Solution :
Cost
Destination Destination Destination Maximum supply
Origin 1 5 7 600
Origin 2 10 10 800
15, for > 200 15, for > 200
Demand 500 700
Variables
Destination 1 2
Origin 1 [tex]$X_1$[/tex] [tex]$$X_2[/tex]
Origin 2 [tex]$X_3$[/tex] [tex]$$X_4[/tex]
Constraints : [tex]$X_1$[/tex], [tex]$$X_2[/tex], [tex]$X_3$[/tex], [tex]$$X_4[/tex] ≥ 0
Supply : [tex]$X_1$[/tex] + [tex]$$X_2[/tex] ≤ 600
[tex]$X_3$[/tex] + [tex]$$X_4[/tex] ≤ 800
Demand : [tex]$X_1$[/tex] + [tex]$$X_3[/tex] ≥ 500
[tex]$X_2$[/tex] + [tex]$$X_4[/tex] ≥ 700
Objective function :
Min z = [tex]$5X_1+7X_2+10X_3+10X_4, \ (if \ X_3, X_4 \leq 200)$[/tex]
[tex]$=5X_1+7X_2+(10\times 200)+(X_3-200)15+(10 \times 200)+(X_4-200 )\times 15 , \ \ (\text{else})$[/tex]
Costs :
Destination 1 Destination 2
Origin 1 5 7
Origin 2 10 10
15 15
Variables :
[tex]$X_1$[/tex] [tex]$$X_2[/tex]
300 300
200 400
[tex]$X_3$[/tex] [tex]$$X_4[/tex]
Objective function : Min z = 10600
Constraints:
Supply 600 ≤ 600
600 ≤ 800
Demand 500 ≥ 500
700 ≥ 500
Therefore, the total cost is 10,600.
Assuming you determine the required section modulus of a wide flange beam is 200 in3, determine the lightest beam possible that will satisfy this condition.
Answer:
W18 * 106
Explanation:
Given that the section modulus of the wide flange beam is 200 in^3 the lightest beam possible that can satisfy the section modulus must have a section modulus ≥ 200 in^3. also the value of the section modulus must be approximately closest to 200in^3
From wide flange Beam table ( showing the section modulus )
The beam that can satisfy the condition is W18 × 106 because its section modulus ( s ) = 204 in^3
The term variation describes the degree to which an object or idea differs from others of the same type or from a standard.
a. True
b. False
In a tension test of steel, the ultimate load was 13,100 lb and the elongation was 0.52 in. The original diameter of the specimen was 0.50 in. and the gage length was 2.00 in. Calculate (a) the ultimate tensile stress (b) the ductility of the material in terms of percent elongation
Answer:
a) the ultimate tensile stress is 66717.8 psi
b) the ductility of the material in terms of percent elongation is 26%
Explanation:
Given the data in the question;
ultimate load P = 13,100 lb
elongation δl = 0.52 in
diameter of specimen d = 0.50 in
gage length l = 2.00 inch
First we determine the cross-sectional area of the specimen
A = [tex]\frac{\pi }{4}[/tex] × d²
we substitute
A = [tex]\frac{\pi }{4}[/tex] × ( 0.50 )²
A = 0.1963495 in²
a) the ultimate tensile stress σ[tex]_u[/tex]
tensile stress σ[tex]_u[/tex] = P / A
we substitute
tensile stress σ[tex]_u[/tex] = 13,100 / 0.1963495
tensile stress σ[tex]_u[/tex] = 66717.766 ≈ 66717.8 psi
Therefore, the ultimate tensile stress is 66717.8 psi
b) ductility of the material in terms of percent elongation;
percentage elongation of specimen = [change in length / original length]100
% = [ δl / l ]100
we substitute
% = [ 0.52 in / 2.00 in ]100
= [ 0.26 ]100
= 26
Therefore, the ductility of the material in terms of percent elongation is 26%