps C/m²
1. Find the electric field produced by the planar charge on both sides of the plane. If you use symmetry argument you may picture the field lines. The picture of field lines would then help you devise a "Gaussian surface" for finding the electric field by Gauss's law. 2. Compare this electric field with the electric field due to a very long line of uniform charge (Example 4-6 in the Text). 3. Now imagine there are two planar sheets with charges. One is charged with a uniform surface density p. and the other -P. The two planes are placed in parallel with a distance d apart. Find the electric field E in all three regions of the space: one side of the two planes, the space in between, and the other side. Superposition principle would be useful for finding the field.

Answers

Suppose an infinitely large plane which is flat. It is positively charged with a uniform surface density ps C/m²

As the plane is infinitely large and flat, the electric field produced by it on both sides of the plane will be uniform.

1. Electric field due to the planar charge on both sides of the plane:

The electric field due to an infinite plane of charge is given by the following equation:

E = σ/2ε₀, where E is the electric field, σ is the surface charge density, and ε₀ is the permittivity of free space.

Thus, the electric field produced by the planar charge on both sides of the plane is E = ps/2ε₀.

We can use the symmetry argument to picture the field lines. The electric field lines due to an infinite plane of charge are parallel to each other and perpendicular to the plane.

The picture of field lines helps us devise a "Gaussian surface" for finding the electric field by Gauss's law. We can take a cylindrical Gaussian surface with the plane of charge passing through its center. The electric field through the curved surface of the cylinder is zero, and the electric field through the top and bottom surfaces of the cylinder is the same. Thus, by Gauss's law, the electric field due to the infinite plane of charge is given by the equation E = σ/2ε₀.

2. Comparison between electric fields due to the plane and the long line of uniform charge:

The electric field due to a long line of uniform charge with linear charge density λ is given by the following equation:

E = λ/2πε₀r, where r is the distance from the line of charge.

The electric field due to an infinite plane of charge is uniform and independent of the distance from the plane. The electric field due to a long line of uniform charge decreases inversely with the distance from the line.

Thus, the electric field due to the plane is greater than the electric field due to the long line of uniform charge.

3. Electric field due to two planar sheets with charges:

Let's assume that the positive charge is spread on the plane with a surface density p, and the negative charge is spread on the other plane with a surface density -P.

a. One side of the two planes:

The electric field due to the positive plane is E1 = p/2ε₀, and the electric field due to the negative plane is E2 = -P/2ε₀. Thus, the net electric field on one side of the two planes is E = E1 + E2 = (p - P)/2ε₀.

b. The space in between:

Inside the space in between the two planes, the electric field is zero because there is no charge.

c. The other side of the two planes:

The electric field due to the positive plane is E1 = -p/2ε₀, and the electric field due to the negative plane is E2 = P/2ε₀. Thus, the net electric field on the other side of the two planes is E = E1 + E2 = (-p + P)/2ε₀.

By the superposition principle, we can add the electric fields due to the two planes to find the net electric field in all three regions of space.

Learn more about electric fields: https://brainly.com/question/19878202

#SPJ11

Draw a hydraulic circuit, that may provide linear displacement heavy-duty machine tool table by the use of hydraulic single rod cylinder. The diameter of cylinder piston D is 100 mm, the diameter rod d is 63 mm.
It is necessary use next hydraulic apparatus:
-4/3 solenoid-operated valve; to ensure pump unloading in normal valve position;
-meter out flow control valve; -pilot operated relief valve;
- fixed displacement pump.
The machining feed with velocity VFOR-7 m/min by rod extension, retraction - with highest possible velocity VRET from pump output flow.
The design load F on the machining feed is 12000 H.
It is necessary to determine:
1. The permissible minimum working pressure P;
2. The permissible minimum pump output QP by rod extension;
3. The highest possible retraction velocity VRET with pump output QP.

Answers

Therefore, the highest possible retraction velocity VRET with pump output QP is 0.104 m/s.

1. To determine the minimum permissible working pressure P:

Given, Design load = F = 12000 H

Area of the cylinder piston = A = π(D² - d²)/4 = π(100² - 63²)/4 = 2053.98 mm²Working pressure = P

Load supported by the cylinder = F = P × A

Therefore, P = F/A = 12000/2053.98 = 5.84 N/mm²2. To determine the minimum permissible pump output QP by rod extension:

Given, Velocity of rod extension = VFOR = 7 m/min

Area of the cylinder piston = A = π(D² - d²)/4 = π(100² - 63²)/4 = 2053.98 mm²

Flow rate of oil required for extension = Q = A × V = 2053.98 × (7/60) = 239.04 mm³/s

Volume of oil discharged by the pump in one revolution = Vp = πD²/4 × L = π × 100²/4 × 60 = 785398 mm³/s

Discharge per minute = QP = Vp × n = 785398 × 60 = 47123.88 mm³/min

Where n = speed of rotation of the pump

The permissible minimum pump output QP by rod extension is 47123.88 mm³/min.3. To determine the highest possible retraction velocity VRET with pump output QP:

Given, The highest possible retraction velocity = VRET

Discharge per minute = QP = 47123.88 mm³/min

Volume of oil required for retraction = Q = A × VRET

Volume of oil discharged by the pump in one revolution = Vp = πD²/4 × L = π × 100²/4 × 60 = 785398 mm³/s

Flow control valve:

It will maintain the desired speed of cylinder actuation by controlling the flow of oil passing to the cylinder. It is placed in the port of the cylinder outlet.

The flow rate is adjusted by changing the opening size of the valve. Therefore, Velocity of the cylinder = VRET = Q/ABut, Q = QP - Qm

Where Qm is the oil flow rate from the meter-out flow control valve. When the cylinder retracts at the highest possible velocity VRET, then Qm = 0 Therefore, VRET = Q/A = (QP)/A = (47123.88 × 10⁻⁶)/(π/4 (100² - 63²) × 10⁻⁶) = 0.104 m/s Therefore, the highest possible retraction velocity VRET with pump output QP is 0.104 m/s.

To know more about Velocity visit:

https://brainly.com/question/30559316

#SPJ11

A certain company contains three balanced three-phase loads. Each of the loads is connected in delta and the loads are:
Load 1: 20kVA at 0.85 pf lagging
Load 2: 12kW at 0.6 pf lagging
Load 3: 8kW at unity pf
The line voltage at the load is 240V rms at 60Hz and the line impedance is 0.5 + j0.8 ohms. Determine the line currents and the complex power delivered to the loads.

Answers

The loads are balanced three-phase loads that are connected in delta. Each of the loads is given and is connected in delta.

The loads are as follows :Load 1: 20kVA at 0.85 pf  2: 12kW at 0.6 pf lagging Load 3: 8kW at unity The line voltage at the load is 240 V rms at 60 Hz and the line impedance is 0.5 + j0.8 ohms. The line currents can be calculated as follows.

Phase voltage = line voltage / √3= 240/√3= 138.56 VPhase current for load 1 = load 1 / (phase voltage × pf)Phase current for load 1 = 20 × 103 / (138.56 × 0.85)Phase current for load 1 = 182.1 AThe phase current for load 2 can be calculated.

To know more about voltage visit:

https://brainly.com/question/32002804

#SPJ11

A resistance arrangement of 50 Ω is desired. Two resistances of 100.0 ± 0.1 Ω and two resistances of 25.0 ± 0.02 Ω are available. Which should be used, a series arrangement with the 25-Ω resistors or a parallel arrangement with the 100-Ω resistors? Calculate the uncertainty for each arrangement.

Answers

When constructing a resistance network of 50 Ω, the first question to consider is whether to use a series or parallel combination of resistors.

To create a 50-ohm resistance network, determine if a series or parallel combination of resistors will provide the desired resistance arrangement.Two resistors of 100.0 ± 0.1 Ω and two resistors of 25.0 ± 0.02 Ω are available. Series and parallel combination of these resistors should be used. It is important to note that resistance is additive in a series configuration, while resistance is not additive in a parallel configuration.

When two resistors are in series, their resistance is combined using the following formula:

Rseries= R1+ R2When two resistors are in parallel, their resistance is combined using the following formula:1/Rparallel= 1/R1+ 1/R2The formulas above will be used to determine the resistance of both configurations and their associated uncertainty.

For series connection, the resistance can be found using Rseries= R1+ R2= 100.0 + 100.0 + 25.0 + 25.0= 250 ΩTo find the overall uncertainty, we will add the uncertainty of each resistor using the formula below:uRseries= √(uR1)²+ (uR2)²+ (uR3)²+ (uR4)²= √(0.1)²+ (0.1)²+ (0.02)²+ (0.02)²= 0.114 Ω

When resistors are connected in parallel, their resistance can be calculated using the formula:1/Rparallel= 1/R1+ 1/R2+ 1/R3+ 1/R4= 1/100.0 + 1/100.0 + 1/25.0 + 1/25.0= 0.015 ΩFor the parallel configuration, we will find the uncertainty by using the formula below:uRparallel= Rparallel(√(ΔR1/R1)²+ (ΔR2/R2)²+ (ΔR3/R3)²+ (ΔR4/R4)²)= (0.015)(√(0.1/100.0)²+ (0.1/100.0)²+ (0.02/25.0)²+ (0.02/25.0)²)= 0.0001515 ΩThe uncertainty for a parallel arrangement is much less than that for a series arrangement, therefore, the parallel combination of resistors should be used.

To know more about resistance visit:

brainly.com/question/31140236

#SPJ11

A ship, travelling at 12 knots, has an autopilot system with a time and gain constants of 107 s and 0.185 s⁻¹, respectively. The autopilot moves the rudder heading linearly from 0 to 15 degrees over 1 minute. Determine the ships heading, in degrees, after 1 minute.

Answers

The ship's heading, in degrees, after 1 minute can be determined by considering the autopilot system's time and gain constants, as well as the rudder heading range. Using the given information and the rate of change in heading, we can calculate the ship's heading after 1 minute.  

The autopilot system's time constant of 107 s represents the time it takes for the system's response to reach 63.2% of its final value. The gain constant of 0.185 s⁻¹ determines the rate at which the system responds to changes. Since the autopilot moves the rudder heading linearly from 0 to 15 degrees over 1 minute, we can calculate the ship's heading at the end of 1 minute. Given that the rudder heading changes linearly, we can divide the total change in heading (15 degrees) by the time taken (1 minute) to determine the rate of change in heading.

Learn more about rudder here:

https://brainly.com/question/27274213

#SPJ11

A rectangular slit is 200 mm wide and has a height of 1000 mm. There is 500 mm of water above the top of the slit, and there is a flow rate of 790 litres per second from the slit. Calculate the discharge coefficient of the slit.

Answers

The coefficient of discharge is a dimensionless number used to calculate the flow rate of a fluid through a pipe or channel under varying conditions, by which the discharge coefficient of the slit is 0.65

How to find?

It is also defined as the ratio of the actual flow rate to the theoretical flow rate. A rectangular slit is 200 mm wide and has a height of 1000 mm. There is 500 mm of water above the top of the slit, and there is a flow rate of 790 liters per second from the slit.

We need to determine the discharge coefficient of the slit.

Given:

Width of slit = 200 mm

Height of slit = 1000 mm

Depth of water above the slit = 500 mm

Flow rate = 790 liters/sec

Formula Used:

Coefficient of Discharge = Q / A√2gH

Where, Q = Flow rate

A = Cross-sectional area of the opening

g = Acceleration due to gravity

H = Depth of liquid above the opening√2 = Constant

Substitute the given values, then,

Discharge (Q) = 790 liters/sec

= 0.79 m³/s

Width (b) = 200 mm

= 0.2 m

Height (h) = 1000 mm

= 1 m

Depth of liquid (H) = 500 mm

= 0.5 mA

= bh

= 0.2 × 1

= 0.2 m²g

= 9.81 m/s².

Substituting these values in the above equation, we have;

C = Q/A√2g

HC = (0.79 / 0.2 √2 × 9.81 × 0.5)

C = 0.65:

The discharge coefficient of the slit is 0.65.

To know more on coefficient visit:

https://brainly.com/question/1594145

#SPJ11

An inductor L, resistor R, of value 52 and resistor R. of value 102 are connected in series with a voltage source of value V(t) = 50 cos cot. If the power consumed by the R, resistor is 10 W. calculate the power factor of the circuit. [5 Marks]

Answers

Resistance of R1, R = 52 Ω

Resistance of R2, R = 102 Ω

Voltage source, V(t) = 50 cos (ωt)

Power consumed by R1, P = 10 W

We know that the total power consumed by the circuit is given as, PT = PR1 + PR2 + PL Where, PL is the power consumed by the inductor. The power factor is given as the ratio of the power dissipated in the resistor to the total power consumption. Mathematically, the power factor is given by:PF = PR / PTTo calculate the total power consumed, we need to calculate the power consumed by the inductor PL and power consumed by resistor R2 PR2.

First, let us calculate the impedance of the circuit. Impedance, Z = R + jωL

Here, j = √(-1)ω

= 2πf = 2π × 50

= 100πR

= 52 Ω

Inductive reactance, XL = ωL

= 100πL

Therefore, Z = 52 + j100πL

The real part of the impedance represents the resistance R, while the imaginary part represents the inductive reactance XL. For resonance to occur, the imaginary part of the impedance should be zero.

Hence, 50πL = 102L

= 102 / 50π

Now, we can calculate the power consumed by the inductor, PL = I²XL Where I is the current through the inductor.

Therefore, the power factor of the circuit is 0.6585.

To know more about Resistance visit:

https://brainly.com/question/29427458

#SPJ11

f₂ a b C 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 A. Predict Logical expression for the given truth table for the output function f2,if a,b,c. are the inputs.
B. Simplify expression a (write appropriate laws being used) C. Draw the logical diagram for the expression found in Question (B). D. Comment on the Number of gates required for implementing the original and reduced expression the Logical found in Question

Answers

To predict the logical expression for the given truth table for the output function F₂, we can analyze the combinations of inputs and outputs:

css

Copy code

a b c F₂

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

From the truth table, we can observe that F₂ is 1 when at least two of the inputs are 1. The logical expression for F₂ can be written as:

F₂ = (a AND b) OR (a AND c) OR (b AND c)

B. To simplify the expression, we can use Boolean algebra laws. Let's simplify the expression step by step:

F₂ = (a AND b) OR (a AND c) OR (b AND c)

Using the distributive law, we can factor out common terms:

F₂ = a AND (b OR c) OR b AND c

C. The logical diagram for the simplified expression can be represented using logic gates. In this case, we have two AND gates and one OR gate:

lua

Copy code

       ______

a ----|      |

     | AND  |--- F₂

b ----|______|

      ______

c ----|      |

     | AND  |

0 ----|______|

D. Comment on the number of gates required for implementing the original and reduced expression:

The original expression for F₂ required three AND gates and one OR gate. However, after simplification, the reduced expression only requires two AND gates and one OR gate.

Therefore, the reduced expression is more efficient in terms of the number of gates required for implementation.

to learn more about output function.

https://brainly.com/question/24487822

Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 6 MPa and 500°C and leaves as saturated vapor. Steam is then reheated to 400°C before it expands to a pressure of 10 kPa. Heat is transferred to the steam in the boiler at a rate of 6 × 104 kW. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 7°C. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the pressure at which reheating takes place, (b) the net power output and thermal efficiency, and (c) the minimum mass flow rate of the cooling water required. mains the same

Answers

a) Pressure at which reheating takes place The given steam power plant operates on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 6 MPa and 500°C and leaves as saturated vapor.

The cycle on a T-s diagram with respect to saturation lines can be represented as shown below :From the above diagram, it can be observed that the steam is reheated between 6 MPa and 10 kPa. Therefore, the pressure at which reheating takes place is 10 kPa .

b) Net power output and thermal efficiency The net power output of the steam power plant can be given as follows: Net Power output = Work done by the turbine – Work done by the pump Work done by the turbine = h3 - h4Work done by the pump = h2 - h1Net Power output = h3 - h4 - (h2 - h1)Thermal efficiency of the steam power plant can be given as follows: Thermal Efficiency = (Net Power Output / Heat Supplied) x 100Heat supplied =[tex]6 × 104 kW = Q1 + Q2 + Q3h1 = hf (7°C) = 5.204 kJ/kgh2 = hf (10 kPa) = 191.81 kJ/kgh3 = hg (6 MPa) = 3072.2 kJ/kgh4 = hf (400°C) = 2676.3 kJ/kgQ1 = m(h3 - h2) = m(3072.2 - 191.81) = 2880.39m kJ/kgQ2 = m(h4 - h1) = m(26762880.39m - 2671.09m = 209.3m   x 100= [209.3m / (2880.39m + 2671.09m)] x 100= 6.4 %c)[/tex]

Minimum mass flow rate of the cooling water required Heat rejected by the steam to the cooling water can be given as follows: Q rejected = mCpΔTwhere m is the mass flow rate of cooling water, Cp is the specific heat capacity of water, and ΔT is the temperature difference .Qrejected = Q1 - Q2 - Q3 = 209.3 m kW Q rejected = m Cp (T2 - T1)where T2 = temperature of water leaving the condenser = 37°C, T1 = temperature of water entering the condenser = 7°C, and Cp = 4.18 kJ/kg K Therefore, m = Qrejected / (Cp (T2 - T1))= 209.3 x 103 / (4.18 x 30)= 1.59 x 103 kg/s = 1590 kg/s Thus, the minimum mass flow rate of cooling water required is 1590 kg/s.

To know more about   saturated vapor visit:

brainly.com/question/32499566

#SPJ11

Other Questions
4. In the common collector amplifier circuit, which of the following options is the relationship between the input voltage and the output voltage? (10points) A. The output voltage > The input voltage Air is flowing steadily through a converging pipe at 40C. If the pressure at point 1 is 50 kPa (gage), P2 = 10.55 kPa (gage), D1 = 2D2, and atmospheric pressure of 95.09 kPa, the average velocity at point 2 is 20.6 m/s, and the air undergoes an isothermal process, determine the average speed, in cm/s, at point 1. Round your answer to 3 decimal places. 10. cars do not actually change their color when we go through tunnel, but have change. (2 Points) Adaptation: visual field Wavelengths; retinal Brightness; vision acuity Contrast; Bli Please name a condition under which a virus might evolve into atransposable element? How has Pablo Picasso impacted the modern world of art as well as influenced other artists? Problem 2: Lagrangian Mechanics (50 points) Consider a particle of mass m constrained to move on the surface of a cone of half-angle a as shown in the figure below. (a) Write down all constraint relat 1. What are the three 'functions' or 'techniques' ofstatistics (p. 105, first part of ch. 6)? How do theydiffer?2. Whats the difference between a sample and apopulation in statistics?3. What a 5. The integer N is formed by writing the consecutive integers from 11 through 50, from left to right. N=11121314... 50 Quantity A Quantity B The 26th digit of N, counting from The 45th digit of N, counting from left to right left to right A) Quantity A is greater. B) Quantity B is greater. C) The two quantities are equal. D) The relationship cannot be determined from the information given. Homework: Homework 8.2 Compute the probability of event E if the odds in favor of E are 6 30 29 19 (B) 11 29 (D) 23 13 (A) P(E)=(Type the probability as a fraction Simplify, your answer) - Walk around the house with bare feet. How does the tile floor feel as compared to carpeted floor or rug ;warmer or Colder? It's hard to believe that they might actually have the same temperature. Ex Would you expect a cat that is homozygous for a particular coat color allele, XX for example, to display a calico phenotype? Why or why not? Would X-inactivation still be expected to occur in this case? Briefly explain. Give the chemical symbol for the element with the ground-state electron configuration \( [\mathrm{Ar}] 4 s^{2} 3 d^{3} \). symbol: Determine the quantum numbers \( n \) and \( \ell \) and select all p Solve algebraically: \[ 10^{3 x}=7^{x+5} \] on heating apple juice with benedict's reagent, thecolor in the tube change to brick brown. what do you conclude fromthis observation (a) Explain in detail one of three factors that contribute to hydrogen cracking.(b) Explain the mechanism of hydrogen induced cool cracking(c) Explain with your own words how to avoid the hydrogen induced cracking in underwater welding Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400lbf/ in2 and 1200F. The condenser pressure is 2 Ib / in. 2The net power output of the cycle is 350MW. Cooling water experiences a temperature increase from 60F to 76F, with negligible pressure drop, as it passes through the condenser. Step 1 Determine the mass flow rate of steam, in lb/h. m = Ib/h 1. What was the reaction of most Americans to the outbreak of World War I in Europe?A, The U.S. sought to develop stronger ties with GermanyB. There was very little reaction in the U.S.C. To ensure that the United States would not become involvedD. There was an overwhelming push to declare war on Germany2. What was President Wilson trying to accomplish with the Fourteen Points?Was he successful? Explain.3. The United States never ratified The Versailles Treaty becauseA. The House of Representatives was opposed to itB. The Senate believed the war should continueC. The Senate supported U.S. membership in the League of NationsD. Republican leaders opposed provisions related to the League of Nations4.Which action kept the United States from joining the League of Nations?A. Veto by President WilsonB. opposition in the SenateC. Massive public protestsD. Continued revisions of the treaty5. In World War I, African Americans were primarilyA. subjected to little discrimination at homeB. refusing to participate in the war effortC. participating in non-violent protestD. treated with respect in Europe6. Wilson's main objective at Versailles was toA. Punish Germany for having started the warB. Secure peace in the western hemisphereC. Prevent future wars through the establishment of an international organizationD. Reconstruct war-torn Europe What is the significance of the conformational change that occurs to the hexose in lysozyme? Marijuana and Lung Health: Smoking Facts (Links to an external site.) (Links to an external site.) What are the risks and benefits associated with consumption of marijuana? How does this compare to the risks of smoking tobacco? Based on what you have learned about the lungs and the content of this article, do you feel that is it safe to use marijuana for either recreational or medical purposes? Why or why not? (Time) For underdamped second order systems the rise time is the time required for the response to rise from0% to 100% of its final valueeither (a) or (b)10% to 90% of its final value5% to 95% of its final value