Answer:
b is the answer
Step-by-step explanation:
PLEASE HELP!
Fill in the reason for statement 3 in proof below:
SAS
AA
SSS
Answer:
SAS
Step-by-step explanation:
ΔABD ~ ΔECD is similar through:
S - because ED = CD (Given)
A - same angle ∠D (Statement 2)
S - because AD = BD (Given)
Cheers!
Answer:
SAS
Step-by-step explanation:
You can notice that you have ED/AB = CD/BD You have one common angleThe length of a rectangle is 5M more than twice the width and the area of the rectangle is 63M to find the dimension of the rectangle
Answer:
width = 4.5 m
length = 14 m
Step-by-step explanation:
okay so first you right down that L = 5 + 2w
then as you know that Area = length * width so you replace the length with 5 + 2w
so it's A = (5 +2w) * w = 63
then 2 w^2 + 5w - 63 =0
so we solve for w which equals 4.5 after that you solve for length : 5+ 2*4.5 = 14
Select the correct answer.
If two angles of a triangle have equal measures and the third angle measures 90º, what are the angle measures of the triangle?
ОА.
60°, 60°, 60°
OB.
459,909, 90°
Ос.
30°, 30°, 90°
OD.
45°, 45°, 90°
Answer:
OD. 45,45,90
Step-by-step explanation:
Will anyone help me with geometry ASAP!? Please!? In desperate help!!!
Answer:
14. C 41
15. k = 72
Step-by-step explanation:
14.
For parallel lines, alternate exterior angles must be congruent.
3x - 43 = 80
3x = 123
x = 41
15.
The sum of the measures of the angles of a triangle is 180 deg.
k + 33 + 75 = 180
k + 108 = 180
k = 72
Answer:
1. 32
2. 41
3. 72
Step-by-step explanation:
Brainliest for the correct awnser!!!!! Which of the following is the product of the rational expressions shown below?
Answer:
A.
Step-by-step explanation:
Multiply straight across:
[tex]\frac{2}{x+1}\cdot \frac{5}{3x}=\frac{10}{3x(x+1)}[/tex]
Simplify:
[tex]=\frac{10}{3x^2+3x}[/tex]
This cannot be simplified further.
Answer:
[tex] \boxed{\sf \frac{10}{3 {x}^{2} + 3x}} [/tex]
Step-by-step explanation:
[tex] \sf Expand \: the \: following: \\ \sf \implies \frac{2}{x + 1} \times \frac{5}{3x} \\ \\ \sf \implies \frac{2 \times 5}{3x(x + 1)} \\ \\ \sf 2 \times 5 = 10 : \\ \sf \implies \frac{ \boxed{ \sf 10}}{3x(x + 1)} \\ \\ \sf 3x(x + 1) = (3x)(x) + (3x)(1) : \\ \sf \implies \frac{10}{ \boxed{ \sf (3x)(x) + (3x)(1)}} \\ \\ \sf (3x)(x) = 3 {x}^{2} : \\ \sf \implies \frac{10}{ \boxed{ \sf 3 {x}^{2}} + (3x)(1) } \\ \\ \sf (3x)(1) = 3x : \\ \sf \implies \frac{10}{3 {x}^{2} + 3x} [/tex]
PLZZZZ HELP! BRAINLIEST :)
Answer: An exponential function
Step-by-step explanation:
The data curves upward, slowly becoming closer and closer to a vertical line.
Hope it helps <3
An industrial psychologist conducted an experiment in which 40 employees that were identified as "chronically tardy" by their managers were divided into two groups of size 20. Group 1 participated in the new "It's Great to be Awake!" program, while Group 2 had their pay docked. The following data represent the number of minutes that employees in Group 1 were late for work after participating in the program.
Does the probability plot suggest that the sample was obtained from a population that is normally distributed? Provide TWO reasons for your classification.
Answer:
The probability plot of this distribution shows that it is approximately normally distributed..
Check explanation for the reasons.
Step-by-step explanation:
The complete question is attached to this solution provided.
From the cumulative probability plot for this question, we can see that the plot is almost linear with no points outside the band (the fat pencil test).
The cumulative probability plot for a normal distribution isn't normally linear. It's usually fairly S shaped. But, when the probability plot satisfies the fat pencil test, we can conclude that the distribution is approximately linear. This is the first proof that this distribution is approximately normal.
Also, the p-value for the plot was obtained to be 0.541.
For this question, we are trying to check the notmality of the distribution, hence, the null hypothesis would be that the distribution is normal and the alternative hypothesis would be that the distribution isn't normal.
The interpretation of p-valies is that
When the p-value is greater than the significance level, we fail to reject the null hypothesis (normal hypothesis) and but if the p-value is less than the significance level, we reject the null hypothesis (normal hypothesis).
For this distribution,
p-value = 0.541
Significance level = 0.05 (Evident from the plot)
Hence,
p-value > significance level
So, we fail to reject the null or normality hypothesis. Hence, we can conclude that this distribution is approximately normal.
Hope this Helps!!!
Two balls are drawn in succession out of a box containing 2 red and 5 white balls. Find the probability that at least 1 ball was red, given that the first ball was (Upper A )Replaced before the second draw. (Upper B )Not replaced before the second draw.
Answer:
With replacement = 14/49without replacement = 3/7Step-by-step explanation:
Since there are 2 red and 5 white balls in the box, the total number of balls in the bag = 2+5 = 7balls.
Probability that at least 1 ball was red, given that the first ball was replaced before the second can be calculated as shown;
Since at least 1 ball picked at random, was red, this means the selection can either be a red ball first then a white ball or two red balls.
Probability of selecting a red ball first then a white ball with replacement = (2/7*5/7) = 10/49
Probability of selecting two red balls with replacement = 2/7*2/7 = 4/49
The probability that at least 1 ball was red given that the first ball was replaced before the second draw= 10/49+4/49 = 14/49
If the balls were not replaced before the second draw
Probability of selecting a red ball first then a white ball without replacement = (2/7*5/6) = 10/42 = 5/21
Probability of selecting two red balls without replacement = 2/7*2/6 = 4/42 = 2/21
The probability that at least 1 ball was red given that the first ball was not replaced before the second draw = 5/21+4/21 = 9/21 = 3/7
The probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.
Since two balls are drawn in succession out of a box containing 2 red and 5 white balls, to find the probability that at least 1 ball was red, given that the first ball was A) replaced before the second draw; and B) not replaced before the second draw; the following calculations must be performed:
2 + 5 = X7 = X
(2/7 + 2/7) / 2 = X (0.285 + 0.285) / 2 = X 0.285 = X
(2/7 + 1/6) / 2 = X (0.28 + 0.16) / 2 = X 0.451 / 2 = X 0.225 = X
Therefore, the probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.
Learn more about probability in https://brainly.com/question/14393430
Find the remainder when f(x)=2x3−x2+x+1 is divided by 2x+1.
Step-by-step explanation:
it can be simply done by using remainder theorem.
Which value of x makes 7+5(x-3)=227+5(x−3)=227, plus, 5, left parenthesis, x, minus, 3, right parenthesis, equals, 22 a true statement? Choose 1 answer:
Answer:
7 + 5(x - 3) = 22
5(x - 3) = 15
x - 3 = 3
x = 6
Answer:
x = 6
Step-by-step explanation:
Step 1: Distribute 5
7 + 5x - 15 = 22
Step 2: Combine like terms
5x - 8 = 22
Step 3: Add 8 to both sides
5x = 30
Step 4: Divide both sides by 5
x = 6
Given the following functions, evaluate each of the following
Answer:
[tex](f+g)(5) = 40\\(f-g)(5) = 22\\(f*g)(5) = 279[/tex]
[tex](f/g)(5) = 31/9[/tex]
Step-by-step explanation:
[tex]f(5) = (5)^2+2(5)-4\\f(5) = 25+10-4\\f(5) = 31[/tex]
[tex]g(5) = 5+4\\g(5) = 9[/tex]
[tex](f+g)(5) = 31+9\\(f+g)(5) = 40[/tex]
[tex](f-g)(5) = 31-9\\(f-g)(5) = 22[/tex]
[tex](f*g)(5) = 31*9\\(f*g)(5) = 279\\[/tex]
[tex](f/g)(5) = 31/9[/tex]
HELP !!!..... ASAP PLS
Step-by-step explanation:
the average change H = Δy/ Δx
so H = ( f(4) - f(2) )/ (4 -2) = ( 0 -1 ) / 2 = -1/2
A class of 30 music students includes 13 who play the piano, 15 who play the guitar, and 9 who play both the piano and the guitar. How many students in the class play neither instrument?
Answer: 2
Step-by-step explanation:
As given, out of 30 students, 15 play guitar and 13 play piano, thats 28.
Among these, 9 play both the guitar and the piano.
That means, only 2 remaining students play neither instrument. (30-15-13)
How do you pronounce B"?
Answer:
bee
Step-by-step explanation:
Fake Question: Should Sekkrit be a moderator? (answer if you can) Real Question: Solve for x. [tex]x^2+3x=-2[/tex]
Answer:
x = -2 , -1
Step-by-step explanation:
Set the equation equal to 0. Add 2 to both sides:
x² + 3x = -2
x² + 3x (+2) = - 2 (+2)
x² + 3x + 2 = 0
Simplify. Find factors of x² and 2 that will give 3x when combined:
x² + 3x + 2 = 0
x 2
x 1
(x + 2)(x + 1) = 0
Set each parenthesis equal to 0. Isolate the variable, x. Note that what you do to one side of the equation, you do to the other.
(x + 2) = 0
x + 2 (-2) = 0 (-2)
x = 0 - 2
x = -2
(x + 1) = 0
x + 1 (-1) = 0 (-1)
x = 0 - 1
x = -1
x = -2 , -1
~
Answer:
x = -2 OR x = -1
Step-by-step explanation:
=> [tex]x^2+3x = -2[/tex]
Adding 2 to both sides
=> [tex]x^2+3x+2 = 0[/tex]
Using mid-term break formula
=> [tex]x^2+x+2x+2 = 0[/tex]
=> x(x+1)+2(x+1) = 0
=> (x+2)(x+1) = 0
Either:
x+2 = 0 OR x+1 = 0
x = -2 OR x = -1
P.S. Ummmm maybe...... Because he usually reports absurd answers! So, Won't it be better that he could directly delete it. And one more thing! He's Online 24/7!!!!!
¿Cuál serie numérica tiene como regla general Xn = 2n +1?
a. 3, 5, 7, 9
b. 2, 4, 5, 8
c. 4, 6, 8,10
d. 2, 3, 4, 5
Answer:
The series of numbers that correspond to the general rule of [tex]X_n=2n+1[/tex] is {3, 5, 7, 9}.
Step-by-step explanation:
We are given with the following series options below;
a. 3, 5, 7, 9
b. 2, 4, 5, 8
c. 4, 6, 8,10
d. 2, 3, 4, 5
And we have to identify what number series has a general rule as [tex]X_n=2n+1[/tex].
For this, we will put the values of n in the above expression and then will see which series is obtained as a result.
So, the given expression is ; [tex]X_n=2n+1[/tex]
If we put n = 1, then;
[tex]X_1=(2\times 1)+1[/tex]
[tex]X_1 = 2+1 = 3[/tex]
If we put n = 2, then;
[tex]X_2=(2\times 2)+1[/tex]
[tex]X_2 = 4+1 = 5[/tex]
If we put n = 3, then;
[tex]X_3=(2\times 3)+1[/tex]
[tex]X_3 = 6+1 = 7[/tex]
If we put n = 4, then;
[tex]X_4=(2\times 4)+1[/tex]
[tex]X_4 = 8+1 = 9[/tex]
Hence, the series of numbers that correspond to the general rule of [tex]X_n=2n+1[/tex] is {3, 5, 7, 9}.
which equation represents the graph function?
Answer:
[tex]\displaystyle y=-\frac{1}{3}x+3[/tex]
Step-by-step explanation:
First, notice that since the graph of the function is a line, we have a linear function.
To find the equations for linear functions, we need the slope and the y-intercept. Recall the slope-intercept form:
[tex]y=mx+b[/tex]
Where m is the slope and b is the y-intercept.
We are given the point (0,3) which is the y-intercept. Thus, b = 3.
To find the slope, we can use the slope formula:
[tex]\displaystyle m=\frac{\Delta y}{\Delta x} =\frac{2-3}{3-0}=-1/3[/tex]
Therefore, our equation is:
[tex]\displaystyle y=-\frac{1}{3}x+3[/tex]
At her favorite sneakers store Nyeema saved $48 because of a
sale.
If the sneakers normally cost $120. How much did she save?
Answer:
40%
Step-by-step explanation:
We can find what percent 48 is of 120 by dividing:
48/120 = 0.4 or 40%
So, she saved 40% from the original price.
Identify the segments that are parallel, if any, if ∠ADH≅∠ECK
Answer:
DF and CG
Step-by-step explanation:
Two or more segments are said to be parallel is the angle between them is [tex]180^{0}[/tex]. While two segments are said to be perpendicular when the angle between them is [tex]90^{0}[/tex].
The given figure is a parallelogram. A parallelogram is a quadrilateral with a pair of parallel opposite sides.
In the given question if ∠ADH ≅ ∠ECK , then the parallel segment would be DF and CG.
15 3/4% is equal to which decimal?
Answer:
2/4%
Step-by-step explanation:
The National Safety Council (NSC) estimates that off-the-job accidents cost U.S. businesses almost $200 billion annually in lost productivity (National Safety Council, March 2006). Based on NSC estimates, companies with 50 employees are expected to average three employee off-the-job accidents per year. Answer the following questions for companies with 50 employees.a. What is the probability of no off-the-job accidents during a one-year period (to 4 decimals)?b. What is the probability of at least two off-the-job accidents during a one-year period (to 4 decimals)?c. What is the expected number of off-the-job accidents during six months (to 1 decimal)?d. What is the probability of no off-the-job accidents during the next six months (to 4 decimals)?
Answer:
a. 0.0498 = 4.98% probability of no off-the-job accidents during a one-year period
b. 0.8008 = 80.08% probability of at least two off-the-job accidents during a one-year period.
c. The expected number of off-the-job accidents during six months is 1.5.
d. 0.2231 = 22.31% probability of no off-the-job accidents during the next six months.
Step-by-step explanation:
We have the mean during a period, so we use the Poisson distribution.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Companies with 50 employees are expected to average three employee off-the-job accidents per year.
This means that [tex]\mu = 3n[/tex], in which n is the number of years.
a. What is the probability of no off-the-job accidents during a one-year period (to 4 decimals)?
This is [tex]P(X = 0)[/tex] when [tex]\mu = 3*1 = 3[/tex]. So
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
0.0498 = 4.98% probability of no off-the-job accidents during a one-year period.
b. What is the probability of at least two off-the-job accidents during a one-year period (to 4 decimals)?
Either there are less than two accidents, or there are at least two. The sum of the probabilities of these events is 1. So
[tex]P(X < 2) + P(X \geq 2) = 1[/tex]
We want [tex]P(X \geq 2)[/tex]. Then
[tex]P(X \geq 2) = 1 - P(X < 2)[/tex]
In which
[tex]P(X < 2) = P(X = 0) + P(X = 1)[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X < 2) = P(X = 0) + P(X = 1) = 0.0498 + 0.1494 = 0.1992[/tex]
[tex]P(X \geq 2) = 1 - P(X < 2) = 1 - 0.1992 = 0.8008[/tex]
0.8008 = 80.08% probability of at least two off-the-job accidents during a one-year period.
c. What is the expected number of off-the-job accidents during six months (to 1 decimal)?
6 months is half a year, so [tex]n = 0.5[/tex]
[tex]\mu = 3n = 3*0.5 = 1.5[/tex]
The expected number of off-the-job accidents during six months is 1.5.
d. What is the probability of no off-the-job accidents during the next six months (to 4 decimals)?
This is P(X = 0) when [tex]\mu = 1.5[/tex]. So
[tex]P(X = 0) = \frac{e^{-1.5}*1.5^{0}}{(0)!} = 0.2231[/tex]
0.2231 = 22.31% probability of no off-the-job accidents during the next six months.
The two-way table shows the medal count for the top-performing countries in the 2012 Summer Olympics. A 5-column table has 5 rows. The first column has entries United notes, China, Russia, Great Britain, Total. The second column is labeled Gold with entries 46, 38, 24, 29, 137. The third column is labeled Silver with entries 29, 27, 26, 17, 99. The fourth column is labeled Bronze with entries 29, 23, 32, 19, 103. The fifth column is labeled Total with entries 104, 88, 82, 65, 339. Which statement is true?
Which statement is true?
The probability that a randomly selected silver medal was awarded to Great Britain is StartFraction 17 Over 99 EndFraction. The probability that a randomly selected medal won by Russia was a bronze medal is StartFraction 32 Over 103 EndFraction. The probability that a randomly selected gold medal was awarded to China is StartFraction 88 Over 137 EndFraction. The probability that a randomly selected medal won by the United States was a silver medal is StartFraction 104 Over 339 EndFraction.Answer:
(A)The probability that a randomly selected silver medal was awarded to Great Britain is 17/99.
Step-by-step explanation:
The table is given below:
[tex]\left|\begin{array}{l|c|c|c|c|c} &Gold&Silver & Bronze &Total\\United States &46 & 29 & 29 & 104\\China & 38 & 27 & 23 & 88\\Russia & 24 & 26 & 32 &82\\Great Britain & 29 & 17 & 19 & 65\\&&&&&\\Total &137 & 99 & 103 & 339\end{array}\right[/tex]
We calculate the probabilities given in the statements.
(A) The probability that a randomly selected silver medal was awarded to Great Britain
= 17/99
(B)The probability that a randomly selected medal won by Russia was a bronze medal
=32/82
(C)The probability that a randomly selected gold medal was awarded to China
=38/137
(D)The probability that a randomly selected medal won by the United States was a silver medal
=29/104
We can see that only the first statement is true.
Answer: A. The probability that a randomly selected silver medal was awarded to Great Britain is 17/99.
Step-by-step explanation:
I got it right on edge
what is 3/5 of 1800
Answer:
1080
Step-by-step explanation:
first do 3 times 1800, because they are both the numerators. Then divide that number, which is 5400, by the denominator: 5. You will get 1080.
Solving linear equations. Solve the equation 2\3-4x+7\2 = -9x+5\6
Answer:
-2/3
Step-by-step explanation:
2/3-4x+7/2 = -9x+5/6
Bring the x to one side and the numbers to the other:
5x = -2/3-7/2+5/6
5x = -20/6
x = -4/6
x = -2/3
In a particular year, the mean score on the ACT test was 19.6 and the standard deviation was 5.2. The mean score on the SAT mathematics test was 546 and the standard deviation was 126. The distributions of both scores were approximately bell-shaped. Round the answers to at least two decimal placesFind the z-score for an ACT score of 26. The Z-score for an ACT score of 26 is ______ .
Answer:
0.11
Step-by-step explanation:
Let the random variable score, X = 26; mean, ∪ = 19.6; standard deviation, α = 5.2
By comparing P(0≤ Z ≤ 26)
P(Z ≤ X - ∪/α) = P(Z ≤ 26 - 19.6/5.2)
= P(Z ≤ 1.231)
Using Table: P(0 ≤ Z ≤ 1) = 0.39
P(Z > 1) = (0.5 - 0.39) = 0.11
∴ P(Z > 26) = 0.11
compute the missing data in the table for the following exponential function f(x)={1/4}
Answer:
1/256
Step-by-step explanation:
The table shows a chain of fractions for f(x), x1 is 1/4, x2 is 1/16 and x3 is 1/64. All you need to do is multiply the denominator by 4 and put 1 over it. 64*4 = 256, adding the 1 as the numerator gives us the answer of 1/256 as x4.
describe the polynomial expression 3x^2 + 2
Answer:
3×^2+2
The product of three times a number is multiplied with the same product and added with 2.
Proofs are used to show that a mathematical statement is true. The most common form of mathematical statements are if-then statements. Give an example of a true mathematical statement and a false mathematical statement in if-then form. For the false statement, include a counterexample showing that the statement isn’t true.
Answer:
True mathematical statement.
"If x = 0, then for any real number y, we have: y*x = 0."
This is true, and we can prove it with the axioms of the real set.
A false mathematical statement can be:
"if n and x are integer numbers, then n/x is also an integer number."
And a counterexample of this is if we took n = 1 and x = 2, both are integer numbers, so the first part is true, but:
n/x = 1/2 = 0.5 is not an integer number, then the statement is false,
Answer:
True mathematical statement.
"If x = 0, then for any real number y, we have: y*x = 0."
This is true, and we can prove it with the axioms of the real set.
A false mathematical statement can be:
"if n and x are integer numbers, then n/x is also an integer number."
And a counterexample of this is if we took n = 1 and x = 2, both are integer numbers, so the first part is true, but:
n/x = 1/2 = 0.5 is not an integer number, then the statement is false,
Step-by-step explanation:
Alexandra has $15 to buy drinks for her friends at the baseball game. Soda
costs $2.75 and bottled water costs $2.00. This relationship can be
represented by the inequality 2758+2w $ 15. Three of Alexandra's friends
asked for water. Which inequality represents the number of sodas she can
buy?
A. OS 85 3.27
B. 85 3.27
C. OSSS3
D. 853
Answer:
C
Step-by-step explanation:
write an equation for the costs:
if x is the number of sodas
and y is the number of waters
2.75x + 2y <= 15
(<= is less than or equal to)
if we substitute 3 for y
we get 2.75x + 2(3) <= 15
2.75x + 6 <= 15
2.75x <= 9
9 / 2.75 = 3.2727
however, you cannot buy part of a soda
so, round to 3
you also cannot buy negative sodas
so, the answer is C
How do I solve this problem
Answer:
It would take 1 more mile if he took route Street A and then Street B rather than just Street C.
Step-by-step explanation:
Pythagorean Theorem: a² + b² = c²
We use the Pythagorean Theorem to find the length of Street C:
2² + 1.5² = c²
c = √6.25
c = 2.5
Now we find how much longer route A and B is compared to C:
3.5 - (2 + 1.5) = 3.5 - 2.5 = 1