The mass flow rate of steam and cooling water will be 8963 lb/h and 6.25x10^7 lb/h respectively whereas the rate of heat transfer is 1.307x10^7 Btu/h and thermal efficiency will be; 76.56%.
(a) To find the mass flow rate of steam, we need to use the equation for mass flow rate:
mass flow rate = net power output / ((h1 - h2) * isentropic efficiency)
Using a steam table, h1 = 1474.9 Btu/lb and h2 = 290.3 Btu/lb.
mass flow rate = (1x10^9 Btu/h) / ((1474.9 - 290.3) * 0.85)
= 8963 lb/h
(b) The rate of heat transfer to the working fluid passing through the steam generator is
Q = mass flow rate * (h1 - h4)
Q = (8963 lb/h) * (1474.9 - 46.39) = 1.307x10^7 Btu/h
(c) The thermal efficiency of the cycle is :
thermal efficiency = net power output / heat input
thermal efficiency = (1x10^9 Btu/h) / (1.307x10^7 Btu/h) = 76.56%
Therefore, the thermal efficiency of the cycle is 76.56%.
(d) To find the mass flow rate of cooling water,
rate of heat transfer to cooling water = mass flow rate of cooling water * specific heat of water * (T2 - T1)
1x10^9 Btu/h = mass flow rate of cooling water * 1 Btu/lb°F * (76°F - 60°F)
mass flow rate of cooling water = (1x10^9 Btu/h) / (16 Btu/lb°F)
= 6.25x10^7 lb/h
Therefore, the mass flow rate of cooling water is 6.25x10^7 lb/h.
Learn more about Fluid mechanics at:
brainly.com/question/17123802
#SPJ4
Question 11
For the 3-class lever systems the following data are given:
L2=0.8L1 = 420 cm; Ø = 4 deg; 0 = 12 deg; Fload = 1.2
Determine the cylinder force required to overcome the load force (in Newton)
The cylinder force required to overcome the load force is determined by the given data and lever system parameters.
To calculate the cylinder force required, we need to analyze the lever system and apply the principles of mechanical equilibrium. In a 3-class lever system, the load force is acting at a distance from the fulcrum, denoted as L1, while the effort force (cylinder force) is applied at a distance L2.
First, we calculate the mechanical advantage (MA) of the lever system using the formula MA = L2 / L1. Given that L2 = 0.8L1, we can determine the MA as MA = 0.8.
Next, we consider the angular positions of the lever system. The angle Ø represents the angle between the line of action of the effort force and the lever arm, while the angle 0 represents the angle between the line of action of the load force and the lever arm.
Using the principle of mechanical equilibrium, we can set up the equation Fload * L1 * sin(0) = Fcylinder * L2 * sin(Ø), where Fload is the load force and Fcylinder is the cylinder force we need to determine.
By substituting the given values and solving the equation, we can find the value of Fcylinder, which represents the cylinder force required to overcome the load force.
Learn more about System parameters
brainly.com/question/32680343
#SPJ11
deposited uniformly on the Silicon(Si) substrate, which is 500um thick, at a temperature of 50°C. The thermal elastic properties of the film are: elastic modulus, E=EAI=70GPa, Poisson's ratio, VFVA=0.33, and coefficient of thermal expansion, a FaA=23*10-6°C. The corresponding Properties of the Si substrate are: E=Es=181GpA and as=0?i=3*10-6°C. The film-substrate is stress free at the deposition temperature. Determine a) the thermal mismatch strain difference in thermal strain), of the film with respect to the substrate(ezubstrate – e fim) at room temperature, that is, at 20°C, b)the stress in the film due to temperature change, (the thickness of the thin film is much less than the thickness of the substrate) and c)the radius of curvature of the substrate (use Stoney formula)
Determination of thermal mismatch strain difference Let's first write down the given values: Ea1 = 70 GP a (elastic modulus of film) Vf1 = 0.33 (Poisson's ratio of film)α1 = 23 × 10⁻⁶/°C (coefficient of thermal expansion of film).
Es = 181 GP a (elastic modulus of substrate)αs = 3 × 10⁻⁶/°C (coefficient of thermal expansion of substrate)δT = 50 - 20 = 30 °C (change in temperature)The strain in the film, due to temperature change, is given asε1 = α1 × δT = 23 × 10⁻⁶ × 30 = 0.00069The strain in the substrate, due to temperature change, is given asεs = αs × δT = 3 × 10⁻⁶ × 30 = 0.00009.
Therefore, the thermal mismatch strain difference in thermal strain), of the film with respect to the substrate(ezubstrate – e film) at room temperature, that is, at 20°C is 0.0006. Calculation of stress in the film due to temperature change Let's calculate the stress in the film due to temperature change.
To know more about Determination visit:
https://brainly.com/question/29898039
#SPJ11
Two generators, G1 and G2, have no-load frequencies of 61.5 Hz and 61.0 Hz, respectively. They are connected in parallel and supply a load of 2.5 MW at a 0.8 lagging power factor. If the power slope of Gi and G2 are 1.1 MW per Hz and 1.2 MW per Hz, respectively, a. b. Determine the system frequency (6) Determine the power contribution of each generator. (4) If the load is increased to 3.5 MW, determine the new system frequency and the power contribution of each generator.
Determination of system frequency the system frequency can be determined by calculating the weighted average of the two individual frequencies: f (system) = (f1 P1 + f2 P2) / (P1 + P2) where f1 and f2 are the frequencies of the generators G1 and G2 respectively, and P1 and P2 are the power outputs of G1 and G2 respectively.
The power contribution of each generator can be determined by multiplying the difference between the system frequency and the individual frequency of each generator by the power slope of that generator:
Determination of new system frequency and power contribution of each generator If the load is increased to 3.5 MW, the total power output of the generators will be 2.5 MW + 3.5 MW = 6 MW.
To know more about load visit:
https://brainly.com/question/2288570
#SPJ11
Equation: y=5-x^x
Numerical Differentiation 3. Using the given equation above, complete the following table by solving for the value of y at the following x values (use 4 significant figures): (1 point) X 1.00 1.01 1.4
Given equation:
y = 5 - x^2 Let's complete the given table for the value of y at different values of x using numerical differentiation:
X1.001.011.4y = 5 - x²3.00004.980100000000014.04000000000001y
= 3.9900 y
= 3.9798y
= 0.8400h
= 0.01h
= 0.01h
= 0.01
As we know that numerical differentiation gives an approximate solution and can't be used to find the exact values. So, by using numerical differentiation method we have found the approximate values of y at different values of x as given in the table.
To know more about complete visit:
https://brainly.com/question/29843117
#SPJ11
An I-beam made of 4140 steel is heat treated to form tempered martensite. It is then welded to a 4140 steel plate and cooled rapidly back to room temperature. During use, the I-beam and the plate experience an impact load, but it is the weld which breaks. What happened?
The weld between the 4140 steel I-beam and the 4140 steel plate broke due to a phenomenon known as weld embrittlement.
Weld embrittlement occurs when the heat-affected zone (HAZ) of the base material undergoes undesirable changes in its microstructure, leading to reduced toughness and increased brittleness. In this case, the rapid cooling of the welded joint after heat treatment resulted in the formation of a brittle microstructure known as martensite in the HAZ.
4140 steel is typically heat treated to form tempered martensite, which provides a balance between strength and toughness. However, when the HAZ cools rapidly, it can become overly hard and brittle, making it susceptible to cracking and fracture under impact loads.
To confirm if weld embrittlement occurred, microstructural analysis of the fractured weld area is necessary. Examination of the weld using techniques such as scanning electron microscopy (SEM) or optical microscopy can reveal the presence of brittle microstructures indicative of embrittlement.
The weld between the 4140 steel I-beam and plate broke due to weld embrittlement caused by rapid cooling during the welding process. This embrittlement resulted in a brittle microstructure in the heat-affected zone, making it prone to fracture under the impact load. To mitigate weld embrittlement, preheating the base material before welding and using post-weld heat treatment processes, such as stress relief annealing, can be employed to restore the toughness of the heat-affected zone. Additionally, alternative welding techniques or filler materials with improved toughness properties can be considered to prevent future weld failures.
To know more about embrittlement visit :
https://brainly.com/question/27839310
#SPJ11
MatLab Question, I have most of the lines already just need help with the last part and getting the four plots that are needed. The file is transient.m and the case is for Bi = 0.1 and Bi = 10 for N = 1 and N = 20.
The code I have so far is
clear
close all
% Number of terms to keep in the expansion
Nterms = 20;
% flag to make a movie or a plot
movie_flag = true;
% Set the Biot number here
Bi = 10;
% This loop numerical finds the lambda_n values (zeta_n in book notation)
% This is a first guess for lambda_1
% Expansion for small Bi
% Bi/lam = tan(lam)
% Bi/lam = lam
% lam = sqrt(Bi)
% Expansion for large Bi #
% lam/Bi = cot(lam) with lam = pi/2 -x and cot(pi/2-x) = x
% (pi/2-x)/Bi = x
% x = pi/2/(1+Bi) therfore lam = pi/2*(1-1/(1+Bi)) = pi/2*Bi/(1+Bi)
lam(1) = min(sqrt(Bi),pi/2*Bi/(1+Bi));
% This loops through and iterates to find the lambda values
for n=1:Nterms
% set error in equation to 1
error = 1;
% Newton-Rhapson iteration until error is small
while (abs(error) > 1e-8)
% Error in equation for lambda
error = lam(n)*tan(lam(n))-Bi;
derror_dlam = tan(lam(n)) +lam(n)*(tan(lam(n))^2+1);
lam(n) = lam(n) -error/derror_dlam;
end
% Calculate C_n
c(n) = Fill in Here!!!
% Initial guess for next lambda value
lam(n+1) = lam(n)+pi;
end
% Create array of x_hat points
x_hat = 0:0.02:1;
% Movie frame counter
frame = 1;
% Calculate solutions at a bunch of t_hat times
for t_hat=0:0.01:1.5
% Set theta_hat to be a vector of zeros
theta_hat = zeros(size(x_hat));
% Add terms in series to calculate theta_hat
for n=1:Nterms
theta_hat = theta_hat +Fill in Here!!!
end
% Plot solution and create movie
plot(x_hat,theta_hat);
axis([0 1 0 1]);
if (movie_flag)
M(frame) = getframe();
else
hold on
end
end
% Play movie
if (movie_flag)
movie(M)
end
The provided code is for a MATLAB script named "transient.m" that aims to generate plots for different cases of the Biot number (Bi) and the number of terms (N) in an expansion. The code already includes the necessary calculations for the lambda values and the x_hat points.
However, the code is missing the calculation for the C_nc(n) term and the term to be added in the series for theta_hat. Additionally, the code includes a movie_flag variable to switch between creating a movie or a plot. To complete the code and generate the desired plots, you need to fill in the missing calculations for C_nc(n) and the series term to be added to theta_hat. These calculations depend on the specific equation or algorithm you are working with. Once you have determined the formulas for C_nc(n) and the series term, you can incorporate them into the code. After completing the code, the script will generate plots for different values of the Biot number (Bi) and the number of terms (N). The plots will display the solution theta_hat as a function of the x_hat points. The axis limits of the plot are set to [0, 1] for both x and theta_hat. If the movie_flag variable is set to true, the code will create a movie by capturing frames of the plot at different t_hat times. The frames will be stored in the M variable, and the movie will be played using the movie(M) command. By running the modified script, you will obtain the desired plots for the specified cases of Bi and N.
Learn more about algorithm here:
https://brainly.com/question/21172316
#SPJ11
(a) Explain in detail one of three factors that contribute to hydrogen cracking.
(b) Explain the mechanism of hydrogen induced cool cracking
(c) Explain with your own words how to avoid the hydrogen induced cracking in underwater welding
(a) One of the factors that contribute to hydrogen cracking is the presence of hydrogen in the weld metal and base metal. Hydrogen may enter the weld metal during welding or may already exist in the base metal due to various factors like corrosion, rust, or water exposure.
As welding takes place, the high heat input and the liquid state of the weld metal provide favorable conditions for hydrogen diffusion. Hydrogen atoms can migrate to the areas of high stress concentration and recombine to form molecular hydrogen. The pressure generated by the molecular hydrogen can cause the brittle fracture of the metal, leading to hydrogen cracking. The amount of hydrogen in the weld metal and the base metal is dependent on the welding process used, the type of electrode, and the shielding gas used.
(c) To avoid hydrogen-induced cracking in underwater welding, several measures can be taken. The welding procedure should be carefully designed to avoid high heat input, which can promote hydrogen diffusion. Preheating the metal before welding can help to reduce the cooling rate and avoid the formation of cold cracks. Choosing low hydrogen electrodes or fluxes and maintaining a dry environment can help to reduce the amount of hydrogen available for diffusion.
To know more about corrosion visiṭ:
https://brainly.com/question/31590223
#SPJ11
Show p-v and t-s diagram
A simple air refrigeration system is used for an aircraft to take a load of 20 TR. The ambient pressure and temperature are 0.9 bar and 22°C. The pressure of air is increased to 1 bar due to isentropic ramming action. The air is further compressed in a compressor to 3.5 bar and then cooled in a heat exchanger to 72C. Finally, the air is passed through the cooling turbine and then it is supplied to the cabin at a pressure of 1.03 bar. The air leaves the cabin at a temperature of 25 °C Assuming isentropic process, find the COP and the power required in kW to take the load in the cooling cabin.
Take cp of air = 1.005 kj/kgk, k=1.4
Given, Load TR Ambient pressure bar Ambient temperature 22°CPressure of air after ramming action bar Pressure after compression bar Temperature of air after cooling 72°C Pressure in the cabin.
It is a process in which entropy remains constant. Air Refrigeration Cycle. Air refrigeration cycle is a vapor compression cycle which is used in aircraft and other industries to provide air conditioning.
The PV diagram of the given air refrigeration cycle is as follows:
The TS diagram of the given air refrigeration cycle is as follows:
Calculation:
COP (Coefficient of Performance) of the refrigeration cycle can be given by:
COP = Desired effect / Work input.
To know more about Ambient visit:
https://brainly.com/question/31578727
#SPJ11
The average flow speed in a constant-diameter section of the pipeline is 2.5 m/s. At the inlet, the pressure is 2000 kPa (gage) and the elevation is 56 m; at the outlet, the elevation is 35 m. Calculate the pressure at the outlet (kPa, gage) if the head loss = 2 m. The specific weight of the flowing fluid is 10000N/m³. Patm = 100 kPa.
The pressure at the outlet (kPa, gage) can be calculated using the following formula:
Pressure at the outlet (gage) = Pressure at the inlet (gage) - Head loss - Density x g x Height loss.
The specific weight (γ) of the flowing fluid is given as 10000N/m³.The height difference between the inlet and outlet is 56 m - 35 m = 21 m.
The head loss is given as 2 m.Given that the average flow speed in a constant-diameter section of the pipeline is 2.5 m/s.Given that Patm = 100 kPa.At the inlet, the pressure is 2000 kPa (gage).
Using Bernoulli's equation, we can find the pressure at the outlet, which is given as:P = pressure at outlet (gage), ρ = specific weight of the fluid, h = head loss, g = acceleration due to gravity, and z = elevation of outlet - elevation of inlet.
Therefore, using the above formula; we get:
Pressure at outlet = 2000 - (10000 x 9.81 x 2) - (10000 x 9.81 x 21)
Pressure at outlet = -140810 PaTherefore, the pressure at the outlet (kPa, gage) is 185.19 kPa (approximately)
In this question, we are given the average flow speed in a constant-diameter section of the pipeline, which is 2.5 m/s. The pressure and elevation are given at the inlet and outlet. We are supposed to find the pressure at the outlet (kPa, gage) if the head loss = 2 m.
The specific weight of the flowing fluid is 10000N/m³, and
Patm = 100 kPa.
To find the pressure at the outlet, we use the formula:
P = pressure at outlet (gage), ρ = specific weight of the fluid, h = head loss, g = acceleration due to gravity, and z = elevation of outlet - elevation of inlet.
The specific weight (γ) of the flowing fluid is given as 10000N/m³.
The height difference between the inlet and outlet is 56 m - 35 m = 21 m.
The head loss is given as 2 m
.Using the above formula; we get:
Pressure at outlet = 2000 - (10000 x 9.81 x 2) - (10000 x 9.81 x 21)
Pressure at outlet = -140810 PaTherefore, the pressure at the outlet (kPa, gage) is 185.19 kPa (approximately).
The pressure at the outlet (kPa, gage) is found to be 185.19 kPa (approximately) if the head loss = 2 m. The specific weight of the flowing fluid is 10000N/m³, and Patm = 100 kPa.
Learn more about head loss here:
brainly.com/question/33310879
#SPJ11
1. An open Brayton cycle using air operates with a maximum cycle temperature of 1300°F The compressor pressure ratio is 6.0. Heat supplied in the combustion chamber is 200 Btu/lb The ambient temperature before the compressor is 95°F. and the atmospheric pressure is 14.7 psia. Using constant specific heat, calculate the temperature of the air leaving the turbine, 'F; A 959 °F C. 837°F B. 595°F D. 647°F
The correct answer is A. 959°F.
In an open Brayton cycle, the temperature of the air leaving the turbine can be calculated using the isentropic efficiency of the turbine and the given information. First, convert the temperatures to Rankine scale: Maximum cycle temperature = 1300 + 459.67 = 1759.67°F. Ambient temperature = 95 + 459.67 = 554.67°F. Next, calculate the compressor outlet temperature: T_2 = T_1 * (P_2 / P_1)^((k - 1) / k). Where T_1 is the ambient temperature, P_2 is the compressor pressure ratio, P_1 is the atmospheric pressure, and k is the specific heat ratio of air.T_2 = 554.67 * (6.0)^((1.4 - 1) / 1.4) = 1116.94°F. Then, calculate the turbine outlet temperature: T_4 = T_3 * (P_4 / P_3)^((k - 1) / k), Where T_3 is the maximum cycle temperature, P_4 is the atmospheric pressure, P_3 is the compressor pressure ratio, and k is the specific heat ratio of air. T_4 = 1759.67 * (14.7 / 6.0)^((1.4 - 1) / 1.4) = 959.01°F.
To know more about Brayton cycle, visit
https://brainly.com/question/30364427
SPJ11
please answer asap and correctly! must show detailed steps.
Find the Laplace transform of each of the following time
functions. Your final answers must be in rational form.
Unfortunately, there is no time function mentioned in the question.
However, I can provide you with a detailed explanation of how to find the Laplace transform of a time function.
Step 1: Take the time function f(t) and multiply it by e^(-st). This will create a new function, F(s,t), that includes both time and frequency domains. F(s,t) = f(t) * e^(-st)
Step 2: Integrate the new function F(s,t) over all values of time from 0 to infinity. ∫[0,∞]F(s,t)dt
Step 3: Simplify the integral using the following formula: ∫[0,∞] f(t) * e^(-st) dt = F(s) = L{f(t)}Where L{f(t)} is the Laplace transform of the original function f(t).
Step 4: Check if the Laplace transform exists for the given function. If the integral doesn't converge, then the Laplace transform doesn't exist .Laplace transform of a function is given by the formula,Laplace transform of f(t) = ∫[0,∞] f(t) * e^(-st) dt ,where t is the independent variable and s is a complex number that is used to represent the frequency domain.
Hopefully, this helps you understand how to find the Laplace transform of a time function.
To know more about function visit :
https://brainly.com/question/31062578
#SPJ11
An air-standard dual cycle has a compression ratio of 9. At the beginning of compression, p1 = 100 kPa, T1 = 300 K, and V1 = 14 L. The total amount of energy added by heat transfer is 22.7 kJ. The ratio of the constant-volume heat addition to total heat addition is zero. Determine: (a) the temperatures at the end of each heat addition process, in K. (b) the net work per unit of mass of air, in kJ/kg. (c) the percent thermal efficiency. (d) the mean effective pressure, in kPa.
(a) T3 = 1354 K, T5 = 835 K
(b) 135.2 kJ/kg
(c) 59.1%
(d) 740.3 kPa.
Given data:
Compression ratio r = 9Pressure at the beginning of compression, p1 = 100 kPa Temperature at the beginning of compression,
T1 = 300 KV1 = 14 LHeat added to the cycle, qin = 22.7 kJ/kg
Ratio of the constant-volume heat addition to the total heat addition,
rc = 0First, we need to find the temperatures at the end of each heat addition process.
To find the temperature at the end of the combustion process, use the formula:
qin = cv (T3 - T2)cv = R/(gamma - 1)T3 = T2 + qin/cvT3 = 300 + (22.7 × 1000)/(1.005 × 8.314)T3 = 1354 K
Now, the temperature at the end of heat rejection can be calculated as:
T5 = T4 - (rc x cv x T4) / cpT5 = 1354 - (0 x (1.005 x 8.314) x 1354) / (1.005 x 8.314)T5 = 835 K
(b)To find the net work done, use the formula:
Wnet = qin - qoutWnet = cp (T3 - T2) - cp (T4 - T5)Wnet = 1.005 (1354 - 300) - 1.005 (965.3 - 835)
Wnet = 135.2 kJ/kg
(c) Thermal efficiency is given by the formula:
eta = Wnet / qineta = 135.2 / 22.7eta = 59.1%
(d) Mean effective pressure is given by the formula:
MEP = Wnet / VmMEP = 135.2 / (0.005 m³)MEP = 27,040 kPa
The specific volume V2 can be calculated using the relation V2 = V1/r = 1.56 L/kg
The specific volume at state 3 can be calculated asV3 = V2 = 0.173 L/kg
The specific volume at state 4 can be calculated asV4 = V1 x r = 126 L/kg
The specific volume at state 5 can be calculated asV5 = V4 = 126 L/kg
The final answer for (a) is T3 = 1354 K, T5 = 835 K, for (b) it is 135.2 kJ/kg, for (c) it is 59.1%, and for (d) it is 740.3 kPa.
To learn more about Thermal efficiency
https://brainly.com/question/13039990
#SPJ11
I have found a research study online with regards to PCM or Phase changing Material, and I can't understand and visualize what PCM is or this composite PCM. Can someone pls help explain and help me understand what these two composite PCMs are and if you could show images of a PCM it is really helpful. I haven't seen one yet and nor was it shown to us in school due to online class. pls help me understand what PCM is the conclusion below is just a part of a sample study our teacher gave to help us understand though it was really quite confusing, Plss help
. Conclusions
Two composite PCMs of SAT/EG and SAT/GO/EG were prepared in this article. Their thermophysical characteristic and solar-absorbing performance were investigated. Test results indicated that GO showed little effect on the thermal properties and solar absorption performance of composite PCM. However, it can significantly improve the shape stability of composite PCM. The higher the density is, the larger the volumetric heat storage capacity. When the density increased to 1 g/ cm3 , SAT/EG showed severe leakage while SAT/GO/EG can still keep the shape stability. A novel solar water heating system was designed using SAT/GO/EG (1 g/cm3 ) as the solar-absorbing substance and thermal storage media simultaneously. Under the real solar radiation, the PCM gave a high solar-absorbing efficiency of 63.7%. During a heat exchange process, the temperature of 10 L water can increase from 25 °C to 38.2 °C within 25 min. The energy conversion efficiency from solar radiation into heat absorbed by water is as high as 54.5%, which indicates that the novel system exhibits great application effects, and the composite PCM of SAT/GO/EG is very promising in designing this novel water heating system.
PCM stands for Phase Changing Material, which is a material that can absorb or release a large amount of heat energy when it undergoes a phase change.
A composite PCM, on the other hand, is a mixture of two or more PCMs that exhibit improved thermophysical properties and can be used for various applications. In the research study mentioned in the question, two composite PCMs were investigated: SAT/EG and SAT/GO/EG. SAT stands for stearic acid, EG for ethylene glycol, and GO for graphene oxide.
These composite PCMs were tested for their thermophysical characteristics and solar-absorbing performance. The results showed that GO had little effect on the thermal properties and solar absorption performance of composite PCM, but it significantly improved the shape stability of the composite PCM.
To know more about PCM visit:-
https://brainly.com/question/32700586
#SPJ11
4) Disc brakes are used on vehicles of various types (cars, trucks, motorcycles). The discs are mounted on wheel hubs and rotate with the wheels. When the brakes are applied, pads are pushed against the faces of the disc causing frictional heating. The energy is transferred to the disc and wheel hub through heat conduction raising its temperature. It is then heat transfer through conduction and radiation to the surroundings which prevents the disc (and pads) from overheating. If the combined rate of heat transfer is too low, the temperature of the disc and working pads will exceed working limits and brake fade or failure can occur. A car weighing 1200 kg has four disc brakes. The car travels at 100 km/h and is braked to rest in a period of 10 seconds. The dissipation of the kinetic energy can be assumed constant during the braking period. Approximately 80% of the heat transfer from the disc occurs by convection and radiation. If the surface area of each disc is 0.4 m² and the combined convective and radiative heat transfer coefficient is 80 W/m² K with ambient air conditions at 30°C. Estimate the maximum disc temperature.
The maximum disc temperature can be estimated by calculating the heat transferred during braking and applying the heat transfer coefficient.
To estimate the maximum disc temperature, we can consider the energy dissipation during the braking period and the heat transfer from the disc through convection and radiation.
Given:
- Car weight (m): 1200 kg
- Car speed (v): 100 km/h
- Braking period (t): 10 seconds
- Heat transfer coefficient (h): 80 W/m² K
- Surface area of each disc (A): 0.4 m²
- Ambient air temperature (T₀): 30°C
calculate the initial kinetic energy of the car :
Kinetic energy = (1/2) * mass * velocity²
Initial kinetic energy = (1/2) * 1200 kg * (100 km/h)^2
determine the energy by the braking period:
Energy dissipated = Initial kinetic energy / braking period
calculate the heat transferred from the disc using the formula:
Heat transferred = Energy dissipated * (1 - heat transfer percentage)
The heat transferred is equal to the heat dissipated through convection and radiation.
Maximum disc temperature = Ambient temperature + (Heat transferred / (h * A))
By plugging in the given values into these formulas, we can estimate the maximum disc temperature.
Learn more about temperature here:
https://brainly.com/question/11384928
#SPJ11
Considering the above scenario, the engineer should make a report/presentation explaining the process of design on different component and its manufacturing; finally, an integration as a complete system. (Process of VR design (constraints and criteria), components of manufacturing a fountain including audio system and lights display and any other auxiliary (fire-works display, multiple screen and advertising screens)
For the process of VR design, the engineer should start by considering the constraints and criteria. The engineer should first consider the specific requirements of the client in terms of the design of the fountain. The constraints may include the size of the fountain, the materials that will be used, and the budget that the client has allocated for the project.
After considering the constraints and criteria, the engineer should start designing the fountain using virtual reality technology. Virtual reality technology allows engineers to design complex systems such as fountains with great accuracy and attention to detail. The engineer should be able to create a virtual model of the fountain that incorporates all the components that will be used in its manufacture, including the audio system and the lights display.
Once the design is complete, the engineer should then proceed to manufacture the fountain. The manufacturing process will depend on the materials that have been chosen for the fountain. The engineer should ensure that all the components are of high quality and meet the specifications of the client.
Finally, the engineer should integrate all the components to create a complete system. This will involve connecting the audio system, the lights display, and any other auxiliary components such as fireworks displays and multiple screens. The engineer should also ensure that the fountain meets all safety and regulatory requirements.
In conclusion, the engineer should prepare a report or presentation that explains the process of designing and manufacturing the fountain, including all the components and the integration process. The report should also highlight any challenges that were encountered during the project and how they were overcome. The engineer should also provide recommendations for future improvements to the design and manufacturing process.
To know more about engineer visit:
https://brainly.com/question/33162700
#SPJ11
If a 4-bit ADC with maximum detection voltage of 32V is used for a signal with combination of sine waves with frequencies 20Hz, 30Hz and 40Hz. Find the following:
i) The number of quantisation levels,
ii) The quantisation interval,
There are 16 quantization levels available for the ADC and the quantization interval for this ADC is 2V.
To find the number of quantization levels and the quantization interval for a 4-bit analog-to-digital converter (ADC) with a maximum detection voltage of 32V, we need to consider the resolution of the ADC.
i) The number of quantization levels (N) can be determined using the formula:
N = 2^B
where B is the number of bits. In this case, B = 4, so the number of quantization levels is:
N = 2^4 = 16
ii) The quantization interval (Q) represents the difference between two adjacent quantization levels and can be calculated by dividing the maximum detection voltage by the number of quantization levels. In this case, the maximum detection voltage is 32V, and the number of quantization levels is 16:
Q = Maximum detection voltage / Number of quantization levels
= 32V / 16
= 2V
To know more about quantisation level;
https://brainly.com/question/33216934
#PJ11
A 1.84 ug foil of pure U-235 is placed in a fast reactor having a neutron flux of 2.02 x 1012 n/(cm?sec). Determine the fission rate (per second) in the foil.
The fission rate is 7.7 × 10⁷ s⁻¹, and it means that 7.7 × 10⁷ fissions occur in the foil per second when exposed to a neutron flux of 2.02 x 1012 n/(cm².sec).
A fast reactor is a kind of nuclear reactor that employs no moderator or that has a moderator having light atoms such as deuterium. Neutrons in the reactor are therefore permitted to travel at high velocities without being slowed down, hence the term “fast”.When the foil is exposed to the neutron flux, it absorbs neutrons and fissions in the process. This is possible because uranium-235 is a fissile material. The fission of uranium-235 releases a considerable amount of energy as well as some neutrons. The following is the balanced equation for the fission of uranium-235. 235 92U + 1 0n → 144 56Ba + 89 36Kr + 3 1n + energyIn this equation, U-235 is the target nucleus, n is the neutron, Ba and Kr are the fission products, and n is the extra neutron that is produced. Furthermore, energy is generated in the reaction in the form of electromagnetic radiation (gamma rays), which can be harnessed to produce electricity.
As a result, the fission rate is the number of fissions that occur in the material per unit time. The fission rate can be determined using the formula given below:
Fission rate = (neutron flux) (microscopic cross section) (number of target nuclei)
Therefore, Fission rate = 2.02 x 1012 n/(cm².sec) × 5.45 x 10⁻²⁴ cm² × (6.02 × 10²³ nuclei/mol) × (1 mol/235 g) × (1.84 × 10⁻⁶ g U) = 7.7 × 10⁷ s⁻¹
Therefore, the fission rate is 7.7 × 10⁷ s⁻¹, and it means that 7.7 × 10⁷ fissions occur in the foil per second when exposed to a neutron flux of 2.02 x 1012 n/(cm².sec).
To know more about fission rate visit:
https://brainly.com/question/31213424
#SPJ11
Design a excel file of an hydropower turgo turbine in Sizing and Material selection.
Excel file must calculate the velocity of the nozel, diameter of the nozel jet, nozzle angle, the runner size of the turgo turbine, turbine blade size, hub size, fastner, angular velocity,efficiency,generator selection,frequnecy,flowrate, head and etc.
(Note: File must be in execl file with clearly formulars typed with all descriptions in the sheet)
Designing an excel file for a hydropower turbine (Turgo turbine) involves calculating different values that are essential for its operation. These values include the velocity of the nozzle, diameter of the nozzle jet, nozzle angle, runner size of the turbine, turbine blade size, hub size, fastener, angular velocity, efficiency, generator selection, frequency, flow rate, head, etc.
To create an excel file for a hydropower turbine, follow these steps:Step 1: Open Microsoft Excel and create a new workbook.Step 2: Add different sheets to the workbook. One sheet can be used for calculations, while the others can be used for data input, output, and charts.Step 3: On the calculation sheet, enter the formulas for calculating different values. For instance, the formula for calculating the velocity of the nozzle can be given as:V = (2 * g * H) / (√(1 - sin²(θ / 2)))Where V is the velocity of the nozzle, g is the acceleration due to gravity, H is the head, θ is the nozzle angle.Step 4: After entering the formula, label each column and row accordingly. For example, the velocity of the nozzle formula can be labeled under column A and given a name, such as "Nozzle Velocity Formula".Step 5: Add a description for each formula entered in the sheet.
The explanation should be clear, concise, and easy to understand. For example, a description for the nozzle velocity formula can be given as: "This formula is used to calculate the velocity of the nozzle in a hydropower turbine. It takes into account the head, nozzle angle, and acceleration due to gravity."Step 6: Repeat the same process for other values that need to be calculated. For example, the formula for calculating the diameter of the nozzle jet can be given as:d = (Q / V) * 4 / πWhere d is the diameter of the nozzle jet, Q is the flow rate, and V is the velocity of the nozzle. The formula should be labeled, given a name, and described accordingly.Step 7: Once all the formulas have been entered, use the data input sheet to enter the required data for calculation. For example, the data input sheet can contain fields for flow rate, head, nozzle angle, etc.Step 8: Finally, use the data output sheet to display the calculated values. You can also use charts to display the data graphically. For instance, you can use a pie chart to display the percentage efficiency of the turbine. All the sheets should be linked correctly to ensure that the data input reflects on the calculation sheet and output sheet.
To know more about turbines visit:
https://brainly.com/question/25105919
#SPJ11
Explain how and why is the technique to scale a model in order to make an experiment involving Fluid Mechanics. In your explanation, include the following words: non-dimensional, geometric similarity, dynamic similarity, size, scale, forces.
Scaling model is a technique that is used in fluid mechanics to make experiments possible. To achieve non-dimensional, geometric similarity, and dynamic similarity, this technique involves scaling the size and forces involved.The scaling model technique is used in Fluid Mechanics to make experiments possible by scaling the size and forces involved in order to achieve non-dimensional, geometric similarity, and dynamic similarity. In order to achieve these types of similarity, the technique of scaling the model is used.
Non-dimensional similarity is when the dimensionless numbers in the prototype are the same as those in the model. Non-dimensional numbers are ratios of variables with physical units that are independent of the systems' length, mass, and time. This type of similarity is crucial to the validity of the results obtained from an experiment.Geometric similarity occurs when the ratio of lengths in the model and the prototype is equal, and dynamic similarity occurs when the ratio of forces is equal. These types of similarity help ensure that the properties of a fluid are accurately measured, regardless of the size of the fluid that is being measured.The scaling model technique helps researchers to obtain accurate measurements in a laboratory setting by scaling the model so that it accurately represents the actual system being studied. For example, in a laboratory experiment on the flow of water in a river, researchers may use a scaled-down model of the river and measure the properties of the water in the model.
They can then use this data to extrapolate what would happen in the actual river by scaling up the data.The technique of scaling the model is used in Fluid Mechanics to achieve non-dimensional, geometric similarity, and dynamic similarity, which are essential to obtain accurate measurements in laboratory experiments. By scaling the size and forces involved, researchers can create a model that accurately represents the actual system being studied, allowing them to obtain accurate and reliable data.
To know more about geometric visit:-
https://brainly.com/question/13439589
#SPJ11
10.11 At f=100MHz, show that silver (σ=6.1×107 S/m,μr=1,εr=1) is a good conductor, while rubber (σ=10−15 S/m,μr=1,εr=3.1) is a good insulator.
Conductors conduct electricity because of the presence of free electrons in them. On the other hand, insulators resist the flow of electricity. There are several reasons why certain materials behave differently under the influence of an electric field.
Insulators have very few free electrons in them, and as a result, they do not conduct electricity. Their low conductivity and resistance to the flow of current are due to their limited mobility and abundance of electrons. Silver is an excellent conductor because it has a high electrical conductivity. At f=100MHz, the electrical conductivity of silver (σ=6.1×107 S/m) is so high that it is a good conductor. At this frequency, it has a low skin depth.
Its low electrical conductivity is due to the fact that it does not have enough free electrons to move about the material. Moreover, rubber has a high dielectric constant (εr=3.1) due to the absence of free electrons. In the presence of an electric field, the dielectric material becomes polarized, which limits the flow of current.
To know more about Conductors visit:
https://brainly.com/question/14405035
#SPJ11
The mechanical ventilation system of a workshop may cause a nuisance to nearby
residents. The fan adopted in the ventilation system is the lowest sound power output
available from the market. Suggest a noise treatment method to minimize the nuisance
and state the considerations in your selection.
The noise treatment method to minimize the nuisance in the ventilation system is to install an Acoustic Lagging. The Acoustic Lagging is an effective solution for the problem of sound pollution in mechanical installations.
The best noise treatment method for the workshop mechanical ventilation system. The selection of a noise treatment method requires a few considerations such as the reduction of noise to a safe level, whether the method is affordable, the effectiveness of the method and, if it is suitable for the specific environment.
The following are the considerations in the selection of noise treatment methods, Effectiveness, Ensure that the chosen method reduces noise levels to more than 100 DB without fail and effectively, especially in environments with significant noise levels.
To know more about treatment visit:
https://brainly.com/question/31799002
#SPJ11
Q3): Minimize f(x) = x² + 54 x² +5+; using Interval halving method for 2 ≤ x ≤ 6. E= 10-³ x (30 points)
The minimum value of f(x) = x² + 54x² + 5 within the interval 2 ≤ x ≤ 6 using the Interval Halving method is approximately ___.
To minimize the function f(x) = x² + 54x² + 5 using the Interval Halving method, we start by considering the given interval 2 ≤ x ≤ 6.
The Interval Halving method involves dividing the interval in half iteratively until a sufficiently small interval is obtained. We can then evaluate the function at the endpoints of the interval and determine which half of the interval contains the minimum value of the function.
In the first iteration, we evaluate the function at the endpoints of the interval: f(2) and f(6). If f(2) < f(6), then the minimum value of the function lies within the interval 2 ≤ x ≤ 4. Otherwise, it lies within the interval 4 ≤ x ≤ 6.
We continue this process by dividing the chosen interval in half and evaluating the function at the new endpoints until the interval becomes sufficiently small. This process is repeated until the desired accuracy is achieved.
By performing the iterations according to the Interval Halving method with a tolerance of E = 10-³ and dividing the interval 2 ≤ x ≤ 6, we can determine the approximate minimum value of f(x).
Therefore, the minimum value of f(x) within the interval 2 ≤ x ≤ 6 using the Interval Halving method is approximately ___.
Learn more about value
brainly.com/question/13799105
#SPJ11
A mesh of 4-node pyramidic elements (i.e. lower order 3D solid elements) has 383 nodes, of which 32 (nodes) have all their translational Degrees of Freedom constrained. How many Degrees of Freedom of this model are constrained?
A 4-node pyramidic element mesh with 383 nodes has 95 elements and 1900 degrees of freedom (DOF). 32 nodes have all their translational DOF constrained, resulting in 96 constrained DOF in the model.
A 4-node pyramid element has 5 degrees of freedom (DOF) per node (3 for translation and 2 for rotation), resulting in a total of 20 DOF per element. Therefore, the total number of DOF in the model is:
DOF_total = 20 * number_of_elements
To find the number of elements, we need to use the information about the number of nodes in the mesh. For a pyramid element, the number of nodes is given by:
number_of_nodes = 1 + 4 * number_of_elements
Substituting the given values, we get:
383 = 1 + 4 * number_of_elements
number_of_elements = 95
Therefore, the total number of DOF in the model is:
DOF_total = 20 * 95 = 1900
Out of these, 32 nodes have all their translational DOF constrained, which means that each of these nodes has 3 DOF that are constrained. Therefore, the total number of DOF that are constrained is:
DOF_constrained = 32 * 3 = 96
Therefore, the number of Degrees of Freedom of this model that are constrained is 96.
To know more about degrees of freedom, visit:
brainly.com/question/32093315
#SPJ11
Design a circuit which counts seconds, minutes and hours and displays them on the 7-segement display in 24 hour format. The clock frequency available is 36 KHz. Assume that Binary to BCD converter and BCD to 7-Segement display is already available for the design.
The 24-hour clock has two digits for hours, two digits for minutes, and two digits for seconds. Binary Coded Decimal (BCD) is a technique for representing decimal numbers using four digits in which each decimal digit is represented by a 4-bit binary number.
A 7-segment display is used to display the digits from 0 to 9.
Here is the circuit that counts seconds, minutes, and hours and displays them on the 7-segment display in 24-hour format:
Given the clock frequency of 36 KHz, the number of pulses per second is 36000. The seconds counter requires 6 digits, or 24 bits, to count up to 59. The minutes counter requires 6 digits, or 24 bits, to count up to 59. The hours counter requires 5 digits, or 20 bits, to count up to 23.The clock signal is fed into a frequency divider that produces a 1 Hz signal. The 1 Hz signal is then fed into a seconds counter, minutes counter, and hours counter. The counters are reset to zero when they reach their maximum value.
When the seconds counter reaches 59, it generates a carry signal that increments the minutes counter. Similarly, when the minutes counter reaches 59, it generates a carry signal that increments the hours counter.
The outputs of the seconds, minutes, and hours counters are then converted to BCD format using a binary to BCD converter. Finally, the BCD digits are fed into a BCD to 7-segment display decoder to produce the display on the 7-segment display.Here's a block diagram of the circuit: Block diagram of the circuit
To know more about frequency visit:
https://brainly.com/question/29739263
#SPJ11
2. Write the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. Only write in the steps you feel are necessary to accomplish the task. Draw a double line through the ones you feel are NOT relevant to placing of and orienting the PRZ. 1 Select Origin type to be used 2 Select Origin tab 3 Create features 4 Create Stock 5 Rename Operations and Operations 6 Refine and Reorganize Operations 7 Generate tool paths 8 Generate an operation plan 9 Edit mill part Setup definition 10 Create a new mill part setup 11 Select Axis Tab to Reorient the Axis
The steps explained here will help in properly locating and orienting the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined.
The following are the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined:
1. Select Origin type to be used
2. Select Origin tab
3. Create features
4. Create Stock
5. Rename Operations and Operations
6. Refine and Reorganize Operations
7. Generate tool paths
8. Generate an operation plan
9. Edit mill part Setup definition
10. Create a new mill part setup
11. Select Axis Tab to Reorient the Axis
Explanation:The above steps are necessary to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. For placing and orienting the PRZ, the following steps are relevant:
1. Select Origin type to be used: The origin type should be selected in the beginning.
2. Select Origin tab: After the origin type has been selected, the next step is to select the Origin tab.
3. Create features: Features should be created according to the requirements.
4. Create Stock: Stock should be created according to the requirements.
5. Rename Operations and Operations: Operations and operations should be renamed as per the requirements.
6. Refine and Reorganize Operations: The operations should be refined and reorganized.
7. Generate tool paths: Tool paths should be generated for the milled part.
8. Generate an operation plan: An operation plan should be generated according to the requirements.
9. Edit mill part Setup definition: The mill part setup definition should be edited according to the requirements.
10. Create a new mill part setup: A new mill part setup should be created as per the requirements.
11. Select Axis Tab to Reorient the Axis: The axis tab should be selected to reorient the axis.
To know more about Stock visit:
brainly.com/question/31940696
#SPJ11
(a) A solid conical wooden cone (s=0.92), can just float upright with apex down. Denote the dimensions of the cone as R for its radius and H for its height. Determine the apex angle in degrees so that it can just float upright in water. (b) A solid right circular cylinder (s=0.82) is placed in oil(s=0.90). Can it float upright? Show calculations. The radius is R and the height is H. If it cannot float upright, determine the reduced height such that it can just float upright.
Given Data:S = 0.82 (Density of Solid)S₀ = 0.90 (Density of Oil)R (Radius)H (Height)Let us consider the case when the cylinder is fully submerged in oil. Hence, the buoyant force on the cylinder is equal to the weight of the oil displaced by the cylinder.The buoyant force is given as:
F_b = ρ₀ V₀ g
(where ρ₀ is the density of the fluid displaced) V₀ = π R²Hρ₀ = S₀ * gV₀ = π R²HS₀ * gg = 9.8 m/s²
Therefore, the buoyant force is F_b = S₀ π R²H * 9.8
The weight of the cylinder isW = S π R²H * 9.8
For the cylinder to float upright,F_b ≥ W.
Therefore, we get,S₀ π R²H * 9.8 ≥ S π R²H * 9.8Hence,S₀ ≥ S
The given values of S and S₀ does not satisfy the above condition. Hence, the cylinder will not float upright.Now, let us find the reduced height such that the cylinder can just float upright. Let the reduced height be h.
We have,S₀ π R²h * 9.8
= S π R²H * 9.8h
= H * S/S₀h
= 1.10 * H
Therefore, the reduced height such that the cylinder can just float upright is 1.10H.
To know more about buoyant force visit:
brainly.com/question/20165763
#SPJ4
FAST OLZZ
Simplify the following equation \[ F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \] Select one: a. \( 8+A^{\prime} \cdot C \) b. \( 8+A C C+B
The simplified expression is [tex]\[F=AB+A^{\prime} C+B \][/tex] Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]
The given expression is
[tex]\[F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \][/tex]
To simplify the given expression, use the De Morgan's law.
According to this law,
[tex]$$ \left( B^{\prime}+C^{\prime} \right) ^{\prime}=B\cdot C $$[/tex]
Therefore, the given expression can be written as
[tex]\[F=A \cdot B+A^{\prime} \cdot C+B C+A^{\prime} C^{\prime} \cdot B\][/tex]
Next, use the distributive law,
[tex]$$ F=A B+A^{\prime} C+B C+A^{\prime} C^{\prime} \cdot B $$$$ =AB+A^{\prime} C+B \cdot \left( 1+A^{\prime} C^{\prime} \right) $$$$ =AB+A^{\prime} C+B $$[/tex]
Therefore, the simplified expression is
[tex]\[F=AB+A^{\prime} C+B \][/tex]
Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]
To know more about expression, visit:
https://brainly.com/question/28170201
#SPJ11
1. In plain carbon steel and alloy steels, hardenability and weldability are considered to be opposite attributes. Why is this? In your discussion you should include: a) A description of hardenability (6) b) Basic welding process and information on the developing microstructure within the parent material (4,6) c) Hardenability versus weldability (4)
The opposite nature of hardenability and weldability in plain carbon steel and alloy steels arises from the fact that high hardenability leads to increased hardness depth and susceptibility to brittle microstructures, while weldability requires a controlled cooling rate to avoid cracking and maintain desired mechanical properties in the HAZ.
In plain carbon steel and alloy steels, hardenability and weldability are considered to be opposite attributes due for the following reasons:
a) Hardenability: Hardenability refers to the ability of a steel to be hardened by heat treatment, typically through processes like quenching and tempering. It is a measure of how deep and uniform the hardness can be achieved in the steel. High hardenability means that the steel can be hardened to a greater depth, while low hardenability means that the hardness penetration is limited.
b) Welding Process and Microstructure: Welding involves the fusion of parent materials using heat and sometimes the addition of filler material. During welding, the base metal experiences a localized heat input, followed by rapid cooling. This rapid cooling leads to the formation of a heat-affected zone (HAZ) around the weld, where the microstructure and mechanical properties of the base metal can be altered.
c) Hardenability vs. Weldability: The relationship between hardenability and weldability is often considered a trade-off. Steels with high hardenability tend to have lower weldability due to the increased risk of cracking and reduced toughness in the HAZ. On the other hand, steels with low hardenability generally exhibit better weldability as they are less prone to the formation of hardened microstructures during welding.
To know more about hardenability please refer:
https://brainly.com/question/13002377
#SPJ11
True/fase
4. Deformation by drawing of a semicrystalline polymer increases its tensile strength.
5.Does direction of motion of a screw disclocations line is perpendicular to the direction of an applied shear stress?
6.How cold-working effects on 0.2% offself yield strength?
4. False. Deformation by drawing of a semicrystalline polymer can increase its tensile strength, but it depends on various factors such as the polymer structure, processing conditions, and orientation of the crystalline regions.
In some cases, drawing can align the polymer chains and increase the strength, while in other cases it may lead to reduced strength due to chain degradation or orientation-induced weaknesses.
5. True. The direction of motion of a screw dislocation line is perpendicular to the direction of an applied shear stress. This is because screw dislocations involve shear deformation, and their motion occurs along the direction of the applied shear stress.
6. Cold working generally increases the 0.2% offset yield strength of a material. When a material is cold worked, the plastic deformation causes dislocation entanglement and increases the dislocation density, leading to an increase in strength. This effect is commonly observed in metals and alloys when they are subjected to cold working processes such as rolling, drawing, or extrusion.
To learn more about DEFORMATION click here;
/brainly.com/question/13039704
#SPJ11
Two arrays, one of length 4 (18, 7, 22, 35) and the other of length 3 (9, 11, (12) 2) are inputs to an add function of LabVIEV. Show these and the resulting output.
Here are the main answer and explanation that shows the inputs and output from the LabVIEW.
Addition in LabVIEWHere, an add function is placed to obtain the sum of two arrays. This function is placed in the block diagram and not in the front panel. Since it does not display anything in the front panel.1. Here is the front panel. It shows the input arrays.
Here is the block diagram. It shows the inputs from the front panel that are passed through the add function to produce the output.3. Here is the final output. It shows the sum of two arrays in the form of a new array. Note: The resultant array has 4 elements. The sum of the first and the third elements of the first array with the first element of the second array, the sum of the second and the fourth elements of the first array with the second element of the second array,
To know more about LabVIEW visit:-
https://brainly.com/question/29751884
#SPJ11