Answer:
you can either factorise or use tge formula method
Step-by-step explanation:
3x2−7x−20=03x2-7x-20=0
Use the quadratic formula to find the solutions.
−b±√b2−4(ac)2a-b±b2-4(ac)2a
Substitute the values a=3a=3, b=−7b=-7, and c=−20c=-20 into the quadratic formula and solve for xx.
7±√(−7)2−4⋅(3⋅−20)2⋅37±(-7)2-4⋅(3⋅-20)2⋅3
Simplify.
Tap for more steps...
x=7±176x=7±176
The final answer is the combination of both solutions.
x=4,−53
The time X(mins) for Ayesha to prepare breakfast for her family is believed to have a uniform
distribution with A=25 and B=35.
a) Determine the pdf of X and draw its density curve.
b) What is the probability that time taken by Ayesha to prepare breakfast exceeds 33 mins?
c) What is the probability that cooking or preparation time is within 2 mins of the mean time?
(Hint: Identify mean from the graph of f(x))
Answer:
(c) [tex]f_{X}(x)=\left \{ {{\frac{1}{35-25}=\frac{1}{10};\ 25<X<35} \atop {0;\ Otherwise}} \right.[/tex]
(b) The probability that time taken by Ayesha to prepare breakfast exceeds 33 minutes is 0.20.
(c) The probability that cooking or preparation time is within 2 mins of the mean time is 0.40.
Step-by-step explanation:
The random variable X follows a Uniform (25, 35).
(a)
The probability density function of an Uniform distribution is:
[tex]f_{X}(x)=\left \{ {{\frac{1}{B-A};\ A<X<B} \atop {0;\ Otherwise}} \right.[/tex]
Then the probability density function of the random variable X is:
[tex]f_{X}(x)=\left \{ {{\frac{1}{35-25}=\frac{1}{10};\ 25<X<35} \atop {0;\ Otherwise}} \right.[/tex]
(b)
Compute the value of P (X > 33) as follows:
[tex]P(X>33)=\int\limits^{35}_{33} {\frac{1}{10}} \, dx \\\\=\frac{1}{10}\cdot\int\limits^{35}_{33} {1} \, dx \\\\=\frac{1}{10}\times [x]^{35}_{33}\\\\=\frac{35-33}{10}\\\\=\frac{2}{10}\\\\=0.20[/tex]
Thus, the probability that time taken by Ayesha to prepare breakfast exceeds 33 minutes is 0.20.
(c)
Compute the mean of X as follows:
[tex]\mu=\frac{A+B}{2}=\frac{25+35}{2}=30[/tex]
Compute the probability that cooking or preparation time is within 2 mins of the mean time as follows:
[tex]P(30-2<X<30+2)=P(28<X<32)[/tex]
[tex]=\int\limits^{32}_{28} {\frac{1}{10}} \, dx \\\\=\frac{1}{10}\cdot\int\limits^{32}_{28}{1} \, dx \\\\=\frac{1}{10}\times [x]^{32}_{28}\\\\=\frac{32-28}{10}\\\\=\frac{4}{10}\\\\=0.40[/tex]
Thus, the probability that cooking or preparation time is within 2 mins of the mean time is 0.40.
About 16.6% of Americans can speak Spanish. We obtain a random sample of seventy-five Americans and determine the proportion in the sample who speak Spanish. Find the probability that 25% or more in the sample speak Spanish.
Answer:
The probability that 25% or more in the sample speak Spanish is 76%.
Step-by-step explanation:
Sample of 75 Americans
If 25% or more in the sample speak Spanish, it can be deduced that 24% do not speak Spanish.
The proportion of those who do not speak Spanish is 18 (24% of 75)
Therefore, the proportion of those who speak Spanish is 57 (75 - 19)
This implies that 57/75 x 100 = 76% of the sample speak Spanish.
This 76% of the sample who speak Spanish is equal to the 25% or more who do speak Spanish in the sample.
Probability is the chance that an event may occur from many other events that could have occurred. It is an educated guess or estimate of something or one event happening when all the events in the set are given an equal chance.
Several terms of a sequence StartSet a Subscript n EndSet Subscript n equals 1 Superscript infinity are given below. {1, negative 5, 25, negative 125, 625, ...} a. Find the next two terms of the sequence. b. Find a recurrence relation that generates the sequence (supply the initial value of the index and the first term of the sequence). c. Find an explicit formula for the general nth term of the sequence.
Answer:
(a) -3125, 15625
(b)
[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]
(c)[tex]a_n=(-5)^{n-1}[/tex]
Step-by-step explanation:
The sequence [tex]a_n$ _{n=1}^\infty[/tex] is given as:
[tex]\{1,-5,25,-125,625,\cdots\}[/tex]
(a)The next two terms of the sequence are:
625 X -5 = - 3125
-3125 X -5 =15625
(b)Recurrence Relation
The recurrence relation that generates the sequence is:
[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]
(c)Explicit Formula
The sequence is an alternating geometric sequence where:
Common Ratio, r=-5First Term, a=1Therefore, an explicit formula for the sequence is:
[tex]a_n=1\times (-5)^{n-1}\\a_n=(-5)^{n-1}[/tex]
Given the parametric equations below, eliminate the parameter t to obtain an equation for y as a function of x { x ( t ) = 5 √ t y ( t ) = 7 t + 4
Answer:
y(x) = (7/25)x^2 + 4
Step-by-step explanation:
Given:
x = 5*sqrt(t) .............(1)
y = 7*t+4 ..................(2)
solution:
square (1) on both sides
x^2 = 25t
solve for t
t = x^2 / 25 .........(3)
substitute (3) in (2)
y = 7*(x^2/25) +4
y= (7/25)x^2 + 4
Example of a 3rd degree polynomial in standard form?
Answer:
4x^3 + 2x^2 +8x -9
Step-by-step explanation:
A third degree polynomial is a is a polynomial whose highest power of x is to the power of three. Standard form is
Ax^3 + Bx^2 + Cx + D where A is non zero
An example would be
4x^3 + 2x^2 +8x -9
Select the correct answer from each drop-down menu.
The given equation has been solved in the table.
Answer: a) additive inverse (addition)
b) multiplicative inverse (division)
Step-by-step explanation:
Step 2: 6 is being added to both sides
Step 4: (3/4) is being divided from both sides
It is difficult to know what options are provided in the drop-down menu without seeing them. If I was to complete a proof and justify each step, then the following justifications would be used:
Step 2: Addition Property of Equality
Step 4: Division Property of Equality
Emily and George had a farm with a new barn.
True
False
Answer:
true
Step-by-step explanation:
it is so because they are brother and sister
And in the chapter there is that they had farm with a new barn
if in your book lesson there is that they had no farm with a new barn then there will be false
Now did you understood?
Answer:
True
Step-by-step explanation:
Please answer this correctly
Answer:
[tex] \frac{1}{6} [/tex]
Step-by-step explanation:
the ways of choosing 2 cards out of 4, is calculator by
[tex] \binom{4}{2} = 6[/tex]
so, 6 ways to select 2 cards.
but in only one way we can have 2 even cards. thus, the answer is
[tex] \frac{1}{6} [/tex]
Manueala scored -4 \dfrac12−4 2 1 minus, 4, start fraction, 1, divided by, 2, end fraction points relative to her season average against the China Dragons. She scored 1 \dfrac121 2 1 1, start fraction, 1, divided by, 2, end fraction points relative to her season average against the Canada Moose. Drag the white cards onto the gray rectangle to write an inequality that correctly compares Manueala's relative numbers of points. Which one of the following descriptions is correct? Choose 1 answer: Choose 1 answer: (Choice A) A Manueala scored more points against the China Dragons than against the Canada Moose. (Choice B) B Manueala scored more points against the Canada Moose than against the China Dragons.
Answer:
1 1/2 > - 4 1/2 and Manuela scored more points against the Canada Moose than against the China Dragons.
vertex form of x^2+6x+3
Answer:
y = (x + 3)^2 - 6.
Step-by-step explanation:
The vertex formula is Y = a(x - h)^2 + k.
To find the vertex formula, we need to find h and k, by finding the vertex of x^2 + 6x + 3.
h = -b/2a
a = 1, b = 6.
h = -6 / 2 * 1 = -6 / 2 = -3
k = (-3)^2 + 6(-3) + 3 = 9 - 18 + 3 = -9 + 3 = -6
So far, we have Y = a(x - (-3))^2 + -6, so y = a(x + 3)^2 - 6.
In this case, the coefficient of x^2 of the given formula is 1, which means that a will be 1.
The vertex form of x^2 + 6x + 3 is y = (x + 3)^2 - 6.
To check our work...
y = (x + 3)^2 - 6
= x^2 + 3x + 3x + 9 - 6
= x^2 + 6x + 3
Hope this helps!
What is the value of the angle marked with xxx?
Answer:
Here you go!! :)
Step-by-step explanation:
Given that the sides of the quadrilateral are 3.3
The measure of one angle is 116°
We need to determine the value of x.
Value of x:
Since, the given quadrilateral is a rhombus because it has all four sides equal.
We know the property that the opposite sides of the rhombus are equal.
The measure of the opposite angle is 116°
x = measure of opposite angle
x = 116°
Then, the value of x is 116°
Therefore, the value of x is 116°
Answer:
In the diagram, the measurement of x is 87°
Step-by-step explanation:
In this diagram, this shape is a quadrilateral. This quadrilateral in this picture is known as rhombus. In a rhombus, the consecutive angles are supplementary meaning they have a sum of 180°. Consecutive means the angles are beside each other. So, we will subtract 93 from 180 to find the value of x.
180 - 93 = 87
The measurement of x is 87°
what is 3(C - 5) = 48
Answer:
c=21
Step-by-step explanation:
[tex]3(c-5)=48\\3c-15=48\\3c=48+15\\3c=63\\c=63/3\\c=21[/tex]
Hope this helps,
plx give brainliest
Answer:
c=21
Step-by-step explanation:
3(c−5)=48
Divide both sides by 3.
c-5=48/3
Divide 48 by 3 to get 16.
c−5=16
Add 5 to both sides.
c=16+5
Add 16 and 5 to get 21.
c=21
What is PI times 4? HELP ASAP
Answer:
12.566370614359172953850573533118
Step-by-step explanation:
can I get some help please?
━━━━━━━☆☆━━━━━━━
▹ Answer
2,013 cartons
▹ Step-by-Step Explanation
72,468 ÷ 36 = 2,013 cartons
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Answer:
72,468 eggs divided by 36 eggs per carton=2,013 cartons
Step-by-step explanation:
Solve: -1/2+ c =31/4 c=8 c=7 c=33/4 c=29/4
Answer:
c = 29/4Step-by-step explanation:
[tex] - \frac{1}{2} + c = \frac{31 }{4} \\ \\ c = \frac{31}{4} + \frac{1}{2} = \frac{31 - 2}{4} \\ \\ c = \frac{29}{4} [/tex]
Hope this helps you
The life of light bulbs is distributed normally. The standard deviation of the lifetime is 25 hours and the mean lifetime of a bulb is 510 hours. Find the probability of a bulb lasting for at most 552 hours.
Answer:
The probability of a bulb lasting for at most 552 hours.
P(x>552) = 0.0515
Step-by-step explanation:
Step(i):-
Given mean of the life time of a bulb = 510 hours
Standard deviation of the lifetime of a bulb = 25 hours
Let 'X' be the random variable in normal distribution
Let 'x' = 552
[tex]Z = \frac{x-mean}{S.D} = \frac{552-510}{25} =1.628[/tex]
Step(ii):-
The probability of a bulb lasting for at most 552 hours.
P(x>552) = P(Z>1.63)
= 1- P( Z< 1.63)
= 1 - ( 0.5 + A(1.63)
= 1- 0.5 - A(1.63)
= 0.5 -A(1.63)
= 0.5 -0.4485
= 0.0515
Conclusion:-
The probability of a bulb lasting for at most 552 hours.
P(x>552) = 0.0515
Gwen has $20, $10, and $5 bills in her purse worth a total of $220. She has 15 bills in all. There are 3 more $20 bills than there are $10 bills. How many of each does she have?
Answer:
x = 8 ( 20$ bills)
y = 5 ( 10 $ bills)
z = 2 ( 5 $ bills)
Step-by-step explanation:
Let call x, y, and z the number of bill of 20, 10, and 5 $ respectively
then according to problem statement, we can write
20*x + 10*y + 5*z = 220 (1)
We also know the total number of bills (15), then
x + y + z = 15 (2)
And that quantity of 20 $ bill is equal to
x = 3 + y (3)
Now we got a three equation system we have to solve for x, y, and z for which we can use any valid procedure.
As x = 3 + y by substitution in equation (2) and (1)
( 3 + y ) + y + z = 15 ⇒ 3 + 2*y + z = 15 ⇒ 2*y + z = 12
20* ( 3 + y ) + 10*y + 5*z = 220 ⇒ 60 + 20*y + 10*y + 5*z = 220
30*y + 5*z = 160 (a)
Now we have only 2 equations
2*y + z = 12 ⇒ z = 12 - 2*y
30*y + 5*z = 160 30*y + 5* ( 12 - 2*y) = 160
30*y + 60 - 10*y = 160
20*y = 100
y = 100/20 y = 5 Then by substitution in (a)
30*y + 5*z = 160
30*5 + 5*z = 160
150 + 5*z = 160 ⇒ 5*z = 10 z = 10/5 z = 2
And x
x + y + z = 15
x + 5 + 2 = 15
x = 8
Answer:
x=8 y=5 x=2
Step-by-step explanation:
Suppose heights of seasonal pine saplings are normally distributed and have a known population standard deviation of 17 millimeters and an unknown population mean. A random sample of 15 saplings is taken and gives a sample mean of 308 millimeters. Find the confidence interval for the population mean with a 99%z0.10 z0.05 z0.025 z0.01 z0.0051.282 1.645 1.960 2.326 2.576
Answer:
[tex]296.693\leq x\leq 319.307[/tex]
Step-by-step explanation:
The confidence interval for the population mean x can be calculated as:
[tex]x'-z_{\alpha /2}\frac{s}{\sqrt{n} } \leq x\leq x'+z_{\alpha /2}\frac{s}{\sqrt{n} }[/tex]
Where x' is the sample mean, s is the population standard deviation, n is the sample size and [tex]z_{\alpha /2}[/tex] is the z-score that let a proportion of [tex]\alpha /2[/tex] on the right tail.
[tex]\alpha[/tex] is calculated as: 100%-99%=1%
So, [tex]z_{\alpha/2}=z_{0.005}=2.576[/tex]
Finally, replacing the values of x' by 308, s by 17, n by 15 and [tex]z_{\alpha /2}[/tex] by 2.576, we get that the confidence interval is:
[tex]308-2.576\frac{17}{\sqrt{15} } \leq x\leq 308+2.576\frac{17}{\sqrt{15} }\\308-11.307 \leq x\leq 308+11.307\\296.693\leq x\leq 319.307[/tex]
What does 0 = 0 indicate about the solutions of the system?
Answer:
it indicates that it is infinitely many solutions
Which graph represents the function?
the answer is the bottom left option
What is the greatest common factor of the polynomial below 12x^2-9x
Answer:
the greatest common factor of this is 3
Write the recursive sequence for: 64, 16, 4, 1, ...
Answer:
Use the formula
a
n
=
a
1
r
n
−
1
to identify the geometric sequence.
Step-by-step explanation:
a
n
=
64
4
n
−
1 hope this helps you :)
Answer: The answer is in the steps.
Step-by-step explanation:
f(1)= 64
f(n)=1/4(n-1) n in this case is the nth term.
One positive number is
6 more than twice another. If their product is
1736, find the numbers.
Answer:
[tex]\Large \boxed{\sf \ \ 28 \ \text{ and } \ 62 \ \ }[/tex]
Step-by-step explanation:
Hello, let's note a and b the two numbers.
We can write that
a = 6 + 2b
ab = 1736
So
[tex](6+2b)b=1736\\\\ \text{***Subtract 1736*** } <=> 2b^2+6b-1736=0\\\\ \text{***Divide by 2 } <=> b^2+3b-868=0 \\ \\ \text{***factorize*** } <=> b^2 +31b-28b-868=0 \\ \\ <=> b(b+31) -28(b+31)=0 \\ \\ <=> (b+31)(b-28) =0 \\ \\ <=> b = 28 \ \ or \ \ b = -31[/tex]
We are looking for positive numbers so the solution is b = 28
and then a = 6 +2*28 = 62
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
10) BRAINLIEST & 10+ Points!
Answer:
20Solution,
Complement of 70°
=90°-70°
=20°
hope this helps...
Good luck on your assignment..
Answer:
20°
Step-by-step explanation:
Complement of 70° is 90°-70°= 20°
To determine the complement, subtract the given angle from 90.
Given an objective function value of 150 and a shadow price for resource 1 of 5, if 10 more units of resource 1 are added (assuming the allowable increase is greater than 10), what is the impact on the objective function value?
Answer:
The impact on the objective function is that it is increased by 50.
Step-by-step explanation:
In this case we have that the value of the objective function is 150, and they tell us that 10 more units of resource one are added, but they tell us that the shadow price ranges from 1 to 5, therefore:
10 * 5 = 50
Which means that the impact on the objective function is that it is increased by 50.
Which algebraic expression represents the phrase below? five times the sum of a number and eleven, divided by three times the sum of the number and eight 5(x + 11) + 3(x + 8) 5 x + 11 Over 3 x + 8 Start Fraction 5 (x + 11) Over 3 (x + 8) 5x + 11 + 3x + 8
Answer:
85
Step-by-step explanation:
im new↑∵∴∵∴∞
Given that IG is perpendicular to FT, which of the following statements is true?
Answer:
B ). IF = IT
Step-by-step explanation:
IG is perpendicular to FT, means that the line IG divides the line FT into two equal parts without remainder.
Line IG does not only divide line FT, it also bisect the arc FT into two equally parts also.
It also divide the segment of the circle FIT into two equal parts.
So to the correct answer to the question, IF = IT
Which of the following is the
graph of
(x - 3)2 + (y - 1)2 = 9 ?
Answer:
Answer is A
Step-by-step explanation:
The equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.
What does the equation of a circle represent?The general equation of a circle is of the form (x - h)² + (y - k)² = r², where (h, k) is the point where the center of the given circle lies, and r is the radius of this given circle.
How to solve the question?In the question, we are asked to find the graph from the given options which represents the equation (x - 3)² + (y - 1)² = 9.
Comparing the given equation, (x - 3)² + (y - 1)² = 9, to the general equation, (x - h)² + (y - k)² = r², we can say that h = 3, k = 1, and r = 3.
Thus the center of the given circle lies at the point (3, 1) and its radius is 3 units.
Now we check the options to find the matching circle:
Option A: The center is at the point (3, -1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.Option B: The center is at the point (3, 1), and the radius is 3 units, which is similar to the equation (x - 3)² + (y - 1)² = 9. Thus, this is the right choice.Option C: The center is at the point (-3, 1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.Therefore, the equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.
Learn more about circles at
https://brainly.com/question/1559324
#SPJ2
The World Issues club has decided to donate 60% of all their fundraising activities this year to Stephen Lewis
Foundation. This foundation was created to help ease the pain of HIV/AIDS in Africa Lewis, a Canadian
works for the United Nations trying to determine ways to stop the spread of this deadly disease from crippling
an entire continent
a. Choose a variable to represent the money earned during fundraising activities and the revenue generated
for the foundation
b. Use these variables to create an equation that will determine the amount of money the foundation will
receive
c. In their latest bake sale, the club raised $72. Calculate the amount the foundation will receive
d. At the end of the year, the World Issues Club mailed a cheque to the foundation for $850. How much
money did they fundraise in total?
Answer:
a. Let the variable be [tex]x[/tex] for the fundraising activities and [tex]M[/tex] as the revenue for foundation.
b. [tex]M =0.60x[/tex]
c. $43.2
d. $1416.67
Step-by-step explanation:
Given that:
The World Issues club donates 60% of the total of their fundraising activities.
Answer a.
Let us choose the variable [tex]x[/tex] to represent the money earned during fundraising activities and [tex]M[/tex] for the revenue generated for foundation.
Answer b.
Foundation will receive 60% of the total of the fundraising activities.
Equation to determine the money that will be received by foundation:
[tex]M = 60\%\ of\ x\\OR\\M = 0.6x[/tex]
Answer c.
Given that x = $72, M = ?
Putting the value of x in the equation above:
[tex]M = 0.6 \times 72\\\Rightarrow \$43.2[/tex]
Answer d.
Given that M = $850, x = ?
Putting the value of M in the equation above to find x:
[tex]850= 0.6 \times x\\\Rightarrow x = \dfrac{850}{0.6}\\\Rightarrow x = \$ 1416.67[/tex]
So, the answers are:
a. Let the variable be [tex]x[/tex] for the fundraising activities and [tex]M[/tex] as the revenue for foundation.
b. [tex]M =0.60x[/tex]
c. $43.2
d. $1416.67
the depth D, in inches, od wsnow in my yard t hours after it started snowing this morning is given by D=1.5t + 4. if the depth of the snow is 7 inches now, what will be the depth one hour from now?
Answer:
8.5 inches
Step-by-step explanation:
First let's find the time t when the depth of the snow is 7 inches.
To do this, we just need to use the value of D = 7 then find the value of t:
[tex]7 = 1.5t + 4[/tex]
[tex]1.5t = 3[/tex]
[tex]t = 2\ hours[/tex]
We want to find the depth of snow one hour from now, so we just need to use the value of t = 3 to calculate D:
[tex]D = 1.5*3 + 4[/tex]
[tex]D = 4.5 + 4 = 8.5\ inches[/tex]
The depth of snow one hour from now will be 8.5 inches.
The depth of the snow one hour from now is 8.5 inches.
Let D represent the depth of snow in inches at time t. It is given by the relationship:
D=1.5t + 4
Since the depth of the snow is 7 inches now, hence, the time now is:
7 = 1.5t + 4
1.5t = 3
t = 2 hours
One hour from now, the time would be t = 2 + 1 = 3 hours. Hence the depth at this time is:
D = 1.5(3) + 4 = 8.5 inches
Therefore the depth of the snow one hour from now is 8.5 inches.
Find out more at: https://brainly.com/question/13911928