Please Help!!! I WILL GIVE BRAINLIEST!!!! An electron is in motion at 4.0 × 10^6 m/s horizontally when it enters a region of space between two parallel plates, starting at the negative plate. The electron deflects downwards and strikes the bottom plate. The magnitude of the electric field between the plates is 4.0 x 10^2 N/C and separation between the charged plates is 2.0 cm. a.) Determine the horizontal distance traveled by the electron when it hits the plate. b.)Determine the velocity of the electron as it strikes the plate.

Answers

Answer 1

Answer:

Explanation:

Given that

speed u=4*10^6 m/s

electric field E=4*10^3 N/c

distance b/w the plates d=2 cm

basing on the concept of the electrostatices

now we find the acceleration b/w the plates

acceleration a=qE/m=1.6*10^-19*4*10^3/9.1*10^-31=0.7*10^15 =7*10^14 m/s

now we find the horizantal distance travelled by electrons hit the plates

horizantal distance X=u[2y/a]^1/2

=4*10^6[2*2*10^-2/7*10^14]^1/2

=3*10^-2=3 cm

now we find the velocity f the electron strike the plate

v^2-(4*10^6)^2=2*7*10^14*2*10^-2

v^2=16*10^12+28*10^12

v^2=44*10^12

speed after hits =>V=6.6*10^6 m/s


Related Questions

A small cylinder made of a diamagnetic material is brought near a bar magnet. One end of the cylinder is brought near the North pole of the magnet and is repelled. What happens when the other end of the cylinder is brought near the North pole of the magnet? Group of answer choices

Answers

Answer:

it attracts

Explanation:

since in a magnetic body there are two poles

(north and south poles)if the first pole was repeled when brought near the North Pole therefore the other end is going to attarct because the first end was also a North Pole while the second end will be a south pole

A rod has length 0.900 mm and mass 0.500 kgkg and is pivoted at one end. The rod is not uniform; the center of mass of the rod is not at its center but is 0.500 mm from the pivot. The period of the rod's motion as a pendulum is 1.49 ss. What is the moment of inertia of the rod around the pivot

Answers

Answer:

The moment of inertia is  [tex]I =0.14 \ kg \cdot m^2[/tex]

Explanation:

From the question we are told that

    The length of the rod is  [tex]l = 0.900 \ m[/tex]

     The mass of the rod is  [tex]m = 0.500 \ kg[/tex]

      The distance of the center of mass from the pivot is  [tex]d = 0.500 \ m[/tex]

      The period of the rod's motion is  [tex]T = 1.49 \ s[/tex]

Generally the period of the motion is mathematically represented as

       [tex]T = 2 \pi * \sqrt{\frac{I}{m* g * d} }[/tex]

Where [tex]I[/tex] is the moment of inertia about the pivot so making [tex]I[/tex] the subject of formula

      [tex]I = [\frac{T}{2\pi } ]^2 * m * g * d[/tex]

substituting values

        [tex]I = [\frac{1.49}{2* 3.142 } ]^2 * 0.5 * 9.8 * 0.5[/tex]

       [tex]I =0.14 \ kg \cdot m^2[/tex]

Besides the gravitational force, a 2.80-kg object is subjected to one other constant force. The objectstarts from rest and in 1.20 s experiences a displacement of (4.20 i - 3.30 j) m, where the direction of jis the upward vertical direction. Determine the other force.

Answers

Answer:

the other force= (16.3i + 14.6j)N

EXPLANATION:

Given:

Mass=2.80-kg

t= 1.2s

Since the object started from rest, the origin is (0,0) which symbolize the the object's initial position.

We will need to calculate the magnitude of the displacement using the below formula;

d = (1/2)at2 + v0t + d0

But note that

d0 = 0,( initial position)

v0 = 0( initial position)

a is the net acceleration

d = √[4.202 + (-3.30)2] m = 5.34 m

Hence, the magnitude of the displacement is 5.34 m, then we can make 'a' the subject of formula in the above expression in order to calculate the value for acceleration, note that d0 = 0,( initial position) and v0 = 0( initial position)

d = (1/2)at2

a = 2d/t2 = 2(5.34)/(1.20)2 m/s2 = 7.42 m/s2

the net acceleration is 7.42 m/s2

Acceleration in terms of the vector can be calculated as

a=2(ri - r0)/t^2

Where t =1.2s which is the time

a= 2(4.2i - 3.30j)/ 1.2^2

a=( 5.83i - 4.58j)m/s

now the net force can now be calculated since we have known the value of acceleration, using the formula below;

F(x) = ma - mg

Where a = 5.83i - 4.58j)m/s and g= 9.8m/s

2.8(5.83i - 4.58j)m/s - (2.80 × 9.8)m/s^2

Therefore, the other force= (16.3i + 14.6j)N

Which of the following is not considered a behavior?
A. eating
B. anxiety
C. sleeping
D. crying

Answers

━━━━━━━☆☆━━━━━━━

▹ Answer

B. Anxiety

▹ Step-by-Step Explanation

Anxiety isn't a behavior since it's a feeling. Behavior and feeling are different things therefore, anxiety is the correct answer.

Hope this helps!

- CloutAnswers ❁

Brainliest is greatly appreciated!

━━━━━━━☆☆━━━━━━━

Eating, sleeping, and crying all are considered as behaviors. However, anxiety cannot be considered as a behavior because it is a feeling. Thus, the correct option is B.

What is Anxiety?

Anxiety is an intense feeling of excessive, and persistent worry and the fear about everyday situations. This includes fast heart rate, rapid breathing, sweating, and feeling tired constantly may occur.

Behavior is the range of actions and mannerisms which are made by individuals, organisms, systems or the artificial entities in some environment. These systems can include other systems or organisms as well as the inanimate physical environment. Behaviors include eating, sleeping, and crying. Anxiety is not a behavior, it is a feeling.

Therefore, the correct option is B.

Learn more about Anxiety here:

https://brainly.com/question/28481974

#SPJ5

I attach a 4.1 kg block to a spring that obeys Hooke's law and supply 3.8 J of energy to stretch the spring. I release the block and it oscillates with a period of 0.13 s. What is the amplitude of oscillation

Answers

Answer:

The amplitude of the oscillation is 2.82 cm

Explanation:

Given;

mass of attached block, m = 4.1 kg

energy of the stretched spring, E = 3.8 J

period of oscillation, T = 0.13 s

First, determine the spring constant, k;

[tex]T = 2\pi \sqrt{\frac{m}{k} }[/tex]

where;

T is the period oscillation

m is mass of the spring

k is the spring constant

[tex]T = 2\pi \sqrt{\frac{m}{k} } \\\\k = \frac{m*4\pi ^2}{T^2} \\\\k = \frac{4.1*4*(3.142^2)}{(0.13^2)} \\\\k = 9580.088 \ N/m\\\\[/tex]

Now, determine the amplitude of oscillation, A;

[tex]E = \frac{1}{2} kA^2[/tex]

where;

E is the energy of the spring

k is the spring constant

A is the amplitude of the oscillation

[tex]E = \frac{1}{2} kA^2\\\\2E = kA^2\\\\A^2 = \frac{2E}{k} \\\\A = \sqrt{\frac{2E}{k} } \\\\A = \sqrt{\frac{2*3.8}{9580.088} }\\\\A = 0.0282 \ m\\\\A = 2.82 \ cm[/tex]

Therefore, the amplitude of the oscillation is 2.82 cm

Two long, parallel wires carry currents in the same direction. If I1 = 10 A, and I2 = 20 A, and they are d = 1.0 m apart, what is the magnetic field at a point P midway between them?

Answers

Answer:

The magnetic field at mid point between two parallel wires is 1.2 x 10⁻⁵ T

Explanation:

Given;

current in the first wire, I₁ = 10 A

current in the second wire, I₂ = 20 A

distance between the two wires, d = 1.0 m

Magnetic field at mid point between two parallel wires is calculated as;

[tex]B = \frac{\mu_o I_1}{2\pi r} + \frac{\mu_o I_2}{2\pi r} \\\\B = \frac{\mu_o }{2\pi r}(I_1 +I_2)[/tex]

where;

r is the midpoint between the wires, = 0.5 m

μ₀ is the permeability of free space, = 4π x 10⁻⁷

[tex]B = \frac{\mu_o }{2\pi r}(I_1 +I_2)\\\\B = \frac{4\pi*10^{-7} }{2\pi *0.5}(10 +20)\\\\B = \frac{4\pi*10^{-7} *30}{2\pi *0.5}\\\\B = 1.2 *10^{-5} \ T[/tex]

Therefore, the magnetic field at mid point between two parallel wires is 1.2 x 10⁻⁵ T

How many excess electrons must be distributed uniformly within the volume of an isolated plastic sphere 20.0 cm in diameter to produce an electric field of 1450 N/C just outside the surface of the sphere

Answers

Answer:

1.007 × 10^(10) electron

Explanation:

We are given;

Electric Field;E = 1450 N/C

Diameter;d = 20 cm = 0.2 m

So, Radius: r = 0.2/2 = 0.1 m

Formula for Electric field just outside the sphere is given by the formula;

E = kq/r²

Where;

E is the magnitude of the electric field. q is the magnitude of the point charge r is distance from the point charge

k is a constant with a value of 9 x 10^(9) N.m²/C²

Making q the subject, we have;

q = Er²/k

Thus,

q = 1450 × 0.1²/(9 × 10^(9))

q = 1.61 × 10^(-9) C

Now, total charge q is also given by the formula;

q = Ne

Where;

e is charge on electron which is 1.6 × 10^(-19)

N is number of excess electrons

Making N the formula, we have;

N = q/e

N = (1.61 × 10^(-9))/(1.6 × 10^(-19))

N = 1.007 × 10^(10) electron

Faraday's Law states that the negative of the time rate of change of the flux of the magnetic field through a surface is equal to which of the following quantities?

a. The flux of the magnetic field through a surface which has the loop as its boundary.
b. The negative of the time rate of change of the flux of the magnetic field through a surface which has the loop as its boundary.
c. The line integral of the magnetic field around the closed loop.
d. The flux of the electric field through a surface which has the loop as its boundary.

Answers

Answer:

(C). The line integral of the magnetic field around a closed loop

Explanation:

Faraday's law states that induced emf is directly proportional to the time rate of change of magnetic flux.

This can be written mathematically as;

[tex]EMF = -\frac{\delta \phi _B}{\delta t}[/tex]

[tex](\frac{\delta \phi _B}{\delta t} )[/tex] is the rate of change of the magnetic flux through a surface bounded by the loop.

ΔФ = BA

where;

ΔФ is change in flux

B is the magnetic field

A is the area of the loop

Thus, according to Faraday's law of electric generators

∫BdL = [tex]\frac{\delta \phi _B}{\delta t}[/tex] = EMF

Therefore, the line integral of the magnetic field around a closed loop is equal to the negative of the rate of change of the magnetic flux through the area enclosed by the loop.

The correct option is "C"

(C). The line integral of the magnetic field around a closed loop

Faraday's Law states that the negative of the time rate of change of the flux of the magnetic field through a surface is equal to: D. The flux of the electric field through a surface which has the loop as its boundary.

In Physics, the surface integral with respect to the normal component of a magnetic field over a surface is the magnetic flux through that surface and it is typically denoted by the symbol [tex]\phi[/tex].

Faraday's Law states that the negative of the time rate of change ([tex]\Delta t)[/tex] of the flux of the magnetic field ([tex]\phi[/tex]) through a surface is directly proportional to the flux ([tex]\phi[/tex]) of the electric field through a surface which has the loop as its boundary.

Mathematically, Faraday's Law is given by the formula:

[tex]E.m.f = -N\frac{\Delta \phi}{\Delta t}[/tex]

Where:

N is the number of turns.

Read more: https://brainly.com/question/15121836

A small ferryboat is 4.70 m wide and 6.10 m long. When a loaded truck pulls onto it, the boat sinks an additional 5.00 cm into the river. What is the weight of the truck

Answers

Answer:

   M = 1433.5 kg

Explanation:

This exercise is solved using the Archimedean principle, which states that the hydrostatic thrust is equal to the weight of the desalinated liquid,

              B = ρ g V

with the weight of the truck it is in equilibrium with the push, we use Newton's equilibrium condition

           Σ F = 0

           B-W = 0

           B = W

       body weight

           W = M g

the volume is

           V = l to h

           rho_liquid g (l to h) = M g

           M = rho_liquid l a h

           

we calculate

            M = 1000 4.7 6.10 0.05

           M = 1433.5 kg

A standard 1 kilogram weight is a cylinder 48.5 mm in height and 49.0 mm in diameter. What is the density of the material? kg/m3

Answers

Answer:

Density = 10,933.93 kg/m^3

the density of the material is 10,933.93 kg/m^3

Explanation:

Density is the mass per unit volume

Density = mass/volume = m/V

Volume of a cylinder V = πr^2 h

Given;

Height h = 48.5mm = 0.0485 m

Radius r = diameter/2 = 49mm÷2 = 24.5mm = 0.0245m

Substituting the values;

Volume V = π×(0.0245^2)×0.0485

V = 0.000091458438030 m^3

V = 0.000091458 m^3

The mass is given as;

Mass = 1 kg

So, the density can be calculated as;

Density = 1/0.000091458

Density = 10933.92825785 kg/m^3

Density = 10,933.93 kg/m^3

the density of the material is 10,933.93 kg/m^3

A projectile is launched from ground level with an initial speed of 47 m/s at an angle of 0.6 radians above the horizontal. It strikes a target 1.7 seconds later. What is the vertical distance from where the projectile was launched to where it hit the target.

Answers

Answer:

30.67m

Explanation:

Using one of the equations of motion as follows, we can describe the path of the projectile in its horizontal or vertical displacement;

s = ut ± [tex]\frac{1}{2} at^2[/tex]               ------------(i)

Where;

s = horizontal/vertical displacement

u = initial horizontal/vertical component of the velocity

a = acceleration of the projectile

t = time taken for the projectile to reach a certain horizontal or vertical position.

Since the question requires that we find the vertical distance from where the projectile was launched to where it hit the target, equation (i) can be made more specific as follows;

h = vt ± [tex]\frac{1}{2} at^2[/tex]               ------------(ii)

Where;

h = vertical displacement

v = initial vertical component of the velocity = usinθ

a = acceleration due to gravity (since vertical motion is considered)

t = time taken for the projectile to hit the target

From the question;

u = 47m/s, θ = 0.6rads

=> usinθ = 47 sin 0.6

=> usinθ = 47 x 0.5646 = 26.54m/s

t = 1.7s

Take a = -g = -10.0m/s   (since motion is upwards against gravity)

Substitute these values into equation (ii) as follows;

h = vt - [tex]\frac{1}{2} at^2[/tex]

h = 26.54(1.7) - [tex]\frac{1}{2} (10)(1.7)^2[/tex]

h = 45.118 - 14.45

h = 30.67m

Therefore, the vertical distance is 30.67m        

If a negative point charge is placed at P without moving the original charges, the net electrical force the charges ±Q will exert on it is

Answers

Answer:

The particle P moves directly upwards

Explanation:

Lets designate the negative point charge at point P as particle P

The +Q charge will exert an attractive force on the particle P.

The -Q charge will exert a repulsive force on the particle P

The +Q charge exerts an upwards and leftward force on particle P

The -Q charge exerts an upwards and rightward force on particle P

Since the charges are equidistant from the particle P, and are of equal magnitude, the rightward force and the leftward force will cancel out, leaving just the upward force on the particle P.

The effect of the upward force is that the particle P moves directly upwards

(5 pt) You tie a cord to a pail of water, and your swing the pail in a vertical circular 0.700 m. What is the minimum speed must you give the pail at the highest point of the circle if no water is to spill from it

Answers

Answer:

The minimum speed required  is 2.62m/s

Explanation:

The value of  gravitational acceleration = g = 9.81 m/s^2

Radius of the vertical circle = R = 0.7 m

Given the mass of the pail of water = m

The speed at the highest point of the circle = V

The centripetal force will be needed must be more than the weight of the pail of water in order to not spill water.

Below is the calculation:

[tex]\frac{mV^{2}}{R} = mg[/tex]

[tex]V = \sqrt{gR}[/tex]

[tex]V = \sqrt{9.81 \times 0.7}[/tex]

[tex]V = 2.62 m/s[/tex]

Transverse waves are sent along a 4.50 m long string with a speed of 85.00 m/s. The string is under a tension of 20.00 N. What is the mass of the string (in kg)?

Answers

Answer:

m = 0.0125 kg

Explanation:

Let us apply the formula for the speed of a wave on a string that is under tension:

[tex]v = \sqrt{\frac{F}{\mu} }[/tex]

where F = tension force

μ = mass per unit length

Mass per unit length is given as:

μ  = m / l

where m = mass of the string

l = length of the string

This implies that:

[tex]v = \sqrt{\frac{F}{m/l} }\\ \\v = \sqrt{\frac{F * l}{m} }[/tex]

Let us make mass, m, the subject of the formula:

[tex]v^2 = \frac{F * l}{m}\\\\m = \frac{F * l}{v^2}[/tex]

From the question:

F = 20 N

l = 4.50 m

v = 85 m/s

Therefore:

[tex]m = \frac{20 * 4.5}{85^2}\\\\m = \frac{90}{7225}\\ \\m = 0.0125 kg[/tex]

A vector quantity has direction, a scalar quantity does not.

Answers

Explanation:

hope you like then comment plz

Four identical charges particles of charge 1Uc, 2Uc,
3Uc and 4Uc
are placed at x = lm, x=2m,
x=3m and
x=5m. The electric field intensity
at origin is?

Answers

Answer:

17.94 kN/C is the electric field intensity at the origin due to the charges.

Explanation:

From the question, we are told that

The distance of 1 μC from origin = 1 m

The distance of 2 μC from origin = 2 m

The distance of 3 μC from origin = 3 m

The distance of 4 μC from origin = 5 m

Therefore, for us to find the electric field intensity, we'll solve below:

The formula for Electric field intensity = ( k * q ) / ( r * r )

where , r is distance ,

k = 9 * 10^9 ,

and , q is charge .

now ,

electric field intensity at the origin = [ k * 10^(-6) / 1 * 1 ] +[ k * 2 * 10^(-6) / 2 * 2 ] + [ k * 3 * 10^(-6) / 3 * 3 ] + [ k * 4 * 10^(-6) / 5 * 5 ]

=> electric field intensity at the origin = k * 10^(-6) [ 1 + 1/2 + 1/3 + 4/25 ] N/C

=> electric field intensity at the origin = 9 * 10^9 * 10^(-6) * 1.99 N/C

=> electric field intensity at the origin = 17.94 kN/C

A rubber ball is attached to a string and whirled around in a circle. If the string is 1.0 m long (measured from the center of the baseball to the far end of the string) and the ball’s speed is 10 m/s, what is the ball’s centripetal acceleration?

Answers

Centripetal acceleration = (speed squared) / (radius)

Centripetal acceleration = (10 m/s)² / (1.0 m)

Centripetal acceleration = (100 m²/s²) / (1.0 m)

Centripetal acceleration = 100 m/s²

A woman is standing at the rim of a nonuniform cylindrical horizontal platform initially at rest. The platform is free to rotate about frictionless orthogonal axle that goes through its center and has 4 m in diameter and moment of inertia of 500 kgm2. The woman then starts walking along the rim in clockwise direction at a constant speed of 1.50 m/s relative to the Earth. If a woman has 60 kg, how much work does she do to set herself and the platform into motion?

Answers

Answer:

e

Explanation:

i took it myself and got it right

A cylindrical shell of radius 7.00 cm and length 2.21 m has its charge uniformly distributed on its curved surface. The magnitude of the electric field at a point 15.2 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0 kN/C. (a) Find the net charge on the shell.

Answers

Answer:

The net charge on the shell is 30x10^-9C

Explanation:

Pls see attached file

Suppose the ring rotates once every 4.30 s . If a rider's mass is 53.0 kg , with how much force does the ring push on her at the top of the ride?

Answers

The complete question is;

In an amusement park ride called The Roundup, passengers stand inside a 16-m-diameter rotating ring. After the ring has acquired sufficient speed, it tilts into a vertical plane.

Suppose the ring rotates once every 4.30 s . If a rider's mass is 53.0 kg , with how much force does the ring push on her at the top of the ride?

Answer:

F_top = 385.36 N

Explanation:

We are given;

mass;m = 52 kg

Time;t = 4.3 s

Diameter;d = 16m

So,Radius;r = 16/2 = 8m

The formula for the centrifugal force is given as;

F_c = mω²R

Where;

R = radius

Angular velocity;ω = 2πf

f = frequency = 1/t = 1/4.3 Hz

F_c = 53 × (2π × 1/4.3)² × 8 = 905.29 N.

The force at top would be;

F_top = F_c - mg

F_top = 905.29 - (9.81 × 53) N

F_top = 385.36 N

The force at the top of ride will be "385.36 N".

Force and mass:

According to the question,

Rider's mass, m = 52 kg

Time, t = 4.3 s

Diameter, d = 16 m

Radius, r = [tex]\frac{16}{2}[/tex] = 8 m

Frequency, f = [tex]\frac{1}{t}[/tex] = [tex]\frac{1}{4.3}[/tex] Hz

We know the formula,

Centrifugal force,  [tex]F_c[/tex] = mω²R

or,

Angular velocity, ω = 2πf

By substituting the values in the above formula,

[tex]F_c = 53(2\pi \times (\frac{1}{4.3})^2\times 8 )[/tex]

    [tex]= 905.29[/tex] N

hence,

The top force will be:

→ [tex]F_{top} = F_c[/tex] - mg

By substituting the values,

          [tex]= 905.29-(9.81\times 53)[/tex]

          [tex]= 385.36[/tex] N

Thus the above response is correct.  

Find out more information about force here:

https://brainly.com/question/12970081

Angular velocity in the z direction of a flywheel is w(t)=A + Bt2 The numerical values of the constants are A=2.75 and B=1.50. What is the angular acceleration α(t) when t=0s and t=5.00s?

Answers

Answer:

α(0) = 0 rad/s²

α(5) = 15 rad/s²

Explanation:

The angular velocity of the flywheel is given as follows:

w(t) = A + B t²

where, A and B are constants.

Now, for the angular acceleration, we must take derivative of angular velocity with respect to time:

Angular Acceleration = α (t) = dw/dt

α(t) = (d/dt)(A + B t²)

α(t) = 2 B t

where,

B = 1.5

AT t = 0 s

α(0) = 2(1.5)(0)

α(0) = 0 rad/s²

AT t = 5 s

α(5) = 2(1.5)(5)

α(5) = 15 rad/s²

In the photoelectric effect, if the intensity of light shone on a metal increases, what will happen?

Answers

Answer:

C) There will be more electrons ejected

Explanation:

The number of electrons ejected whenever a photoelectric effect is identified it is proportional to the intensity of the incident light

Nevertheless, the photoelectrons' maximal kinetic energy is independent of their light intensity

Therefore, the maximum speed of the electron ejected doesn't really depend on the light intensity

So,  if the intensity rises, only the number of electrons ejected will rised

Therefore the option c is correct

Answer:

C) There will be more electrons ejected

Explanation:

In the photoelectric effect, photons with an energy of E are shone upon a piece of metal, and if the energy of the photons overcome the work function ϕ of the metal, then electrons with will be ejected from the metal with a kinetic energy KE.

E_photon = Φ + KE

Each photon is capable of ejecting one electron from the metal. Therefore, increasing the intensity of the light (the number of photons shone on the metal) will increase the number of electrons ejected from the metal.

A long straight metal rod has a radius of 2.0 mm and a surface charge of density 0.40 nC/m2. Determine the magnitude of the electric field 3.0 mm from the axis.

Answers

Answer:

Explanation:

Gauss Theorem

E2πrL=o2πRL/εo

then

E=oR/(rεo)

E=(0.4*10^-9*2*10^-3) / (3*10^-3*8.85*10^-12)

= 30.13 N/C

An 100 V/m electric field is directed along the x axis. If the potential at the origin is 300 V, what is potential at the point ( -2m, 0) point

Answers

Answer:

200volts

Explanation:

Pls see attached file

Answer:

100 V

Explanation:

Electric field E = 100 V/m

Potential at the origin = 300 V

Potential at point (-2m, 0) i.e 2 m behind the origin = ?

From the equation ΔV = EΔd,

ΔV = [tex]V_{0} - V_{x}[/tex]

where [tex]V_{0}[/tex] is the potential at origin,

and [tex]V_{x}[/tex] is the potential at point (-2, 0)

E = electric field

Δd = 0 - (-2) = 2 m

[tex]V_{0} - V_{x}[/tex] = 300 - [tex]x[/tex]

equating, we have

 300 - [tex]x[/tex] = 100 x 2

300 - [tex]x[/tex] = 200

[tex]x[/tex] = 100 V

Refer the attached photo

Answers

Answer:

A

Explanation:

since the wooden bat is an opaque object placed after a translucent object, light will come through the plastic sheet but will be unable to go through the bat. hence the dark shadow of the bat on a lit sheet

Find the ratio of the gravitational force between two planets if the masses of both planets are quadrupled but the distance between them stays the same.

Answers

Answer:

The ratio of the new force over the original force is 16

Explanation:

Recall the formula for the gravitational force between two masses M1 and M2 separated a distance D:

[tex]F_G=G\,\frac{M_1\,\,M_2}{D^2}[/tex]

So now, if the masses M1 and M2 are quadrupled and the distance stays the same, the new force becomes:

[tex]F'_G=G\,\frac{4M_1\,\,4M_2}{D^2}=G\,\frac{16\,\,M_1\,\,M_2}{D^2}=16\,\,G\,\frac{M_1\,\,M_2}{D^2}= 16\,\,F_G[/tex]

which is 16 times the original force.

So the ratio of the new force over the original force is 16

The ratio of the gravitational force between two planets if the masses of both planets are quadrupled but the distance between them stays the same is 16:1.

What does Newton's law of gravitation state?

Newton's law of gravitation states that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them.

The formula for Newton's law of gravitation is:

[tex]F = G \frac{m_1m_2}{r^{2} }[/tex]

where,

F is the gravitational force.G is the gravitational constant.m₁ and m₂ are the masses of both objects.r is the distance between the objects.

The initial force between the planets is:

[tex]F_1 = G \frac{m_1m_2}{r^{2} }[/tex]

The force between the planets if the masses of both planets are quadrupled but the distance between them stays the same is:

[tex]F_2 = G \frac{4m_14m_2}{r^{2} } = 16 G \frac{m_1m_2}{r^{2} }[/tex]

The ratio of F₂ to F₁ is:

[tex]\frac{F_2}{F_1} =\frac{16 G \frac{m_1m_2}{r^{2} }}{G \frac{m_1m_2}{r^{2} }} = \frac{16}{1}[/tex]

The ratio of the gravitational force between two planets if the masses of both planets are quadrupled but the distance between them stays the same is 16:1.

Learn more about Newton's gravitational law here: https://brainly.com/question/9373839

Two cylindrical resistors are made from the same material. The shorter one has length L, diameter D, and resistance R1. The longer one has length 8L, diameter 4D, and resistance R2. How do the resistances of these two resistors compare

Answers

Answer:

the resistance of the longer one is twice as big as the resistance of the shorter one.

Explanation:

Given that :

For the shorter cylindrical resistor

Length = L

Diameter = D

Resistance = R1

For the longer cylindrical resistor

Length = 8L

Diameter = 4D

Resistance = R2

So;

We all know that the resistance of a given material can be determined by using the formula :

[tex]R = \dfrac{\rho L }{A}[/tex]

where;

A = πr²

[tex]R = \dfrac{\rho L }{\pi r ^2}[/tex]

For the shorter cylindrical resistor ; we have:

[tex]R = \dfrac{\rho L }{\pi r ^2}[/tex]

since 2 r = D

[tex]R = \dfrac{\rho L }{\pi (\frac{2}{2 \ r}) ^2}[/tex]

[tex]R = \dfrac{ 4 \rho L }{\pi \ D ^2}[/tex]

For the longer cylindrical resistor ; we have:

[tex]R = \dfrac{\rho L }{\pi r ^2}[/tex]

since 2 r = D

[tex]R = \dfrac{ \rho (8 ) L }{\pi (\frac{2}{2 \ r}) ^2}[/tex]

[tex]R = \dfrac{32\rho L }{\pi \ (4 D) ^2}[/tex]

[tex]R = \dfrac{2\rho L }{\pi \ (D) ^2}[/tex]

Sp;we can equate the shorter cylindrical resistor to the longer cylindrical resistor as shown below :

[tex]\dfrac{R_s}{R_L} = \dfrac{ \dfrac{ 4 \rho L }{\pi \ D ^2}}{ \dfrac{2\rho L }{\pi \ (D) ^2}}[/tex]

[tex]\dfrac{R_s}{R_L} ={ \dfrac{ 4 \rho L }{\pi \ D ^2}}* { \dfrac {\pi \ (D) ^2} {2\rho L}}[/tex]

[tex]\dfrac{R_s}{R_L} =2[/tex]

[tex]{R_s}=2{R_L}[/tex]

Thus; the resistance of the longer one is twice as big as the resistance of the shorter one.

If you're swimming underwater and knock two rocks together, you will hear a very loud noise. But if your friend above the water knocks two rocks together, you'll barely hear the sound.

Match the words.

The air-water interface is an example of boundary. The( )portion of the initial wave energy is way smaller than the( )portion. This makes the( ) wave hard to hear.

When both the source of the sound and your ears are located underwater, the sound is louder because the sound waves can( ) .

1. reflect more efficiently
2. transmitted
3. travel directly to your ears
4. boundary
5. reflected
6. discontinuity

Answers

Answer:

The air-water interface is an example of boundary. The transmitted portion of the initial wave energy is way smaller than the reflected portion. This makes the boundary  wave hard to hear.

When both the source of the sound and your ears are located underwater, the sound is louder because the sound waves can travel directly to your ear.

Explanation:

The air-to-water sound wave transmission is inhibited because more of reflection than transmission of the wave occurs at the boundary. In the end, only about 30% of the sound wave eventually reaches underwater. For sound generated underwater, all the wave energy is transmitted directly to the observer. Sound wave travel faster in water than in air because, the molecules of water are more densely packed together, and hence can easily transmit their vibration to their neighboring molecules, when compared to air.

Answer: The air-water interface is an example of boundary. The (transmitted) portion of the initial wave is way smaller than the (reflected) portion. This makes the (transmitted) wave hard to hear.

When both the source of the sound and your ears are located underwater, the sound is louder because the sound waves can (travel directly to your ears.)

Explanation:

The part of the sound wave that is transmitted across the boundary between air and water is much smaller than the part of the wave that is reflected. This is what makes it hard to hear your friend knocking two rocks together above the surface.

When you and the rocks are underwater, the sound that comes from knocking the rocks together can travel directly to your ears rather than having to be transmitted across mediums.

Which compound is composed of oppositely charged ions?

Answers

Answer:

Option A. Li2O

Explanation:

To know which of the compound contains oppositely charged ions, let us determine the nature of each compound. This is illustrated below:

Li2O is an ionic compound as it contains a metal (Lithium, Li) and non metal (oxygen, O). Ionic compounds are charactized by the presence of aggregate positive and negative charge ions. This is true because they are formed by the transfer of electron(s) from the metallic atom to the non-metallic atom.

2Li —> 2Li^+ + 2e

O2 + 2e —> O^2-

2Li + O2 + 2e —> 2Li^+ + O^2- + 2e

2Li + O2 —> 2Li^+ O^2- —> Li2O

OF2 is a covalent compound as it contains non metals only (i.e oxygen, O and fluorine, F). Covalent compounds are characterised by the presence of molecules. This is true because they are formed from the sharing of electron(s) between the atoms involved.

PH3 is a covalent compound as it contains non metals only (i.e phosphorus, P and hydrogen, H).

SCl2 is a covalent compound as it contains non metals only (i.e sulphur, S and chlorine, Cl).

From the above information, we can see that only Li2O contains oppositely charged ions.

Answer:

A

Explanation:

Just took the test

In a high school swim competition, a student takes 1.6 s to complete 1.5 somersaults. Determine the average angular speed of the diver, in rad/s, during this time interval.

Answers

Answer:

The  angular speed is [tex]w = 5.89 \ rad/s[/tex]

Explanation:

From the question we are told that

    The time taken is  [tex]t = 1.6 s[/tex]

    The number of somersaults  is n  =  1.5

The total angular displacement during the somersault is mathematically represented as

         [tex]\theta = n * 2 * \pi[/tex]

substituting values

        [tex]\theta = 1.5 * 2 * 3.142[/tex]

       [tex]\theta = 9.426 \ rad[/tex]

 The angular speed is mathematically represented as

         [tex]w = \frac{\theta }{t}[/tex]

substituting values

         [tex]w = \frac{9.426}{1.6}[/tex]

          [tex]w = 5.89 \ rad/s[/tex]

     

Other Questions
how does an electric iron work when the power is on NEED ANSWER ASAP! plz someone answer ASAP 20. Which of the following ray diagrams is correct? A moth of a year is chosen at random what is the probability that the month starts with the letter j or the letter M? 5/24p Suppose that you collect data for 15 samples of 30 units each, and find that on average, 2.5 percent of the products are defective. What are the UCL and LCL for this process? (Leave no cells blank - be certain to enter "0" wherever required. Do not round intermediate calculations. Round up negative LCL values to zero. Round your answers to 3 decimal places.) Risk involves a chance of reward or consequence The diagram shows a 5 cm x 5 cm x 5 cm cube.Calculate the length of the diagonal AB.Give your answer correct to 1 decimal place. GIVING BRANLIEST TO FIRST CORRECT ANSWER A horizontal spring with spring constant 290 N/m is compressed by 10 cm and then used to launch a 300 g box across the floor. The coefficient of kinetic friction between the box and the floor is 0.23. What is the box's launch speed? Which sentence most accurately describes elections in the United States?Answer: in major elections ballots are typically counted by voting machines The graphs below have the same shape.What is the equation of the red graph ? Gallium chloride is formed by the reaction of 2.25 L of a 1.50 M solution of HCl according to the following equation: 2Ga 6HCl --> 2GaCl3 3H2 Determine the mass of gallium chloride, in grams, produced. Group of answer choices A recipe calls for a total of 3 and two-thirdscups flour and sugar. If the recipe calls for One-fourthcup of sugar, how much flour is needed? The Southern states passed a set of laws restricting the rights of blacks. These laws came to be known as the_______ . The laws were passed because most white Southerners were not willing to_________ .Black laws Slave acts Black codesWork for black peopleEmploy white workersAccept black people as equals What is the appropriate first-aid response for a person suffering from heatstroke?- Keep the persons feet at heart level- Have the person drink ice water - Elevate the feet over the head - Submerge the person in ice water Now suppose that the demand for bell peppers is relatively inelastic. How will this change your answer to the previous question? Can somebody explain this to me and the answer I dont get this at all Help me please i need alot of helpLook at these details from a paragraph about the same topic: At magic shows, magicians often make objects disappear. Magicians can amaze people with card tricks.*People enjoy watching magicians use tricks to escape from traps, like locked boxes.Choose the main idea that ties all the details together.A. Magicians sometimes make objects disappear.B. Becoming a magician takes a lot of practice.C. Magicians can guess what others are thinking.D. Magicians entertain people with magic tricks. Was King Arthur a true, historical figure or only a legendary hero? Which triangle correctly shows that the side opposite the larger angle is the larger side?