Problem 3: In a school, all pupils play either Hockey or Football or both. 400 play Football, 150 play Hockey, and 130 play both the games. Find (i) The number of pupils who play Football only, (ii) T

Answers

Answer 1

(i) The number of pupils who play Football only is 270.

(ii) The total number of pupils who play either Football or Hockey is 420

To solve this problem, we can use the principle of inclusion-exclusion.

Let's define the following:

F = Number of pupils who play Football

H = Number of pupils who play Hockey

Given information:

F = 400 (Number of pupils who play Football)

H = 150 (Number of pupils who play Hockey)

Number of pupils who play both Football and Hockey = 130

(i) Number of pupils who play Football only:

This can be calculated by subtracting the number of pupils who play both Football and Hockey from the total number of pupils who play Football:

Number of pupils who play Football only = F - (Number of pupils who play both Football and Hockey) = 400 - 130 = 270.

(ii) Total number of pupils who play either Football or Hockey:

To find this, we need to add the number of pupils who play Football and the number of pupils who play Hockey and then subtract the number of pupils who play both Football and Hockey to avoid double counting:

Total number of pupils who play either Football or Hockey = F + H - (Number of pupils who play both Football and Hockey) = 400 + 150 - 130 = 420.

So, the answers to the questions are:

(i) The number of pupils who play Football only is 270.

(ii) The total number of pupils who play either Football or Hockey is 420.

Learn more about number from

https://brainly.com/question/27894163

#SPJ11


Related Questions

Question Given that sin(0) = 2√13 13, and is in Quadrant IV, what is cos(20)? Provide your answer below:

Answers

Given that sin(θ) = 2√13/13 and θ is in Quadrant IV. We need to find the value of cos(θ) = ?In Quadrant IV, both x and y-coordinates are negative.

Also, we know that sin(θ) = 2√13/13Substituting these values in the formula,

sin²θ + cos²θ = 1sin²θ + cos²θ

= 1cos²θ

= 1 - sin²θcos²θ

= 1 - (2√13/13)²cos²θ

= 1 - (4·13) / (13²)cos²θ

= 1 - (4/169)cos²θ

= (169 - 4)/169cos²θ

= 165/169

Taking the square root on both sides,cosθ = ±√165/169Since θ is in Quadrant IV, we know that the cosine function is positive there.

Hence,cosθ = √165/169

= (1/13)√165*13

= (1/13)√2145cosθ

= (1/13)√2145

Therefore, cos(θ) = (1/13)√2145

To know more about square root  , visit;

https://brainly.com/question/428672

#SPJ11

Find the vertical, horizontal, and oblique asymptotes, if any, for the following rational function. 17x R(x)= x+5 Find the vertical asymptotes. Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. OA. The function has one vertical asymptote, (Type an equation. Use integers or fractions for any numbers in the equation.) OB. The function has two vertical asymptotes. The leftmost asymptote is and the rightmost asymptote is (Type equations. Use integers or fractions for any numbers in the equations.) OC. The function has no vertical asymptote. Find the horizontal asymptotes. Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. OA. The function has one horizontal asymptote, (Type an equation. Use integers or fractions for any numbers in the equation.) GELD OB. The function has two horizontal asymptotes. The top asymptote is and the bottom asymptote is (Type equations. Use integers or fractions for any numbers in the equations.) OC. The function has no horizontal asymptote. Find the oblique asymptotes. Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. OA. The function has one oblique asymptote, (Type an equation. Use integers or fractions for any numbers in the equation.) OB. The function has two oblique asymptotes. The oblique asymptote with negative slope is (Type equations. Use integers or fractions for any numbers in the equations.) C. The function has no oblique asymptote. and the oblique asymptote with positive slope is.

Answers

The rational function R(x) = 17x/(x+5) has one vertical asymptote at x = -5, no horizontal asymptote, and no oblique asymptote.

To determine the vertical asymptotes of the rational function, we need to find the values of x that make the denominator equal to zero. In this case, the denominator is x+5, so the vertical asymptote occurs when x+5 = 0, which gives x = -5. Therefore, the function has one vertical asymptote at x = -5.

To find the horizontal asymptotes, we examine the behavior of the function as x approaches positive and negative infinity. For this rational function, the degree of the numerator is 1 and the degree of the denominator is also 1. Since the degrees are the same, we divide the leading coefficients of the numerator and denominator to determine the horizontal asymptote.

The leading coefficient of the numerator is 17 and the leading coefficient of the denominator is 1. Thus, the horizontal asymptote is given by y = 17/1, which simplifies to y = 17.

Therefore, the function has one horizontal asymptote at y = 17.

As for oblique asymptotes, they occur when the degree of the numerator is exactly one greater than the degree of the denominator. In this case, the degrees are the same, so there are no oblique asymptotes.

To summarize, the function R(x) = 17x/(x+5) has one vertical asymptote at x = -5, one horizontal asymptote at y = 17, and no oblique asymptotes.

Learn more about rational function here:

https://brainly.com/question/29098201

#SPJ11

Arianna invests $5600 in a new savings account which earns 5.3%
annual interest, compounded semi-annually. What will be the value
of her investment after 9 years? Round to the nearest cent

Answers

The value of Arianna's investment after 9 years, with an initial investment of $5600 and a 5.3% annual interest rate compounded semi-annually, will be approximately $8599.97 when rounded to the nearest cent.

To calculate the value of Arianna's investment after 9 years, we can use the formula for compound interest:

A = P(1 + r/n)^(nt)

Where:

A = Final amount

P = Principal amount (initial investment)

r = Annual interest rate (in decimal form)

n = Number of times interest is compounded per year

t = Number of years

Plugging in the values:

P = $5600

r = 5.3% = 0.053

n = 2 (semi-annual compounding)

t = 9

A = $5600(1 + 0.053/2)^(2*9)

A ≈ $5600(1.0265)^18

A ≈ $5600(1.533732555)

A ≈ $8599.97

Therefore, the value of Arianna's investment after 9 years will be approximately $8599.97 when rounded to the nearest cent.

To know more about initial investment refer here:

https://brainly.com/question/31635721#

#SPJ11

Find the equation of this line. \[ y=\frac{[?]}{[} x+ \]

Answers

The equation of the line in the given form, y = mx + c, is y = [?]x + [?].slope and y-intercept, we cannot determine the equation of the line.

To find the equation of a line in the form y = mx + c, we need the slope (m) and the y-intercept (c). However, since the values for the slope and y-intercept are not provided in the question, we cannot determine the equation without additional information.

Without knowing the values for slope and y-intercept, we cannot determine the equation of the line.

To know more about  slope follow the link:

https://brainly.com/question/30097715

#SPJ11

Answer:

It's y=-3x+7. Hope this helps!

Given the function f(n) defined as f(0) = 1. f(n) = f(n-1) - 1 for n ≥ 1. Choose the correct formula for f(n) when n is a nonnegative integer. a. f(n) = n + 1 b. f(n) = 2n + 1 c. f(n)= n +1 d. f(n) = n-1

Answers

The correct formula for f(n), when n is a nonnegative integer, is f(n) = n + 1.

We are given the function f(n) defined recursively. The base case is f(0) = 1. For n ≥ 1, the function is defined as f(n) = f(n-1) - 1.

To find the formula for f(n), we can observe the pattern in the recursive definition. Starting from the base case f(0) = 1, we can apply the recursive definition repeatedly:

f(1) = f(0) - 1 = 1 - 1 = 0

f(2) = f(1) - 1 = 0 - 1 = -1

f(3) = f(2) - 1 = -1 - 1 = -2

...

From this pattern, we can see that f(n) is obtained by subtracting n from the previous term. This leads us to the formula f(n) = n + 1.

Therefore, the correct formula for f(n) when n is a nonnegative integer is f(n) = n + 1, option (a).

Learn more about  nonnegative integer here:

https://brainly.com/question/32229709

#SPJ11

Find the slope of the line that is (a) parallel and (b) perpendicular to the line through the pair of points. (-8,-2) and (1,2) (a) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The slope of the parallel line is (Type an integer or a simplified fraction.) B. The slope of the parallel line is undefined.

Answers

a) The slope of line that passes through two points 4/9.

b) The slope of the perpendicular line is -9/4.

Given, the two points are (-8,-2) and (1,2).

To find the slope of the line that is (a) parallel and (b) perpendicular to the line through the pair of points.

Use the formula to find the slope of a line that passes through two points given below:

Slope, m = (y2 - y1)/(x2 - x1)

Where, (x1, y1) and (x2, y2) are two points.

For the given points (-8,-2) and (1,2), the slope is:

m = (2 - (-2))/(1 - (-8))

= 4/9

(a) The slope of the parallel line is also 4/9.The slope of any two parallel lines are equal to each other.

Hence, the slope of the parallel line is 4/9.

(b) The slope of the perpendicular line is the negative reciprocal of the slope of the given line through the pair of points.

That is, the slope of the perpendicular line is:-

(1)/(m) = -(1)/(4/9)

= -9/4

Know more about the slope of line

https://brainly.com/question/16949303

#SPJ11

The number of cases of a contagious disease ( N ) in a region is modelled by the N(t) = 20+2e^0.25t, where N(t) is the number of cases at time (t) (in days) when no controls are put in place.
Determine ∫030(20+2e^0.25t)dt and interpret this value in the context of the question.

Answers

The interpretation gives us the total number of cases that would occur during those 30 days under the given disease model.

The integral ∫₀³⁰ (20 + 2e^(0.25t)) dt represents the area under the curve of the function N(t) = 20 + 2e^(0.25t) over the interval from 0 to 30. This integral calculates the total accumulation of cases over the 30-day period.

To evaluate the integral, we can break it down into two parts: ∫₀³⁰ 20 dt and ∫₀³⁰ 2e^(0.25t) dt. The integral of a constant (20 in this case) with respect to t is simply the constant multiplied by the interval length, which gives us 20 * (30 - 0) = 600.

For the second part, we can integrate the exponential function using the rule ∫e^(ax) dx = (1/a)e^(ax), where a = 0.25. Evaluating this integral from 0 to 30 gives us (1/0.25)(e^(0.25 * 30) - e^(0.25 * 0)) = 4(e^(7.5) - 1).

Adding the results of the two integrals, we get the final value of ∫₀³⁰ (20 + 2e^(0.25t)) dt = 600 + 4(e^(7.5) - 1). This value represents the total number of cases that would accumulate over the 30-day period based on the given disease model.

Learn more about integral here:

https://brainly.com/question/31433890

#SPJ11

4. What should be the minimum yield value of the key material for the key to smoothly transmit the torque of the shaft? However, the yield stress (Oc) of the shaft is 36kg/m². the diameter of the shalts 80mm, and the safety factor is 2. The dimensions of the key are 20x20x120mm De 2T

Answers

The minimum yield value of the key material should be determined based on the yield stress of the shaft, which is 36 kg/m², the dimensions of the key, and the safety factor of 2.

To ensure that the key smoothly transmits the torque of the shaft, it is essential to choose a key material with a minimum yield value that can withstand the applied forces without exceeding the yield stress of the shaft.

The dimensions of the key given are 20x20x120 mm. To calculate the torque transmitted by the key, we need to consider the dimensions and the applied forces. However, the specific values for the applied forces are not provided in the question.

The safety factor of 2 indicates that the material should have a yield strength at least twice the expected yield stress on the key. This ensures a sufficient margin of safety to account for potential variations in the applied forces and other factors.

To determine the minimum yield value of the key material, we would need additional information such as the expected torque or the applied forces. With that information, we could calculate the maximum stress on the key and compare it to the yield stress of the shaft, considering the safety factor.

Please note that without the specific values for the applied forces or torque, we cannot provide a precise answer regarding the minimum yield value of the key material.

Learn more about value

brainly.com/question/1578158

#SPJ11

Solve 2cos?2 + cosa
- 1 = 0 for the exact x value(s) over 0 < 2 < 2T.
Refer to image

Answers

The solution of `2cos²? + cos? - 1 = 0` for the exact x value(s) over `0 < 2 < 2T` are given by `? = π/3`, `? = 5π/3`, `? = π`, and `? = 2π`.

Given, `2cos²? + cos? - 1 = 0`.Let’s solve this equation.Substitute, `cos? = t`.So, the given equation becomes,`2t² + t - 1 = 0.

Now, Let’s solve this quadratic equation by using the quadratic formula, which is given by;

If the quadratic equation is given in the form of `ax² + bx + c = 0`, then the solution of this quadratic equation is given by;`x = (-b ± sqrt(b² - 4ac)) / 2a

Here, the quadratic equation is `2t² + t - 1 = 0`.So, `a = 2, b = 1 and c = -1.

Now, substitute these values in the quadratic formula.`t = (-1 ± sqrt(1² - 4(2)(-1))) / 2(2)`=> `t = (-1 ± sqrt(9)) / 4`=> `t = (-1 ± 3) / 4.

Now, we have two solutions. Let's evaluate them separately.`t₁ = (-1 + 3) / 4 = 1/2` and `t₂ = (-1 - 3) / 4 = -1.

Now, we have to substitute the value of `t` to get the values of `cos ?`

For, `t₁ = 1/2`, `cos ? = t = 1/2` (since `0 < 2 < 2T` and `cos` is positive in the first and fourth quadrant).

So, `? = π/3` or `? = 5π/3`For, `t₂ = -1`, `cos ? = t = -1` (since `0 < 2 < 2T` and `cos` is negative in the second and third quadrant)So, `? = π` or `? = 2π.

Therefore, the main answers for the given equation `2cos²? + cos? - 1 = 0` over `0 < 2 < 2T` are `? = π/3`, `? = 5π/3`, `? = π`, and `? = 2π`.

So, the solution of `2cos²? + cos? - 1 = 0` for the exact x value(s) over `0 < 2 < 2T` are given by `? = π/3`, `? = 5π/3`, `? = π`, and `? = 2π`.

To know more about quadratic equation visit:

brainly.com/question/30098550

#SPJ11

In 2005, Bhutan had a population of about 2200000 and an annual growth factor of 1.0211. Let f(t) be the population t years after 2005 assuming growth continues at this rate. (a) Write a formula for f(t). P = f(t) = (b) According to your formula, what will the population of Bhutan be in 2008?

Answers

a) An exponential formula for the population of Bhutan after t years is f(t) = 2,200,000 x 1.0211^t

b) According to the formula, the population of Bhutan in 2008 will be 2,342,219.

What is an exponential formula?

An exponential formula is an equation based on a constant periodic growth or decay.

The exponential equation is also known as an exponential function.

Bhutan's population in 2005 = 2,200,000

Annual growth factor = 1.0211

Let the population after 2005 in t years = f(t)

Formula:

f(t) = 2,200,000 x 1.0211^t

The number of years between 2008 and 2005 = 3 years

The population in 2008 = f(3)

f(3) = 2,200,000 x 1.0211³

f(3) = 2,342,219

Learn more about exponential functions at https://brainly.com/question/2456547.

#SPJ4

please solve
If f(x) = 2x³ - 3x² + 7x-8 and g(x) = 3, find (fog)(x) and (gof)(x). What is (fog)(x)? (fog)(x) =

Answers

Given the functions f(x) = 2x³ - 3x² + 7x - 8 and g(x) = 3, we can find (fog)(x) by substituting g(x) into f(x). (fog)(x) = 2(3)³ - 3(3)² + 7(3) - 8 = 54 - 27 + 21 - 8 = 40.

To find (fog)(x), we substitute g(x) into f(x). Since g(x) = 3, we replace x in f(x) with 3. Thus, (fog)(x) = f(g(x)) = f(3). Evaluating f(3) gives us (fog)(x) = 2(3)³ - 3(3)² + 7(3) - 8 = 54 - 27 + 21 - 8 = 40.

The composition (fog)(x) represents the result of applying the function g(x) as the input to the function f(x). In this case, g(x) is a constant function, g(x) = 3, meaning that regardless of the input x, the output of g(x) remains constant at 3.

When we substitute this constant value into f(x), the resulting expression simplifies to a single constant value, which in this case is 40. Therefore, (fog)(x) = 40.

In conclusion, (fog)(x) is a constant function with a value of 40, indicating that the composition of f(x) and g(x) results in a constant output.

Learn more about functions here:

https://brainly.com/question/31062578

#SPJ11

PLEASE HELP. brainliest answer will be marked!!!!

Answers

a. The equation in slope-intercept form is y = -2x + 2.

b. A table for the equation is shown below.

c. A graph of the points with a line for the inequality is shown below.

d. The solution area for the inequality has been shaded.

e. Yes, the test point (0, 0) satisfy the conditions of the original inequality.

What is the slope-intercept form?

In Mathematics and Geometry, the slope-intercept form of the equation of a straight line is given by this mathematical equation;

y = mx + b

Where:

m represent the slope.x and y are the points.b represent the y-intercept.

Part a.

In this exercise, we would change each of the inequality to an equation in slope-intercept form by replacing the inequality symbols with an equal sign as follows;

2x + y ≤ 2

y = -2x + 2

Part b.

Next, we would complete the table for each equation based on the given x-values as follows;

x       -1        0        1

y        4        2       0

Part c.

In this scenario, we would use an online graphing tool to plot the inequality as shown in the graph attached below.

Part d.

The solution area for this inequality y ≤ -2x + 2 has been shaded and a possible solution is (-1, 1).

Part e.

In conclusion, we would use the test point (0, 0) to evaluate the original inequality.

2x + y ≤ 2

2(0) + 0 ≤ 2

0 ≤ 2 (True).

Read more on inequality here: brainly.com/question/10413737

#SPJ1

Stan and Kendra's children are currently four and two years old. When their older child turns 18, they want to have saved up enough money so that at the beginning of each year they can withdraw $20,000 for the first two years, $40,000 for the next two years, and $20,000 for the final two years to subsidize their children's cost of postsecondary education. The annuity earns 4.75% compounded semi-annually when paying out and 6.5% compounded monthly when they are contributing toward it. Starting today, what beginning-of-quarter payments must they deposit until their oldest reaches 18 years of age in order to accumulate the needed funds? using BA II Plus calculator.

Answers

Stan and Kendra can determine the necessary beginning-of-quarter payment amounts they need to deposit in order to accumulate the funds required for their children's education expenses.

Setting up the Calculation: Input the relevant data into the BA II Plus calculator. Set the calculator to financial mode and adjust the settings for semi-annual compounding when paying out and monthly compounding when contributing.

Calculate the Required Savings: Use the present value of an annuity formula to determine the beginning-of-quarter payment amounts. Set the time period to six years, the interest rate to 6.5% compounded monthly, and the future value to the total amount needed for education expenses.

Adjusting for the Withdrawals: Since the payments are withdrawn at the beginning of each year, adjust the calculated payment amounts by factoring in the semi-annual interest rate of 4.75% when paying out. This adjustment accounts for the interest earned during the withdrawal period.

Repeat the Calculation: Repeat the calculation for each withdrawal period, considering the changing payment amounts. Calculate the payment required for the $20,000 withdrawals, then for the $40,000 withdrawals, and finally for the last $20,000 withdrawals.

Learn more about interests here : brainly.com/question/30955042

#SPJ11

determine whether the following statement is true or false. the t distribution is similar to the standard normal distribution, but is more spread out. true false

Answers

The statement is true. the t distribution is similar to the standard normal distribution, but is more spread out.

In probability and statistics, Student's t-distribution {\displaystyle t_{\nu }} is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.

The t-distribution is similar to the standard normal distribution, but it has heavier tails and is more spread out. The t-distribution has a larger variance compared to the standard normal distribution, which means it has more variability in its values. This increased spread allows for greater flexibility in capturing the uncertainty associated with smaller sample sizes when estimating population parameters.

Know more about t distribution here:

https://brainly.com/question/32675925

#SPJ11

(B) In the geometric sequence b1,b2,b3,b4,b5,b6,b7,b8,b9,b10 b3/b1=4 and b10=64. Find b2.

Answers

In the given geometric sequence, the ratio between the third and first terms is 4, and the tenth term is 64. The value of b2 in both cases is 1/4.

Let's assume the first term, b1, of the geometric sequence to be 'a', and the common ratio between consecutive terms to be 'r'. We are given that b3/b1 = 4, which means (a * r^2) / a = 4. Simplifying this, we get r^2 = 4, and taking the square root on both sides, we find that r = 2 or -2.

Now, we know that b10 = 64, which can be expressed as ar^9 = 64. Substituting the value of r, we have two possibilities: a * 2^9 = 64 or a * (-2)^9 = 64. Solving the equations, we find a = 1/8 for r = 2 and a = -1/8 for r = -2.

Since b2 is the second term of the sequence, we can express it as ar, where a is the first term and r is the common ratio. Substituting the values of a and r, we get b2 = (1/8) * 2 = 1/4 for r = 2, and b2 = (-1/8) * (-2) = 1/4 for r = -2. Therefore, the value of b2 in both cases is 1/4.

Learn more about sequence here:

https://brainly.com/question/30262438

#SPJ11

If 5000 dollars is invested in a bank account at an interest rate of 7 per cent per year, compounded continuously. How many vears will it take for your balance to reach 20000 dollars? NOTE: Give your answer to the nearest tenth of a year.

Answers

It will take approximately 11.5 years for the balance to reach $20,000.

To find the time it takes for the balance to reach $20,000, we can use the formula for continuous compound interest:

A = P * e^(rt)

Where:

A is the final amount

P is the principal amount (initial investment)

e is the base of the natural logarithm (approximately 2.71828)

r is the interest rate (in decimal form)

t is the time (in years)

In this case, the principal amount (P) is $5000, the interest rate (r) is 7% per year (or 0.07 in decimal form), and we want to find the time (t) it takes for the balance to reach $20,000.

Substituting the given values into the formula, we have:

20000 = 5000 * e^(0.07t)

Dividing both sides of the equation by 5000:

4 = e^(0.07t)

To isolate the variable, we take the natural logarithm (ln) of both sides:

ln(4) = ln(e^(0.07t))

Using the property of logarithms, ln(e^x) = x:

ln(4) = 0.07t

Dividing both sides by 0.07:

t = ln(4) / 0.07 ≈ 11.527

Therefore, it will take approximately 11.5 years for the balance to reach $20,000.

Continuous compound interest is a mathematical model that assumes interest is continuously compounded over time. In reality, most banks compound interest either annually, semi-annually, quarterly, or monthly. Continuous compounding is a theoretical concept that allows us to calculate the growth of an investment over time without the limitations of specific compounding periods. In this case, the investment grows exponentially over time, and it takes approximately 11.5 years for the balance to reach $20,000.

To know more about balance, refer here:

https://brainly.com/question/27154367

#SPJ11

Find the integrals of Trigonometric Functions for below equation \[ \int \sin 3 x \cos 2 x d x \]

Answers

Given, we need to evaluate the integral of sin(3x)cos(2x) with respect to x.

Let's consider the below trigonometric formula to solve the given integral. sin (A + B) = sin A cos B + cos A sin Bsin(3x + 2x) = sin(3x)cos(2x) + cos(3x)sin(2x) ⇒ sin(3x)cos(2x) = sin(3x + 2x) - cos(3x)sin(2x)On integrating both sides with respect to x, we get∫[sin(3x)cos(2x)] dx = ∫[sin(3x + 2x) - cos(3x)sin(2x)] dx⇒ ∫[sin(3x)cos(2x)] dx = ∫[sin(3x)cos(2x + 2x) - cos(3x)sin(2x)] dx ⇒ ∫[sin(3x)cos(2x)] dx = ∫[sin(3x)(cos2x cos2x - sin2x sin2x) - cos(3x)sin(2x)] dx

Now, use the below trigonometric formulas to evaluate the given integral.cos 2x = 2 cos² x - 1sin 2x = 2 sin x cos x∫[sin(3x)cos(2x)] dx = ∫[sin3x (2 cos2x cos2x - 2 sin2x sin2x) - cos(3x) sin(2x)] dx∫[sin(3x)cos(2x)] dx = ∫[sin3x (2 cos² x - 1) - cos(3x) 2 sin x cos x] dxAfter solving the integral, the final answer will be as follows:∫[sin(3x)cos(2x)] dx = (-1/6) cos3x + (1/4) sin4x + C.Here, C is the constant of integration.

Thus, the integration of sin(3x)cos(2x) with respect to x is (-1/6) cos3x + (1/4) sin4x + C.We can solve this integral using the trigonometric formula of sin(A + B).

On solving, we get two new integrals that we can solve using the formula of sin 2x and cos 2x, respectively.After solving these integrals, we can add their result to get the final answer. So, we add the result of sin 2x and cos 2x integrals to get the solution of the sin 3x cos 2x integral.

The final solution is (-1/6) cos3x + (1/4) sin4x + C, where C is the constant of integration.

Therefore, we can solve the integral of sin(3x)cos(2x) with respect to x using the trigonometric formula of sin(A + B) and the formulas of sin 2x and cos 2x. The final answer of the integral is (-1/6) cos3x + (1/4) sin4x + C, where C is the constant of integration.

To know more about integral visit

https://brainly.com/question/31059545

#SPJ11

mutations & Combinations Mr. and Mrs. LaMarre want a family photograph taken with their 6 children. In how many ways can the family stand in a straight line if the parents must occupy the two middle positions in the line? 40320 720 06 1440 Prey Next A pet store wants to print a poster that has 2 of their puppies on it. There are 276 different groups of two that could be chosen for the poster. The number of puppies that the store has is (Record your answer in the numerical-response section below.) Your answer 0000 Prev Next >

Answers

There are 15 ways the family can stand in a straight line with the parents occupying the two middle positions.

To determine the number of ways the family can stand in a straight line with the parents occupying the two middle positions, we can consider the positions of the children first.

Since the parents must occupy the two middle positions, we have 4 positions remaining for the children. There are 6 children in total, so we need to select 4 of them to fill the remaining positions.

The number of ways to choose 4 children out of 6 can be calculated using the combination formula:

C(n, r) = n! / (r!(n - r)!)

where n is the total number of children (6 in this case), and r is the number of children to be selected (4 in this case).

Plugging in the values, we get:

C(6, 4) = 6! / (4!(6 - 4)!) = 6! / (4!2!) = (6 * 5 * 4!) / (4! * 2 * 1) = 30 / 2 = 15.

Therefore, there are 15 ways the family can stand in a straight line with the parents occupying the two middle positions.

Learn more about combination formula here:

https://brainly.com/question/13090387

#SPJ11

Find zw and W Leave your answers in polar form. z = 2 cos + i sin 8 π w=2(cos + i sin o 10 10 C What is the product? [cos+ i i sin (Simplify your answers. Use integers or fractions for any numbers in

Answers

Given that `z = 2 cos θ + 2i sin θ` and `w=2(cosφ + i sin θ)` and we need to find `zw` and `w/z` in polar form.In order to get the product `zw` we have to multiply both the given complex numbers. That is,zw = `2 cos θ + 2i sin θ` × `2(cosφ + i sin θ)`zw = `2 × 2(cos θ cosφ - sin θ sinφ) + 2i (sin θ cosφ + cos θ sinφ)`zw = `4(cos (θ + φ) + i sin (θ + φ))`zw = `4cis (θ + φ)`

Therefore, the product `zw` is `4 cis (θ + φ)`In order to get the quotient `w/z` we have to divide both the given complex numbers. That is,w/z = `2(cosφ + i sin φ)` / `2 cos θ + 2i sin θ`

Multiplying both numerator and denominator by conjugate of the denominator2(cosφ + i sin φ) × 2(cos θ - i sin θ) / `2 cos θ + 2i sin θ` × 2(cos θ - i sin θ)w/z = `(4cos θ cos φ + 4sin θ sin φ) + i (4sin θ cos φ - 4cos θ sin φ)` / `(2cos^2 θ + 2sin^2 θ)`w/z = `(2cos θ cos φ + 2sin θ sin φ) + i (2sin θ cos φ - 2cos θ sin φ)`w/z = `2(cos (θ - φ) + i sin (θ - φ))`

Therefore, the quotient `w/z` is `2 cis (θ - φ)`

Hence, the required product `zw` is `4 cis (θ + φ)` and the quotient `w/z` is `2 cis (θ - φ)`[tex]`w/z` is `2 cis (θ - φ)`[/tex]

To know more about complex numbers visit :

https://brainly.com/question/20566728

#SPJ11

Graph the quadratic function f(x)=x2−18x+80. Give the (a) vertex, (b) axis, (c) domain, and (d) range. Then determine (e) the largest open interval of the domain over which the function is increasing and (f) the largest open interval over which the function is decreasing.

Answers

The largest open interval over which the function is decreasing is (-∞, 9) ∪ (9, ∞).

The given quadratic function is f(x) = x² - 18x + 80. So, we need to determine (a) vertex, (b) axis, (c) domain, and (d) range and also (e) the largest open interval of the domain over which the function is increasing and (f) the largest open interval over which the function is decreasing.

Graph of the given quadratic function f(x) = x² - 18x + 80 is shown below:

Here, vertex = (h, k) is (9, -1),

axis of symmetry is x = h = 9. domain is all real numbers, i.e., (-∞, ∞) range is y ≤ k = -1. Now, we need to determine the largest open interval over which the function is increasing and decreasing.For that, we need to calculate the discriminant of the given quadratic function.

f(x) = x² - 18x + 80

a = 1, b = -18, and c = 80

D = b² - 4acD = (-18)² - 4(1)(80)

D = 324 - 320

D = 4

Since the discriminant D is positive, the quadratic function has two distinct real roots and the graph of the quadratic function intersects the x-axis at two distinct points. Thus, the quadratic function is increasing on the intervals (-∞, 9) and (9, ∞).

Therefore, the largest open interval of the domain over which the function is increasing is (-∞, 9) ∪ (9, ∞).

Similarly, the quadratic function is decreasing on the interval (9, ∞) and (−∞, 9).

Therefore, the largest open interval over which the function is decreasing is (-∞, 9) ∪ (9, ∞).

Learn more about quadratic function visit:

brainly.com/question/18958913

#SPJ11

Solve the problem. An airplane climbs at an angle of 11 ∘
at an average speed of 420mph. How long will it take for the pane tio rank its cruising altitude of 6.5mi ? Round to the nearest minute. 53 min 5 min 4 min 1 min

Answers

The airplane will take approximately 9 minutes to reach its cruising altitude of 6.5 miles.

To determine the time it takes for the airplane to reach its cruising altitude, we need to calculate the vertical distance traveled. The angle of climb, 11 degrees, represents the inclination of the airplane's path with respect to the horizontal. This inclination forms a right triangle with the vertical distance traveled as the opposite side and the horizontal distance as the adjacent side.

Using trigonometry, we can find the vertical distance traveled by multiplying the horizontal distance covered (which is the average speed multiplied by the time) by the sine of the angle of climb. The horizontal distance covered can be calculated by dividing the cruising altitude by the tangent of the angle of climb.

Let's perform the calculations. The tangent of 11 degrees is approximately 0.1989. Dividing the cruising altitude of 6.5 miles by the tangent gives us approximately 32.66 miles as the horizontal distance covered. Now, we can find the vertical distance traveled by multiplying 32.66 miles by the sine of 11 degrees, which is approximately 0.1916. This results in a vertical distance of approximately 6.25 miles.

To convert this vertical distance into time, we divide it by the average speed of the airplane, which is 420 mph. The result is approximately 0.0149 hours or approximately 0.8938 minutes. Rounding to the nearest minute, we find that the airplane will take approximately 9 minutes to reach its cruising altitude of 6.5 miles.

Learn more about inclination here:

https://brainly.com/question/29360090

#SPJ11

Find a unit vector u in the direction of v. Verify that ||u|| = 1. v = (11, 0) u= Need Help? Submit Answer . [-/6.66 Points] X Read It u= DETAILS LARPCALC11 6.3.044. 0/6 Submissions Used Find a unit vector u in the direction of V. Verify that ||u|| = 1. v = (-9, -2)

Answers

We have found the unit vector u in the direction of v and verified that ||u|| = 1. The values are: u = (-9/√85, -2/√85) and ||u|| = 1.

To find a unit vector u in the direction of v and to verify that ||u|| = 1, where v = (-9, -2), we can follow these steps:

Step 1: Calculate the magnitude of v. Magnitude of v is given by:

||v|| = √(v₁² + v₂²)

Substituting the given values, we get: ||v|| = √((-9)² + (-2)²) = √(81 + 4) = √85 Step 2: Find the unit vector u in the direction of v. Unit vector u in the direction of v is given by:

u = v/||v||

Substituting the given values, we get:

u = (-9/√85, -2/√85)

Step 3: Verify that ||u|| = 1.

The magnitude of a unit vector is always equal to 1.

Therefore, we need to calculate the magnitude of u using the formula:

||u|| = √(u₁² + u₂²) Substituting the calculated values, we get: ||u|| = √((-9/√85)² + (-2/√85)²) = √(81/85 + 4/85) = √(85/85) = 1

Hence, we have found the unit vector u in the direction of v and verified that ||u|| = 1. The values are: u = (-9/√85, -2/√85) and ||u|| = 1.

Learn more about unit vector visit:

brainly.com/question/28028700

#SPJ11

Use the procedures developed in this chapter to find the general solution of the differential equation. y 7y" + 10y' = 9 + 5 sin x y = CeS + Cze 2x + C + 9 1+ 10 35 sin x 32 45 COS 1 32 eBook

Answers

The general solution of the given differential equation is [tex]y = Ce^(-3x) + Cze^(2x) + 9/(1+10x) + (35/32)sin(x) + (45/32)cos(x).[/tex]

To find the general solution of the given differential equation, we will follow the procedures developed in this chapter. The differential equation is presented in the form y'' - 7y' + 10y = 9 + 5sin(x). In order to solve this equation, we will first find the complementary function and then determine the particular integral.

Complementary Function

The complementary function represents the homogeneous solution of the differential equation, which satisfies the equation when the right-hand side is equal to zero. To find the complementary function, we assume y = e^(rx) and substitute it into the differential equation. Solving the resulting characteristic equation [tex]r^2[/tex] - 7r + 10 = 0, we obtain the roots r = 3 and r = 4. Therefore, the complementary function is given by[tex]y_c = Ce^(3x) + C'e^(4x)[/tex], where C and C' are arbitrary constants.

Particular Integral

The particular integral represents a specific solution that satisfies the non-homogeneous part of the differential equation. In this case, the non-homogeneous part is 9 + 5sin(x). To find the particular integral, we use the method of undetermined coefficients. Since 9 is a constant term, we assume a constant solution, y_p1 = A. For the term 5sin(x), we assume a solution of the form y_p2 = Bsin(x) + Ccos(x). Substituting these solutions into the differential equation and solving for the coefficients, we find that A = 9/10, B = 35/32, and C = 45/32.

General Solution

The general solution of the differential equation is the sum of the complementary function and the particular integral. Therefore, the general solution is y = [tex]Ce^(3x) + C'e^(4x) + 9/(1+10x) + (35/32)sin(x) + (45/32)cos(x[/tex]), where C, C', and the coefficients A, B, and C are arbitrary constants.

Learn more about differential equation

brainly.com/question/32645495

#SPJ11

For the linear function y=f(x)=−1x+4: a. Find dx
df

at x=−6 f ′
(−6)= b. Find a formula for x=f −1
(y). f −1
(y)= c. Find dy
df −1

at y=f(−6) (f −1
) ′
(f(−6))=

Answers

For the linear function y=f(x)=-x+4, the calculations are as follows:

a. The derivative df/dx at x=-6 is -1.

b. The formula for the inverse function[tex]x=f^{(-1)}(y)[/tex] is x=4-y.

c. The derivative dy/[tex]df^{(-1)[/tex]at y=f(-6) is -1.

a. To find the derivative dx/df at x=-6, we differentiate the function f(x)=-x+4 with respect to x. The derivative of -x is -1, and the derivative of a constant (4 in this case) is 0. Therefore, the derivative df/dx at x=-6 is -1.

b. To find the formula for the inverse function [tex]x=f^{(-1)}(y)[/tex], we interchange x and y in the original function. So, y=-x+4 becomes x=4-y. Thus, the formula for the inverse function is x=4-y.

c. To find the derivative dy/[tex]df^{(-1)[/tex] at y=f(-6), we differentiate the inverse function x=4-y with respect to y. The derivative of 4 is 0, and the derivative of -y is -1. Therefore, the derivative dy/[tex]df^{(-1)[/tex] at y=f(-6) is -1.

To learn more about linear function visit:

brainly.com/question/29205018

#SPJ11

The lender tells Daniel that he can get a $210 loan for 10 days. Daniel will get his pay check in 10 days and will be able to pay
back the loan at that time: the $210 borrowed, plus a fee (interest) of $10.50, for a total of $220.50. Daniel knows that the 22.99%
APR on his credit card is really high, so he is reluctant to use it. What is the APR on the $210 from the short-term neighborhood
lender? What is the APY on the same loan? Would your friend be better off using his credit card or taking the short-term loan? (Round
answers to O decimal places, e.g. 25%.)

Answers

The APY on the same loan is approximately 1.825% (rounded to 3 decimal places).

To calculate the APR (Annual Percentage Rate) and APY (Annual Percentage Yield) on the $210 loan from the short-term neighborhood lender, we can use the provided information.

APR is the annualized interest rate on a loan, while APY takes into account compounding interest.

First, let's calculate the APR:

APR = (Interest / Principal) * (365 / Time)

Here, the principal is $210, the interest is $10.50, and the time is 10 days.

APR = (10.50 / 210) * (365 / 10)

APR ≈ 0.05 * 36.5

APR ≈ 1.825

Therefore, the APR on the $210 loan from the short-term neighborhood lender is approximately 1.825% (rounded to 3 decimal places).

Next, let's calculate the APY:

APY = (1 + r/n)^n - 1

Here, r is the interest rate (APR), and n is the number of compounding periods per year. Since the loan duration is 10 days, we assume there is only one compounding period in a year.

APY = (1 + 0.01825/1)^1 - 1

APY ≈ 0.01825

Therefore, the APY on the same loan is approximately 1.825% (rounded to 3 decimal places).

for such more question on Annual Percentage Rate

https://brainly.com/question/23806178

#SPJ8

Solve the system of equations by using the addition method. 2(x - y) = y + 6 2x - 6 = 3y a) {(0, -2)}. b) {(-2, 0)). c) {(-3,-4)}. d) {(-3, -6)}.

Answers

The solution to the system of equations is (-3,0), which matches option b).

Starting with the equation 2(x - y) = y + 6, we can simplify it by distributing the 2 on the left side:

2x - 2y = y + 6

Next, we can move all the y terms to one side and all the constant terms to the other:

2x - 3y = 6

Now we have our first equation in standard form.

Moving onto the second equation, 2x - 6 = 3y, we can rearrange it:

3y = 2x - 6

y = (2/3)x - 2

Now we have both equations in standard form, so we can use the addition method to solve for x and y.

Multiplying the first equation by 3, we get:

6x - 9y = 18

We can then add this to the second equation:

6x - 9y + 3y = 18

6x - 6y = 18

Dividing by 6, we get:

x - y = 3

Now that we know x - y = 3, we can substitute this into either of the original equations to solve for one of the variables. Let's use the second equation:

y = (2/3)x - 2

x - y = 3

x - ((2/3)x - 2) = 3

Multiplying through by 3 to eliminate fractions, we get:

3x - 2x + 6 = 9

x = 3

Substituting x = 3 into x - y = 3, we get:

3 - y = 3

y = 0

Therefore, the solution to the system of equations is (-3,0), which matches option b).

Learn more about equations here:

https://brainly.com/question/14686792

#SPJ11

8. A private company offered \( 9.5 \% \) yearly interest compounded monthly for the next 11 years. How much should you invest today to have \( \$ 380000 \) in your account after 11 years? (3 Marks)

Answers

The exact amount can be calculated using the formula for compound interest. The amount you should invest today to have $380,000 in your account after 11 years.

The formula for compound interest is given by [tex]\(A = P \left(1 + \frac{r}{n}\right)^{nt}\)[/tex], where (A) is the final amount, (P) is the principal amount (initial investment), (r) is the annual interest rate (in decimal form), (n) is the number of times interest is compounded per year, and (t) is the number of years.

In this case, the principal amount (P) is what we want to find. The final amount (A) is $380,000, the annual interest rate (r) is 9.5% (or 0.095 in decimal form), the number of times interest is compounded per year (n) is 12 (monthly compounding), and the number of years (t) is 11.

Substituting these values into the formula, we have:

[tex]\[380,000 = P \left(1 + \frac{0.095}{12}\right)^{(12 \cdot 11)}\][/tex]

To find the value of \(P\), we can rearrange the equation and solve for (P):

[tex]\[P = \frac{380,000}{\left(1 + \frac{0.095}{12}\right)^{(12 \cdot 11)}}\][/tex]

Evaluating this expression will give the amount you should invest today to have $380,000 in your account after 11 years.

To learn more about  compound interest visit:

brainly.com/question/30902883

#SPJ11

A company is experimenting with the pricing on a calculator. They currently average 200 daily sales at a price of $10. Research suggests that if they raise the price of the calculator by 50¢ that they will make 5 fewer sales. It costs the company $4 to manufacture a calculator. (You will need to use graphing technology) a) Find an equation for the revenue the company will make. b) Given that Profit = Revenue - Cost, find an equation for the profit the company can make. c) What price should the company charge for a calculator in order to maximize the profit? Rubric: Marks may be awarded as outlined below. This assignment is worth 7 marks. Use the following information to guide your work: • 2 marks for a revenue equation • 2 marks for a profit equation • 2 marks for showing work appropriately to find price to maximize profit • 1 mark for finding the price that will maximize profit consistent with work

Answers

Revenue equation: R = (200 - 5S) * (10 + 0.5S) ,Profit equation: Pf = (200 - 5S) * (10 + 0.5S) - 4 * (200 - 5S) ,To maximize profit, the company should charge $10.50 for a calculator.

To solve this problem, we can use the given information to create equations for revenue and profit, and then find the price that maximizes the profit.

Let's start with the revenue equation:

a) Revenue (R) is calculated by multiplying the number of sales (S) by the price per unit (P). Since we are given that the company currently averages 200 sales at a price of $10, we can use this information to write the revenue equation:

R = S * P

Given data:

S = 200

P = $10

R = 200 * $10

R = $2000

So, the revenue equation is R = 2000.

Next, let's move on to the profit equation:

b) Profit (Pf) is calculated by subtracting the cost per unit (C) from the revenue (R). We are given that the cost to manufacture a calculator is $4, so we can write the profit equation as:

Pf = R - C

Given data:C = $4

Pf = R - $4

Substituting the revenue equation R = 2000:

Pf = 2000 - $4

Pf = 2000 - 4

Pf = 1996

So, the profit equation is Pf = 1996

To find the price that maximizes the profit, we can use the concept of marginal revenue and marginal cost. The marginal revenue is the change in revenue resulting from a one-unit increase in sales, and the marginal cost is the change in cost resulting from a one-unit increase in sales.

Given that increasing the price by 50¢ results in 5 fewer sales, we can calculate the marginal revenue and marginal cost as follows:

Marginal revenue (MR) = (R + 0.50) - R

                  = 0.50

Marginal cost (MC) = (C + 0.50) - C

                = 0.50

To maximize profit, we set MR equal to MC:

0.50 = 0.50

Therefore, the price should be increased by 50¢ to maximize profit.

The new price would be $10.50.

By substituting this new price into the profit equation, we can calculate the new profit:

Pf = R - C

Pf = 200 * $10.50 - $4

Pf = $2100 - $4

Pf = $2096

So, the price that will maximize profit is $10.50, and the corresponding profit will be $2096.

Learn more about profit here: https://brainly.com/question/28856941

#SPJ11

Let A and B be two events. Suppose that P (4) = 0.30 and P (B) = 0.16. (a) Find P (Aor B), given that A and B are independent. (b) Find P (AorB), given that A and B are mutually exclusive.

Answers

(a) P(A or B) = 0.412 when A and B are independent, and (b) P(A or B) = 0.46 when A and B are mutually exclusive.

(a) To find P(A or B) given that A and B are independent events, we can use the formula for the union of independent events: P(A or B) = P(A) + P(B) - P(A) * P(B). Since A and B are independent, the probability of their intersection, P(A) * P(B), is equal to 0.30 * 0.16 = 0.048. Therefore, P(A or B) = P(A) + P(B) - P(A) * P(B) = 0.30 + 0.16 - 0.048 = 0.412.

(b) When A and B are mutually exclusive events, it means that they cannot occur at the same time. In this case, P(A) * P(B) = 0, since their intersection is empty. Therefore, the formula for the union of mutually exclusive events simplifies to P(A or B) = P(A) + P(B). Substituting the given probabilities, we have P(A or B) = 0.30 + 0.16 = 0.46.

Learn more about events here : brainly.com/question/15063914

#SPJ11

1. a. b. A vector-valued function of a curve is given by (1) (ii) (iii) (0) (ii) r(t)=-3sinti+3cost j+√71k for 051525 Determine the exact value of radius for r(t). Find [r•r*(]. [7 marks] [2 marks

Answers

[tex]\([r \cdot r^*] = 17\)[/tex]. The exact value of the radius for the vector-valued function[tex]\(r(t)\) is \(4\sqrt{5}\)[/tex].

To find the exact value of the radius for the vector-valued function [tex]\(r(t) = -3\sin(t)\mathbf{i} + 3\cos(t)\mathbf{j} + \sqrt{71}\mathbf{k}\)[/tex], we need to calculate the magnitude of the function at a given point.

The magnitude (or length) of a vector [tex]\(\mathbf{v} = \langle v_1, v_2, v_3 \rangle\)[/tex] is given by [tex]\(\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}\).[/tex]

In this case, we have [tex]\(r(t) = \langle -3\sin(t), 3\cos(t), \sqrt{71} \rangle\)[/tex]. To find the radius, we need to evaluate \(\|r(t)\|\).

\(\|r(t)\| = \sqrt{(-3\sin(t))^2 + (3\cos(t))^2 + (\sqrt{71})^2}\)

Simplifying further:

\(\|r(t)\| = \sqrt{9\sin^2(t) + 9\cos^2(t) + 71}\)

Since \(\sin^2(t) + \cos^2(t) = 1\), we can simplify the expression:

\(\|r(t)\| = \sqrt{9 + 71}\)

\(\|r(t)\| = \sqrt{80}\)

\(\|r(t)\| = 4\sqrt{5}\)

Therefore, the exact value of the radius for the vector-valued function \(r(t)\) is \(4\sqrt{5}\).

Now, let's find \([r \cdot r^*]\), which represents the dot product of the vector \(r(t)\) with its conjugate.

\([r \cdot r^*] = \langle -3\sin(t), 3\cos(t), \sqrt{71} \rangle \cdot \langle -3\sin(t), 3\cos(t), -\sqrt{71} \rangle\)

Expanding and simplifying:

\([r \cdot r^*] = (-3\sin(t))(-3\sin(t)) + (3\cos(t))(3\cos(t)) + (\sqrt{71})(-\sqrt{71})\)

\([r \cdot r^*] = 9\sin^2(t) + 9\cos^2(t) - 71\)

Since \(\sin^2(t) + \cos^2(t) = 1\), we can simplify further:

\([r \cdot r^*] = 9 + 9 - 71\)

\([r \cdot r^*] = 17\)

Therefore, \([r \cdot r^*] = 17\).

(Note: The notation used for the dot product is typically[tex]\(\mathbf{u} \cdot \mathbf{v}\)[/tex], but since the question specifically asks for [tex]\([r \cdot r^*]\)[/tex], we use that notation instead.)

Learn more about radius here

https://brainly.com/question/24375372

#SPJ11

Other Questions
D 2 .118 A designer, wanting to achieve a stable gain of 100 V/V with a 3-dB frequency above 5MHz, considers her choice of amplifier topologies. What unity-gain frequency would a single operational amplifier require to satisfy her need? Unfortunately, the best available amplifier has an f t of 50MHz. How many such amplifiers connected in a cascade of identical noninverting stages would she need to achieve her goal? What is the 3-dB frequency of each stage? What is the overall 3-dB frequency? 1. Explain what is the process of apoptosis, what is itsimportance and what is the role of caspases in this2. Describe the different types of cell junctions. PLEASE SHOW WORK PLEASE !!!! need helpQuestion 7 Calculate the pH of 0.81 M Mg(OH). Show your work to earn points. Use the editor to format your answer Question 8 Calculate the pH of 0.27 M solution of the pyridine (CsHsN; K=1.7 x 10%) The objectives these and those should be used only with what? How would you figure the following problem?Jim Rognowski wants to invest some money now to buy a new tractor in the future. If he wants to have $275,000 available in 7 years, how much does he need to invest now in a CD paying 4.25% interest compound monthly? Find the standard matricies A and A for T=T2T1 and T=T1T2 if T1:R2R3,T(x,y)=(x+2y,yx,2x3y)T2:R3R2,T(x,y,z)=(xy,zx) A circular duct has a diameter of 0.74 m, determine its equivalent width and height of rectangularduct with aspect ratio of 5 in m.A) 0.222 x1.11B) 2.22 x0.444C) 0.444 x 2.22D) 1.11 x0.222 Describe Obesity , Obesity in Canada. Its causes ,effects and its solutions . Write it in about 1000-1200 words . Don't copy anything from internet and write it in your own words.Copying from internet marked as plagirized content. Thank you (iii) What would be the effect on the retention time and order of eluting if the \( C_{18} \) column is substituted with a -CN column? [3 marks] Design Problem:Let us assume you are working on a composite design and manufacturing company, and you are asked to design a structural support, made of unidirectional fiber reinforced epoxy composite, having 10 ft long and round cross section.The design constraints are the following:1. If a force of 500 ls applied, it should stretch to no more than 0.1 in.2. The stress acting on the support need to be < the yield strength of the epoxy material, which is 12,000 psi.3. If the fibers break, the support need to stretch an additional amount but may not fracture in a catastrophic manner.Assume the epoxy material costs ~ 0.80/b and has a Young's modulus of 500,000 psi and a density of 0.0451 b/in3. write at least 200 words on human body regions and why do wedivide the human body into different regions? Muth detects the original methylated DNA in which of the following repair mechanisms?a.Photo-reactivationb. Mismatchc. All of the answersd. Base excision A mutation that changes a GC base pair to AT is a(n): 1) synonymous mutation. 2) transition. 3) transversion, 4) missense mutation. 5) induced mutation. microcontroller 18f452write a subroutine that rea PortB(B0:B7)and store the secound complement of port-B in a file registarcalled scound-Complement Not (2nd comp = 1st comp+1) Potential output is the maximum level of overall production that an economy can achieve: Group of answer choices temporarily during a time of peace. temporarily during a time of war. when 100 percent of the labor force is employed. when the economy is at the target rate of unemployment and the target rate of capacity utilization. 3-The thermal efficiency of the cycle (%) is: 4-The mass flow rate of the steam (kg/s) is: Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 100 MW. Steam enters the high- pressure turbine at 15 MPa and 550C and the low-pressure turbine at 4 MPa and 550C. Steam leaves the condenser as a saturated liquid at a pressure of 15 kPa. 3 points The enthalpy at exit of low pressure turbine (kJ/kg) is: a. 4423 b. 4234 c. 3244 d. 2344 Why are the velocity gradients inside the boundary layer so large? Tell the Difference between Laminar Boundary Layer and Turbulence Boundary Layer. Which of these apply to/involved in voluntary saccades but not smooth pursuit eye movements? graded firing pattern of premotor neurons frontal eye field pons conjugate eye movements ballistic eye move Find a diagonalizing matrix P for the given matrix[ -1 2 -1 ]3. [ 2 -1 2 ][ 2 -2 3 ][ 5 -2 2]4. [ 2 1 2][ -2 2 1] Within the context of the current VUCA environment, examine thestrategic nature of HRD in organisations.