Let's take a look at each term separately.
15a^2b^2:
15 has factors 1, 3, 5, 15
a x a
b x b
-24ab
-24 has factors 1, 2, 3, 4, 6, 8, 12, 24
a
b
Now, we can see what each of these terms has in common. Both have a 3 in their factor lists, as well as one a and one b.
Therefore, the greatest common factor is 3ab.
Hope this helps!! :)
Answer:
3ab
Step-by-step explanation:
[tex]15a^{2} b^{2} - 24ab[/tex] is divided by 3
[tex]5a^{2} b^{2} - 8ab[/tex] take away a and b once
hope this helped!!!
[tex]5ab - 8[/tex]
= 3ab
Just trying to finish this so I can get my stanceboy racecar back
Answer:
x ≥ 4 AND x + y ≤ 10
Step-by-step explanation:
If you need up to 10 volunteers, then you can take 10 or less. If we add y and x, we'll get the total amount of people, therefore making the inequality:
x + y ≤ 10.
Now, he needs no fewer than 4 females, so he can take 4 or greater. This means that x should be greater than or equal to 4.
x ≥ 4.
Nothing was mentioned about how many males he needed (y) so these two inequalities match the situation.
Hope this helped!
A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F. A) Determine the cooling constant k.B) What is the differential equation satisfied by the temperature F(t) of the bar?C) What is the formula for F(t)?D) Determine the temperature of the bar at the moment it is submerged.
Answer:
A) cooling constant = 0.0101365
B) [tex]\frac{df}{dt} = k ( 60 - F )[/tex]
c) F(t) = 60 + 77.46[tex]e^{0.0101365t}[/tex]
D)137.46 ⁰
Step-by-step explanation:
water temperature = 60⁰F
temperature of Bar after 20 seconds = 120⁰F
temperature of Bar after 60 seconds = 100⁰F
A) Determine the cooling constant K
The newton's law of cooling is given as
= [tex]\frac{df}{dt} = k(60 - F)[/tex]
= ∫ [tex]\frac{df}{dt}[/tex] = ∫ k(60 - F)
= ∫ [tex]\frac{df}{60 - F}[/tex] = ∫ kdt
= In (60 -F) = -kt - c
60 - F = [tex]e^{-kt-c}[/tex]
60 - F = [tex]C_{1} e^{-kt}[/tex] ( note : [tex]e^{-c}[/tex] is a constant )
after 20 seconds
[tex]C_{1}e^{-k(20)}[/tex] = 60 - 120 = -60
therefore [tex]C_{1} = \frac{-60}{e^{-20k} }[/tex] ------- equation 1
after 60 seconds
[tex]C_{1} e^{-k(60)}[/tex] = 60 - 100 = - 40
therefore [tex]C_{1} = \frac{-40}{e^{-60k} }[/tex] -------- equation 2
solve equation 1 and equation 2 simultaneously
= [tex]\frac{-60}{e^{-20k} }[/tex] = [tex]\frac{-40}{e^{-60k} }[/tex]
= 6[tex]e^{20k}[/tex] = 4[tex]e^{60k}[/tex]
= [tex]\frac{6}{4} e^{40k}[/tex] = In(6/4) = 40k
cooling constant (k) = In(6/4) / 40 = 0.40546 / 40 = 0.0101365
B) what is the differential equation satisfied
substituting the value of k into the newtons law of cooling)
60 - F = [tex]C_{1} e^{0.0101365(t)}[/tex]
F(t) = 60 - [tex]C_{1} e^{0.0101365(t)}[/tex]
The differential equation that the temperature F(t) of the bar
[tex]\frac{df}{dt} = k ( 60 - F )[/tex]
C) The formula for F(t)
t = 20 , F = 120
F(t ) = 60 - [tex]C_{1} e^{0.0101365(t)}[/tex]
120 = 60 - [tex]C_{1} e^{0.0101365(t)}[/tex]
[tex]C_{1} e^{0.0101365(20)}[/tex] = 60
[tex]C_{1} = 60 * 1.291[/tex] = 77.46
C1 = - 77.46⁰ as the temperature is decreasing
The formula for f(t)
= F(t) = 60 + 77.46[tex]e^{0.0101365t}[/tex]
D) Temperature of the bar at the moment it is submerged
F(0) = 60 + 77.46[tex]e^{0.01013659(0)}[/tex]
F(0) = 60 + 77.46(1)
= 137.46⁰
A rectangular waterbed is 8 ft long, 5 fr, wide and 1 ft tall.
How many gallons of water are needed to fill the waterbed?
Assume 1 gallon is 0.13 ft.³ round to the nearest whole gallon
Answer: 308 gallons of water.
Step-by-step explanation:
First find the volume of the water been.
The volume of a rectangular prism uses the formula
V= L * W *H
V = 8 * 5 * 1
V = 40 ft^3
Now we will convert 40ft into gallons using what they gave us that 1 gallon is 0.13 ft^3
[tex]\frac{1}{x} = \frac{0.13}{40}[/tex] which means if 1 gallon is 0.13 cubic feet how much will 40 cubic feet be when converted to gallons.
Solve by cross product.
0.13x = 40 divide both sides by 0.13
x= 308
find the slope for (-4,-2)(-3,-6)
Answer:
The slope is -4.
Step-by-step explanation:
The values -2 and -6 are 4 values apart.
The values -4 and -3 are 1 value apart.
Since the second coordinate is lower than the first one, the slope of this is negative.
4 / 1 = 1
Negating 1 gets us -1.
Hope this helped!
Answer:
[tex] \frac{y}{x} = \frac{ - 4}{1} = - 4[/tex]
Step-by-step explanation:
[tex]x = ( - 3) - ( - 4) = 1[/tex]
[tex]y = ( - 6) - ( - 2) = - 4[/tex]
Find the height of a square pyramid that has a volume of 32 cubic feet and a base length of 4 feet
The volume of a square pyramid is found by multiplying the area of the base by the height divided by 3.
32 = 4^2 x h/3
32 = 16 x h/3
Multiply both sides by 3
96 = 16 x h
Divide both sides by 16
H = 96/16
H = 6
The height is 6 feet
Answer:
6 ft
Step-by-step explanation:
Volume of the pyramid:
V= lwh/3, where l- base length, w- base width, h- heightGiven
V= 32 ft³l=w= 4 fth=?Then, as per formula, we can solve it for h:
32= 4×4×h/3h= 32×3/16h= 6 ftHeight of the pyramid is 6 ft
How many even 3 digit positive integers can be written using the numbers 3,4,5,6,and 7?
Answer:
I got 45, but I may be wrong.
Step-by-step explanation:
When a number is even, the number must end in an even number. Here, the even numbers are 4 and 6, so the numbers we are going to create are all going to end in 4 and 6.
To answer this question, we just have to find as many possible combinations following the guidelines provided.
334
344
354
364
374
434
444
454
464
474
534
544
554
564
574
634
644
654
664
674
336
346
356
366
376
436
446
456
466
476
536
546
556
566
576
636
646
656
666
676
736
746
756
766
776
A random sample of 51 adult coyotes in a region of northern Minnesota showed the average age to be x = 2.03 years, with sample standard deviation s = 0.82 years. However, it is thought that the overall population mean age of coyotes is μ = 1.75. Do the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years? Use α = 0.01.
Answer:
Yes the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 51[/tex]
The sample mean is [tex]\= x = 2.03[/tex]
The sample standard deviation is [tex]\sigma = 0.82[/tex]
The population mean is [tex]\mu = 1.75[/tex]
The level of significance is [tex]\alpha = 0.01[/tex]
The null hypothesis is
[tex]H_o : \mu = 0.82[/tex]
The alternative hypothesis is
[tex]H_a : \mu >1.75[/tex]
The critical value of the the level significance [tex]\alpha[/tex] obtained from the critical value table for z-value is [tex]z_\alpha = 2.33[/tex]
Now the test statistic is mathematically evaluated as
[tex]t = \frac{\= x - \mu }{\frac{\sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 2.03 - 1.75 }{\frac{0.82}{\sqrt{51} } }[/tex]
[tex]t = 2.44[/tex]
From that calculated and obtained value we see that the critical value of the level of significance is less than the test statistics so we reject the null hypothesis
Hence there sufficient evidence to proof that the sample data indicates that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years
The heights of three trees are 0.41m, 2.10m and 3.52m. Find their average height
Answer:
2.01m; 0.41m + 2.10m + 3.52m = 6.03 6.03/3= 2.01
Step-by-step explanation:
0.41m + 2.10m + 3.52m = 6.03 6.03/3= 2.01
The average height of the three trees is 2.01 meters.
Given that,
The heights of the three trees are 0.41m, 2.10m and 3.52m.
To find the average height of the three trees,
Use the formula for calculating the mean
Add up their heights and then divide by the total number of trees.
So, we have:
Average height = (0.41 m + 2.10 m + 3.52 m) ÷ 3
We can simplify this expression:
Average height = 6.03 m ÷ 3
Average height = 2.01 m
Therefore, the average height of the three trees is 2.01 meters.
To know more about average visit:-
brainly.com/question/24057012
#SPJ2
Please answer in the form of an angle or degree
Step-by-step explanation:
angle A = angle B( Corresponding angles)
so,
5x - 5 = 3x + 13
=> 5x - 3x = 13 + 5
=> 2x = 18
=> x = 9
angle B = 3x + 13 = (3×9) + 13 = 27 + 13 = 40
Answer:
x=9, ∠B=40
Step-by-step explanation:
In this case, ∠A≅∠B, as they are corresponding angles. Therefore, if you set up the equation to be 5x-5=3x+13,
2x=18, x=9
∠B=3(9)+13=27+13=40
Find the missing side of a triangle when one side is 3.16 and the other is 3
Answer:
0.992774 ≅ .993
Step-by-step explanation:
a²+b²=c²
a=x
b=3
c=3.16
x²+3²=3.16²
x²+9=9.9856
x²=.9856
x=0.992774
x≅0.993
several years ago ravi invested in some gold gold is currently valued at $2737 per ounce which is 70% more than rafa originally paid for it what was the purchase price of the gold
Answer:
Original price is $1610
Step-by-step explanation:
2737=1.7*Original price
divide each side by 1.7
Original price=1610
Hope this helps!
can i please get help with this
Step-by-step explanation:
Intersecting secant angles theorem: The angle between two secants is half the difference of the intersected arcs.
52 = ½ (x − 38)
x = 142
Arc angles add up to 360.
360 = 80 + 38 + z + x
z = 100
Tangent-chord theorem: The angle between a tangent and a chord is half the intercepted arc angle.
y = x/2
y = 71
graph the function f(x)=3/2(x-4)^2+3
Answer:
its 23
Step-by-step explanation:
jake buys a new car for $18,259. each year x after he buys the car, its value y depreciates by $445. which equation models the relationship between x and y?
A. y=445x + 18,259
B. y= -445x + 18,259
C. y= 445x - 18,259
D. y= -445x - 18,259
Answer:
B
Step-by-step explanation:
It can't be A because of the fact that by multiplying 445 by "x" you'll get a higher, postitive number. Meaning that if adding that positive number, you'll get something higher than 18,259. Which isn't our goal. In addition, the key word is "depreciates" which is another word for subtracting. However, that only applies in some circumstances. It can't be D either since you're basically adding a negative number by another negative number. However, "18,259" has to be a positive in this problem. By that you can also eliminate C as well. Meaning that B would be the correct answer.
Write the equations after translating the graph of y = |x|: one unit up,
Answer:
[tex]g(x) = |x| + 1[/tex]
Step-by-step explanation:
Given
[tex]y = |x|[/tex]
Required
Translate 1 unit up
Start by replacing y with f(x)
[tex]f(x) = |x|[/tex]
To translate an the graph of an absolute function upward, you make use of the formula;
[tex]g(x) = f(x) + k[/tex]
Where k is the number of units
In this case; [tex]k = 1[/tex]
Hence;
[tex]g(x) = f(x) + k[/tex]
Substitute [tex]k = 1[/tex]
[tex]g(x) = f(x) + 1[/tex]
Substitute [tex]f(x) = |x|[/tex]
[tex]g(x) = |x| + 1[/tex]
Hence, the resulting equation is [tex]g(x) = |x| + 1[/tex]
Which of the following functions is graphed below?
O A. y - x - 61+3
O B. y - x + 61-3
O C. y = x +61+3
D. y - x - 61-3
Answer:
B
Step-by-step explanation:
Since the vertex of the function is (-6, -3), we know the equation must be y = |x + 6| - 3.
Answer:
B. |x+6|-3
Step-by-step explanation:
Well we can tell by looking at the graph that the line has a y-intercept of +3,
meaning we can cross out choices A and C.
Now we can graph B and D,
Look at the image below ↓
By looking at the graphed lines we can tell that y = |x+6|-3 is the correct answer.
Wel can also conclude that choice B is correct because of its vertex being at (-6,-3).
Thus,
answer choice B is the correct answer.
Hope this helps :)
1 - Fill the space blanks
If we make a sequence selecting three elements from three different elements
{1, 2, 3} and we permit overlapped elements for the sequence, then the total
number of sequences is [ ] . If we do not take into account the order, the total
number of the selections is [ ] .
I'm totally lost in this, what is overlapped elements? This is about what math content? And what is the answer? Please i need help.
Answer:
The first part is of permutations.
We are selecting 3 elements from three different elements {1,2,3}
Points given:
We permit overlapped elements for the sequence. Here "overlapped elements" indicates that repetition is allowed.
So when repetition is allowed and order matters, we use permutations.
Formula to compute permutation is:
Lets say n is the three elements {1,2,3}
We have to select 3 elements so r = 3
Total number of selections using permutations = [tex]n^{r}[/tex] = n × n × n
= 3³ = 3 * 3 * 3
= 27
This means if we have 3 different elements then we have have 3 choices each time for making a sequence.
Hence If we make a sequence selecting three elements from three different elements {1, 2, 3} and we permit overlapped elements for the sequence, then the total number of sequences is 27.
Step-by-step explanation:
The second part indicates combinations.
This is because the statement of the question: If we do not take into account the order.
When the order does not matter, we use combinations.
So when the order does not matter and repetition is allowed we use the following formula:
Total number of selections using combinations = (r + n - 1)! / r! (n - 1)!
= (3 + 3 - 1) ! / 3! (3 - 1)!
= (3 + 2) ! / 3! (2!)
= 5! / 3! 2!
= 5*4*3*2*1 / (3*2*1 ) (2*1)
= 120 / 6 * 2
= 120 / 12
= 10
So these are the number of combinations of 3 elements taken 3 at a time with repetition.
The total number that will be selected in the permutations is 27.
How to calculate the permutations?Based on the information given, the total number of permutations will be:
= n³
= 3 × 3 × 3
= 27
Also, the total number of selection using combination will be:
= (3 + 3 - 1)! / 3!(3 - 1)!
= 120 / (6 × 2)
= 120/12
= 10
Learn more about permutations on:
https://brainly.com/question/1216161
Which point is a solution to the system of inequalities graphed here? y -5 x + 4 A. (1,6) B. (-6,0) C. (0,5) D. (5,0)
Answer:
D
Step-by-step explanation:
this is the only one inside the overlapping inequalitlies
What does volume measure? the amount of space occupied by a two-dimensional solid object the total area of all the surfaces of a three-dimensional solid object the amount of space inside the boundary of a two-dimensional object the amount of space occupied by a three-dimensional solid object
Answer:
the amount of space occupied by a three-dimensional solid object
Step-by-step explanation:
Volume is a measure of the space in a 3D solid object enclosed by the closed surfaces of the solid object.
By using the definition of volume, we can see that the correct option is the last one:
"The amount of space occupied by a three-dimensional solid object"
What does volume measure?
Volume is defined as a 3-dimensional metric derived from longitude, that measures a region in the space. So, each region that "takes space" has a volume.
With that in mind, the option that correctly describes volume is the last option:
"The amount of space occupied by a three-dimensional solid object"
If you want to learn more about volume, you can read:
https://brainly.com/question/1972490
The price of a particular model car is $13,857 today and rises with time at a constant rate of $1203 per year. How much will a new car cost in 4.7 years?
Answer:
It should be about $19,500
Step-by-step explanation:
Answer:
$19,511.10
Step-by-step explanation:
1203*4.7= The total change over 4.7 years.
1203*4.7=5654.10
5654.10+13857=The total price after 4.7 years.
5654.10+13857=19,511.10
1. for what constant k must f(k) always equal the constant term of f(x) for any polynomial f(x) 2. If we multiply a polynomial by a constant, is the result a polynomial? 3. if deg(f+g) is less than both deg f and deg g, then must f and g have the same degree?
Answer:
1. k=0
2. yes, result is still a polynomial.
3. yes, f and g must have the same degree to have deg(f+g) < deg(f) or deg(g)
Step-by-step explanation:
1. for what constant k must f(k) always equal the constant term of f(x) for any polynomial f(x)
for k=0 any polynomial f(x) will reduce f(k) to the constant term.
2. If we multiply a polynomial by a constant, is the result a polynomial?
Yes, If we multiply a polynomial by a constant, the result is always a polynomial.
3. if deg(f+g) is less than both deg f and deg g, then must f and g have the same degree?
Yes.
If
deg(f+g) < deg(f) and
deg(f+g) < deg(g)
then it means that the two leading terms cancel out, which can happen only if f and g have the same degree.
A circle has a center at (4, -7) and a radius of 4 units. Write an equation of this circle.
Answer:
(x – 4)^2 + (y + 7)^2 = 16
Step-by-step explanation:
The formula of a circle is:
(x – h)^2 + (y – k)^2 = r^2
(h, k) represents the coordinates of the center of the circle
r represents the radius of the circle
If you plug in the given information, you get:
(x – 4)^2 + (y – (-7))^2 = 4^2
which simplifies into:
(x – 4)^2 + (y + 7)^2 = 16
6th grade math help me, please:D
Answer:
the answer is c...............
Tristan wants to buy a car and has a choice between two different banks. One bank is offering a simple interest rate of 3% and the other bank is offering a rate of 2.5%
compounded annually. If Tristan decides to deposit $7,000 for 4 years, which bank would be the better deal?
Answer:
The better deal would be simple interest rate of 3%
Step-by-step explanation:
In order to calculate which bank would be the better deal If Trsitam decides to deposit $7,000 for 4 years, we would have to make the following calculation:
simple interest rate of 3%.
Therefore, I= P*r*t
=$7,000*3%*4
I=$840
FV= $7,000+$840
FV=7,840
compound interest rate of 2.5%
Therefore, FV=PV(1+r)∧n
FV=$7,000(1+0.25)∧4
FV=$17,089
The better deal would be simple interest rate of 3%
Find the circumference of C in terms of π
radius of c Is 5
Answer:
Given that
radius of circle =5units
So, circumference of circle=2πr
=2×π×5
=10π units
hope it helps u...
plz mark as brainliest...
Answer:
[tex]\boxed{Circumference = 10\pi \ units}[/tex]
Step-by-step explanation:
Circumference = [tex]2\pi r[/tex]
Where r = 5
=> Circumference = 2π(5)
=> Circumference = 10π units
The geometric probability function is f (x) = (1-P) x-1 P. what is the approximate probability of rolling a standard die and getting the first 6 on the 3rd try?
Answer:
We know that for a standard dice the probability of obtain a 6 is:
[tex] P=\frac{1}{6}[/tex]
And for this case our value of x=3 and replacing we got:
[tex] f(x=3) = (1- \frac{1}{6})^{3-1} \frac{1}{6}[/tex]
[tex]f(x=3)=\frac{25}{36} \frac{1}{6}= \frac{25}{216}= 0.116[/tex]
Step-by-step explanation:
For this case we have the following function:
[tex] f(x) = (1-P)^{x-1} P[/tex]
We want to find the approximate probability of rolling a standard die and getting the first 6 on the 3rd try
We know that for a standard dice the probability of obtain a 6 is:
[tex] P=\frac{1}{6}[/tex]
And for this case our value of x=3 and replacing we got:
[tex] f(x=3) = (1- \frac{1}{6})^{3-1} \frac{1}{6}[/tex]
[tex]f(x=3)=\frac{25}{36} \frac{1}{6}= \frac{25}{216}= 0.116[/tex]
13. If 6 times the 6th term of an A.P. is equal to
13 times the 13th term, prove that 19th term
of this A.P. is zero.
please give the answer as fast as you can
please
Answer:
see explanation
Step-by-step explanation:
The n th term of an AP is
[tex]a_{n}[/tex] = a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Given
6(a₁ + 5d) = 13(a₁ + 12d) ← distribute parenthesis on both sides
6a₁ + 30d = 13a₁ + 156d ( subtract 13a₁ from both sides )
- 7a₁ + 30d = 156d ( subtract 30d from both sides )
- 7a₁ = 126d ( divide both sides by - 7 )
a₁ = - 18d
Now
a₁₉ = a₁ + 18d = - 18d + 18d = 0 ← as required
What is the first stepin solving the quadratic equations x2-40=0
Answer:
+40 to both sides of the = sign.
Step-by-step explanation:
x2-40=0
+40=+40
x2=40
/2=/2
x=20
use the associative property to rewrite (26+92)+17
Answer:
(26+92)+17 = 26 + ( 92+17)
Step-by-step explanation:
The associative property of addition is
a + (b + c) = (a + b) + c
We want to move the parentheses
(26+92)+17 = 26 + ( 92+17)
A landscaping company charges $50 per cubic yard of mulch plus a delivery charge of $24. Find a
linear function which computes the total cost C(in dollars) to deliver a cubic yards of mulch.
C(x) =
Answer: c(x) = $50*x + $24
Step-by-step explanation:
First, this situation can be modeled with a linear equation like:
c(x) = s*x + b
where c is the cost, s is the slope, x is the number of cubic yards of mulch bought, and b is the y-intercept ( a constant that no depends on the number x)
Then we know that:
The company charges $50 per cubic yard, so the slope is $50
A delivery charge of $24, this delivery charge does not depend on x, so this is the y-intercept.
Then our equation is:
c(x) = $50*x + $24
This is:
"The cost of buying x cubic yards of mulch"