1. the linear equation 5(x + 7) - 3(x - 4) = 7x + 2, x = 9
2. In linear equation 4(3x + 5) - 3 = 9x - 7, x = -8
3. the linear equation 1/3(5x - 9) = 2(1/3x + 6), x = 15
What is a linear equation?A linear equation is an equation in only on variable.
1. To solve the linear equation 5(x + 7) - 3(x - 4) = 7x + 2, we proceed as follows
5(x + 7) - 3(x - 4) = 7x + 2
Expanding the brackets, we have
5x + 35 - 3x + 12 = 7x + 2
Collecting like terms in the expression, we have
5x + 35 - 3x + 12 = 7x + 2
5x - 3x - 7x = 2 - 35 - 12
-5x = -45
x = -45/-5
x = 9
2. To solve linear equation 4(3x + 5) - 3 = 9x - 7, we proceed as follows
4(3x + 5) - 3 = 9x - 7
Expanding the brackets, we have
12x + 20 - 3 = 9x - 7
Collecting like terms in the expression, we have
12x - 9x = - 7 + 3 - 20
3x = -24
x = -24/3
x = -8
3. To solve the linear equation 1/3(5x - 9) = 2(1/3x + 6), we proceed as follows
1/3(5x - 9) = 2(1/3x + 6)
Expanding the brackets, we have
5x/3 - 3 = 2/3x + 12
Collecting like terms, we have
5x/3 - 2x/3 = 12 + 3
3x/3 = 15
x = 15
Learn more about linear equation here:
https://brainly.com/question/28732353
#SPJ1
Find the measure of UK
95°
T
99 °
U
87 R
S
?
K
Please i give 25 points
1. The annual sale volumes of three products X, Y, Z whose sale prices per unit are GHS 3.50, GHS 2.75, GHS 1.50 respectively, in two different markets I and II are shown below: Product Market X Y Z I 6000 9000 1300 II 12000 6000 17000 Find the total revenue in each market with the help of matrices.
Answer:
Step-by-step explanation:
To find the total revenue in each market, we can calculate the product of the sale volumes and sale prices per unit using matrices.
Let's represent the sale volumes as a matrix V and the sale prices per unit as a matrix P:
V = [6000 9000 1300]
[12000 6000 17000]
P = [3.50]
[2.75]
[1.50]
To calculate the total revenue in each market, we need to perform matrix multiplication between V and P, considering the appropriate dimensions. The resulting matrix will give us the total revenue for each product in each market.
Total revenue = V * P
Calculating the matrix multiplication:
[6000 9000 1300] [3.50] = [Total revenue for product X in Market I Total revenue for product Y in Market I Total revenue for product Z in Market I]
[12000 6000 17000] [2.75] [Total revenue for product X in Market II Total revenue for product Y in Market II Total revenue for product Z in Market II]
Performing the calculation:
[60003.50 + 90002.75 + 13001.50] = [Total revenue for product X in Market I Total revenue for product Y in Market I Total revenue for product Z in Market I]
[120003.50 + 60002.75 + 170001.50] [Total revenue for product X in Market II Total revenue for product Y in Market II Total revenue for product Z in Market II]
Simplifying the calculation:
[21000 + 24750 + 1950] = [Total revenue for product X in Market I Total revenue for product Y in Market I Total revenue for product Z in Market I]
[42000 + 16500 + 25500] [Total revenue for product X in Market II Total revenue for product Y in Market II Total revenue for product Z in Market II]
[47650] = [Total revenue for product X in Market I Total revenue for product Y in Market I Total revenue for product Z in Market I]
[84000] [Total revenue for product X in Market II Total revenue for product Y in Market II Total revenue for product Z in Market II]
Therefore, the total revenue in Market I is GHS 47,650 and the total revenue in Market II is GHS 84,000.
There are 12 containers containing various amounts of water, as shown below. ←+ 0 H ½ X X X X X X 1 X 1½ X X X 2 Cups If all of the water were dumped into one container, how many cups would be in the container?
Answer: it contains 12 containers
Step-by-step explanation: i dont know what the answer is but i know what i can help you with all you have to do is round the answer.
GEOMETRY 100 POINTS
TY
Answer:
A.
Step-by-step explanation:
In this case, we have to use tan ([tex]\frac{opposite}{adjacent}[/tex] because we are asked for the opposite side (x) given the adjacent side (20 m).
So tan(75)=[tex]\frac{x}{20}[/tex]
Solve for x
x = 20 * tan(75)
x = 74.641...
x = 74.64 m
Answer:
The height is 74.64 meters
Step-by-step explanation:
We have a ΔABC with ∠B = 75°, hypotenuse = AB
[tex]cos\; 75\textdegree = \frac{\sqrt{3} -1}{2\sqrt{2} }\\\\\frac{1}{cos\; 75\textdegree} = \frac{2\sqrt{2} }{\sqrt{3} -1}[/tex]
cos B = adjacent/hyppotenuse
⇒ hypotenuse (AB) = adjacent/cosB = 20/cosB
[tex]= 20 \frac{2\sqrt{2} }{\sqrt{3} -1}\\\\= \frac{40\sqrt{2} }{\sqrt{3} -1}\\\\= 77.27[/tex]
⇒ AB = 77.27
By pythagoras theorem,
AB² = AC² + BC²
⇒ AC² = AB² - BC²
= 77.27² - 20²
AC² = 5570.65
⇒ AC = √5570.65
AC = 74.64
Colin and Paul have played 38 tennis matches.
Colin has won 20 times.
Paul won the rest.
a) Estimate the probability that Colin wins.
b) Estimate the probability that Paul wins.
Answer:
P(Colin) = 20/38
P(Paul) = 18/38
Step-by-step explanation:
Colin won 20 times out of 38, so the probability that he wins would be 20/38 (or 10/19 simplified).
Paul won 18 times out of 38, so the probability that he wins would be 18/38 (or 9/19 simplified).
Answer:
a) Probability of Colin winning = 10/19
b) Probability of Paul winning = 9/19
Step-by-step explanation:
Total number of matches = 38
Colin won 20,
Paul won the rest so, 38 - 20 = 18
Paul won 18 matches,
From this data, we calculate the probabilities of Colin or Paul winning,
a) Estimate the probability that Colin wins.
Colin won 20 out of 38 matches, so his probability of winning is,
20/38 = 10/19
Probability of Colin winning = 10/19
b) Estimate the probability that Paul wins
Paul won 18 out of 38 matches, so his probability of winning is,
18/38 = 9/19
Probability of Paul winning = 9/19
Mia makes $15.50 per hour. For the Memorial holiday she worked 6 hours and 30 minutes on Friday. On Saturday, she worked for 1 hour and 10 minutes less than she did on Friday and on Monday she worked 4 hours and 10 minutes. How much money did Mia make for the Memorial holiday?
Answer:
$248.00
Step-by-step explanation:
Hours worked on Friday: 6 hr and 30 min = 6.5 hr
Money earned on Friday: $15.5/hr x 6.5 hr = $100.75
Hours worked on Saturday: 6.5 hr - 1.167 hr = 5.33 *10 min = 10/60 = 0.1667 hr
Money earned on Saturday: $15.50 x 5.33 hr = $82.67
Hours worked on Monday: 4.167 hr
Money earned on Monday: $15.50/hr x 4.167 hr = $64.58
Total money made: 100.75 + 82.67 + 64.58 = $248.00
nt- Maths ACSF Level 3
Your mum has saved $12,000 and has agreed to give you a share.
Would you rather have
1/5 or 1/10
please answer ASAP I will brainlist
The correct answer choice is: A. The system has exactly one solution. The solution is (11, 7).
The correct answer choice is: A. all three countries had the same population of 7 thousand in the year 2011.
How to solve this system of equations and interpret the answer?Based on the information provided above, the population (y) in the year (x) of the countries listed are approximated by the following system of equations:
-x + 20y = 129
-x + 10y = 59
y = 7
where:
y is in thousands.x = 10 corresponds to 2010.By solving the system of equations simultaneously, we have the following solution:
-x + 20(7) = 129
x = 140 - 129
x = 11
-x + 10(7) = 59
x = 70 - 59
x = 11
Therefore, the system of equations has only one solution (11, 7).
For the year when the population are all the same for three countries, we have:
x = 2010 + (11 - 10)
x = 2011
Read more on solution and equation here: brainly.com/question/25858757
#SPJ1
HELPPPPPP ME PLEASEEEEE!!
Answer:
Step-by-step explanation:
The quadratic formula is y=ax^2+bx+c
If we move everything to the left side of the equation,
-6x^2=-9x+7 becomes
-6x^2+9x-7=0
a=-6, b=9, c=-7, so the third answer choice
need help with tshdjkdkdndndndndkd
The length of this line segment is: B. 2√13 units.
How to determine the distance between the coordinates for each points?In Mathematics and Geometry, the distance between two (2) end points that are on a coordinate plane can be calculated by using the following mathematical equation:
Distance = √[(x₂ - x₁)² + (y₂ - y₁)²]
Where:
x and y represent the data points (coordinates) on a cartesian coordinate.
By substituting the given end points into the distance formula, we have the following;
Distance = √[(4 + 2)² + (1 + 3)²]
Distance = √[(6)² + (4)²]
Distance = √[36 + 16]
Distance = √52
Distance = 2√13 units.
Read more on distance here: brainly.com/question/12470464
#SPJ1
Ms. Florinda is a kindergarten teacher. She buys 100 pencils and wants to give 2 pencils to each of her students. She has 2 classes, a class with 22 students and a class with 19 students.
Part A
Write an expression for how many pencils she has left after giving them out to her students.
A.
100
−
2
×
(
22
−
19
)
B.
100
−
2
×
22
−
19
C.
100
−
2
×
22
−
2
×
19
D.
100
−
22
−
19
Part B
Does she have enough pencils to give each of her students 2?
Yes or no
, she has
15,18,37,59
More or fewer
than she needs.
Answer:
Part A:
The correct expression for how many pencils Ms. Florinda has left after giving them out to her students is:
A. 100 - 2 × (22 - 19)
Part B:
To determine whether Ms. Florinda has enough pencils to give each of her students 2, we can calculate the total number of pencils needed. The total number of students is the sum of the students in both classes, which is 22 + 19 = 41.
If each student needs 2 pencils, then the total number of pencils needed is 2 × 41 = 82.
Comparing this with the initial number of pencils Ms. Florinda bought (100), we can see that she has more than enough pencils to give each of her students 2.
Yes, she has enough pencils to give each of her students 2.
She has 18 more than she needs.
Copy the axes below.
a) By completing the tables of values to help
you, plot the lines y = 2x + 1 and
y = 10 x on your axes.
b) Use your diagram to find the solution to the
simultaneous equations y = 2x + 1 and
y=2x+1
x012
Y
y = 10-x
x012
Y
= 10 - x.
y =
Y
10
-3 -2 -1
098
7
6
659
-5
-4
3
2
-1-
-2
w
1 2 3 4 5 6 7 8 9 10 x
By completing the tables of values and plotting the lines, we can determine that the solution to the simultaneous equations y = 2x + 1 and y = 10 - x is x = 3 and y = 7, which corresponds to the point (3, 7) on the graph.
(a) To plot the lines y = 2x + 1 and y = 10 - x, we need to complete the tables of values and then plot the points on the axes.
For the line y = 2x + 1, we can choose some values of x and calculate the corresponding y values:
x | y
0 | 1
1 | 3
2 | 5
For the line y = 10 - x, we can also choose some values of x and calculate the corresponding y values:
x | y
0 | 10
1 | 9
2 | 8
Plot the points (0, 1), (1, 3), and (2, 5) for the line y = 2x + 1, and the points (0, 10), (1, 9), and (2, 8) for the line y = 10 - x on the provided axes.
(b) To find the solution to the simultaneous equations y = 2x + 1 and y = 10 - x,
we need to identify the point(s) where the two lines intersect on the graph.
From the plotted lines, we can see that they intersect at the point (3, 7). Therefore, the solution to the simultaneous equations y = 2x + 1 and y = 10 - x is x = 3 and y = 7.
In conclusion, by completing the tables of values and plotting the lines, we can determine that the solution to the simultaneous equations y = 2x + 1 and y = 10 - x is x = 3 and y = 7, which corresponds to the point (3, 7) on the graph.
For similar question on simultaneous equations.
https://brainly.com/question/148035
#SPJ8
An event with probability 3/4 is more likely to happen than an event with probability 4/5
True or False why?
The given statement "An event with probability 3/4 is more likely to happen than an event with probability 4/5" is true.
The reason why we say an event with a higher probability is more likely to happen is because probability is the measure of how often an event will occur during a large number of trials.
Therefore, when we compare the probabilities of two events, we can expect that the one with the higher probability will occur more often and therefore is more likely to happen.For instance, in the context of a coin flip, the probability of getting heads is 1/2 while the probability of getting tails is also 1/2.
Therefore, both events are equally likely to happen. On the other hand, if we were to compare the probability of rolling a six-sided die and getting a 1, which has a probability of 1/6, with the probability of rolling the die and getting a number less than or equal to 4, which has a probability of 4/6 or 2/3, we can say that the latter is more likely to happen since it has a higher probability.
For more such questions on probability, click on:
https://brainly.com/question/13604758
#SPJ8
please answer i am stuck
The correct answer choice is: A. The system has exactly one solution. The solution is (13, 5).
The correct answer choice is: A. all three countries had the same population of 5 thousand in the year 2013.
How to solve this system of equations and interpret the answer?Based on the information provided above, the population (y) in the year (x) of the counties listed are approximated by the following system of equations:
-x + 20y = 87
-x + 10y = 37
y = 5
where:
y is in thousands.x = 10 corresponds to 2010.By solving the system of equations simultaneously, we have the following solution:
-x + 20(5) = 87
x = 100 - 87
x = 13
-x + 10(5) = 37
x = 50 - 37
x = 13
Therefore, the system of equations has only one solution (13, 5).
For the year when the population are all the same for three countries, we have:
x = 2010 + (13 - 10)
x = 2013
Read more on solution and equation here: brainly.com/question/25858757
#SPJ1
The area of a triangular road sign is 70 square ft. If the base of the sign measures 14 ft, what is the height of the sign?
Answer:
height = 10 ft
Step-by-step explanation:
the area (A) of a triangle is calculated as
A = [tex]\frac{1}{2}[/tex] bh ( b is the base and h the height )
given A = 70 and b = 14 , then
[tex]\frac{1}{2}[/tex] × 14 × h = 70
7h = 70 ( divide both sides by 7 )
h = 10 ft
What is the slope of the Line y=-3x+2
Answer:
m = -3
Step-by-step explanation:
The slope-intercept form is y = mx + b
m = the slope
b = y-intercept
The equation is y = -3x + 2
m = -3
So, the slope of the line is -3
Answer:
The slope is -3
Step-by-step explanation:
You were given the easiest form of linear equation, the slope-intercept form, because these are the ones that directly tell you the slope and the y-intercept.
y=mx+b, Where m is the slope and b is the y-intercept.
Which of the figure has reflectional symmetry
A. Figure C
B. Figure B
C.Figure D
D.Figure A
The figure that shows a reflectional symmetry would be figure C. That is option A.
What is reflectional symmetry of shapes?The reflectional symmetry of shapes is defined as the type of symmetry where one-half of the object reflects the other half of the object.
This is also called a mirror symmetry. This is because the image seen in one side of the mirror is exactly the same as the one seen on the other side of the mirror.
Learn more about reflection here:
https://brainly.com/question/31487715
#SPJ1
Find the length of side a. 13, 5 B on a right triangle
In a right triangle, the length of side "a" is 12.
The Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides, can be used to find the length of side "a" in a right triangle with sides of 13 and 5 units.
Let's assign "a" as the unknown side. According to the Pythagorean theorem, we have the equation: [tex]a^{2}[/tex] = [tex]13^{2}[/tex] - [tex]5^{2}[/tex].
Simplifying the equation, we get [tex]a^{2}[/tex] = 169 - 25, which becomes [tex]a^{2}[/tex] = 144.
To solve for "a," we take the square root of both sides: a = √144.
The square root of 144 is 12. Therefore, side "a" has a length of 12 units.
In summary, using the Pythagorean theorem, we determined that side "a" in the right triangle with side lengths 13 and 5 units has a length of 12 units.
Know more about Pythagorean theorem here:
https://brainly.com/question/343682
#SPJ8
A cargo truck traveled 261 miles in 4 hours. About what speed was the truck averaging on this trip?
a.
65 mph
c.
55 mph
b.
1044 mph
Answer:
To find the average speed of the truck, we can divide the total distance travelled by the total time taken.
Average speed = Total distance / Total time
In this case, the truck travelled 261 miles in 4 hours.
Average speed = 261 miles / 4 hours
Average speed = 65.25 mph (rounded to two decimal places)
Therefore, the truck was averaging approximately 65 mph on this trip.
The correct option is (a) 65 mph.
An import company brought into the country some amplifiers that cost sh. 3,750-each. The government imposed an import duty of 125% and a sales tax of 20 %. If the company decided to make a 10% profit on the sales, calculate the selling price of each amplifier.
Answer:
To calculate the selling price of each amplifier, we need to consider the cost, import duty, sales tax, and the desired profit margin.
Cost of each amplifier: sh. 3,750
Import duty of 125% on the cost:
Import duty = 125% of sh. 3,750
= 125/100 * sh. 3,750
= sh. (125/100 * 3,750)
= sh. 4,687.50
Cost of each amplifier including import duty:
Total cost = Cost + Import duty
= sh. 3,750 + sh. 4,687.50
= sh. 8,437.50
Sales tax of 20% on the total cost:
Sales tax = 20% of Total cost= 20/100 * sh. 8,437.50
= sh. (20/100 * 8,437.50)
= sh. 1,687.50
Total cost including sales tax:
Total cost = Total cost + Sales tax
= sh. 8,437.50 + sh. 1,687.50
= sh. 10,125
Desired profit margin of 10% on the total cost:
Profit = 10% of Total cost
= 10/100 * sh. 10,125
= sh. (10/100 * 10,125)
= sh. 1,012.50
Selling price of each amplifier:
Selling price = Total cost + Profit
= sh. 10,125 + sh. 1,012.50
= sh. 11,137.50
Assume that at the current exchange rate, the British pound is worth $1.65 in American dollars. You have some dollar bills and several British pound coins. There are 17 items altogether, which have a total value of $20.25 in American dollars. How many American dollars and how many British pound coins do you have?
Answer:
So we have $11.64 in American dollars and £5 in British pound coin
Step-by-step explanation:
To solve this problem, we can use a system of equations. Let x be the number of American dollars and y be the number of British pound coins. Then we have:
x + y/1.65 = 20.25 (since each British pound coin is worth 1.65 American dollars)
x = 17 - y (since there are 17 items altogether)
Substituting the second equation into the first, we get:
(17 - y) + y/1.65 = 20.25
Multiplying both sides by 1.65, we get:
28.05 - y + y = 33.4125
y = 33.4125 - 28.05
y = 5.3625
Therefore, we have 5 British pound coins and:
x = 17 - y = 17 - 5.3625 = 11.6375
Here is a unit circle with point P at (1, 0) Find the coordinates of P after the circle rotates the given amount counter clockwise around its center
1. 1/3 of a full rotation: ?
2 1/2 of a full rotation: ?
3. 2/3 of a full rotation: ?
1/3 of a full rotation: (-0.5, √3/2)
1/2 of a full rotation: (-1, 0)
2/3 of a full rotation: (0.5, -√3/2)
These are the coordinates of point P after the corresponding rotations around the unit circle's center.
To find the coordinates of point P after the unit circle rotates a certain amount counter-clockwise around its center, we can use the properties of the unit circle and the trigonometric functions.
1/3 of a full rotation:
A full rotation in the unit circle corresponds to 360 degrees or 2π radians. Therefore, 1/3 of a full rotation is equal to (1/3) * 360 degrees or (1/3) * 2π radians.
When the unit circle rotates 1/3 of a full rotation, point P will end up at an angle of (1/3) * 2π radians or 120 degrees from the positive x-axis.
In the unit circle, the x-coordinate of a point on the circle represents the cosine of the angle, and the y-coordinate represents the sine of the angle.
At an angle of 120 degrees or (1/3) * 2π radians, the cosine is -0.5 and the sine is √3/2.
Therefore, the coordinates of point P after rotating 1/3 of a full rotation are (-0.5, √3/2).
1/2 of a full rotation:
Similarly, 1/2 of a full rotation is equal to (1/2) * 360 degrees or (1/2) * 2π radians.
When the unit circle rotates 1/2 of a full rotation, point P will end up at an angle of (1/2) * 2π radians or 180 degrees from the positive x-axis.
At an angle of 180 degrees or (1/2) * 2π radians, the cosine is -1 and the sine is 0.
Therefore, the coordinates of point P after rotating 1/2 of a full rotation are (-1, 0).
2/3 of a full rotation:
Again, 2/3 of a full rotation is equal to (2/3) * 360 degrees or (2/3) * 2π radians.
When the unit circle rotates 2/3 of a full rotation, point P will end up at an angle of (2/3) * 2π radians or 240 degrees from the positive x-axis.
At an angle of 240 degrees or (2/3) * 2π radians, the cosine is 0.5 and the sine is -√3/2.
Therefore, the coordinates of point P after rotating 2/3 of a full rotation are (0.5, -√3/2).
for such more question on coordinates
https://brainly.com/question/23907194
#SPJ8
GEOMETRY 50POINTS
find y to the nearest degree
The value of y in the figure is
35.134 degrees
How to determine the value of yThe value of y is worked using SOH CAH TOA
Sin = opposite / hypotenuse - SOH
Cos = adjacent / hypotenuse - CAH
Tan = opposite / adjacent - TOA
The figure shows a right angle triangle of
opposite = 19
adjacent = 27
The angle is calculated using tan, TOA let the angle be y
tan y= Opposite / Adjacent
tan y = 19 / 27
y = arc tan (19/27)
y = 35.134 degrees
Learn more about trigonometry here:
https://brainly.com/question/29402966
#SPJ1
My dance lesson starts at 11:40 am. It always 1 your and 10 minutes what time does it end?
Answer:
Step-by-step explanation:
This may be wrong but hear me out, 40+10 is 50 and 11+1 is 12, so 12:50?
An author is writing and illustrating a new book. The gale diagram represent the ratio of area. In cm2 with text to area with illustrations .based on the ratio there 500cm2 of illustrations
A store has a sale with 20% off every item. When you enter the store, you receive a coupon that states that you receive an additional 30% off. Is this equal to a 50% discount? Explain your answer
Answer: Nope
Step-by-step explanation:
No, receiving a 20% discount followed by an additional 30% discount does not result in a total discount of 50%.
To understand why, let's consider an example with an item priced at $100.
If there is a 20% discount applied initially, the price of the item would be reduced by 20%, which is $100 * 0.20 = $20. So the new price after the first discount would be $100 - $20 = $80.
Now, if there is an additional 30% discount applied to the $80 price, the discount would be calculated based on the new price. The 30% discount would be $80 * 0.30 = $24. So the final price after both discounts would be $80 - $24 = $56.
Comparing the final price of $56 to the original price of $100, we can see that the total discount is $100 - $56 = $44.
Therefore, the total discount received is $44 out of the original price of $100, which is a discount of 44%, not 50%.
Hence, receiving a 20% discount followed by an additional 30% discount does not result in a total discount of 50%.
What is the volume of this
figure?
A 774 cm³
B 3,546 cm³
C 843 cm3
D 2,250 cm³
Hello!
V
= (18cm * 15cm * 6cm) + ((13cm - 6cm) * 15cm * 6cm)
= 1,620cm³ + 630cm³
= 2,250cm³
The better definition of Intersection is:
OA system that has at least one solution.
O Where lines cross over each other. The lines have a common point.
OA value we can put in place of a variable (such as x) that makes the equation true.
OA system that has no solutions.
Answer:
Where lines cross over each other. The lines have a common point.
A population of a particular yeast cell develops with a constant relative growth rate of 0.4465 per hour. The initial population consists of 3.3 million cells. Find the population size (in millions of cells) after 4 hours. (Round your answer to one decimal place.)
Starting with an initial population of 3.3 million yeast cells and a constant relative growth rate of 0.4465 per hour, the population size reaches approximately 5.892 million cells after 4 hours.
To calculate the population size after 4 hours, we can use the formula for exponential growth:
Population size = Initial population * [tex](1 + growth rate)^t^i^m^e[/tex]
Given that the initial population is 3.3 million cells and the relative growth rate is 0.4465 per hour, we can plug in these values into the formula:
Population size = 3.3 million *[tex](1 + 0.4465)^4[/tex]
Calculating the exponent first:
[tex](1 + 0.4465)^4 = 1.4465^4[/tex] ≈ 1.7879
Now, we can substitute this value back into the formula:
Population size = 3.3 million * 1.7879
Calculating the population size:
Population size = 5.892 million
Therefore, the population size after 4 hours is approximately 5.892 million cells.
For more such information on: growth rate
https://brainly.com/question/30611694
#SPJ8