The curved arcs indicate which angles are congruent with one another. The single arcs on angles R and I mean these two angles are congruent. The double arcs on angles Q and H are the other pair of congruent angles.
So far we have taken care of the two "A"s in "AAS". What we're missing is the "S", which refers to the side. This side cannot be between the two angles, otherwise we'd be talking about ASA instead of AAS.
There are two possible answers here
the first possible answer is QP = HGthe second possible answer is RP = IGif either one of those congruences are true, then we have enough to use AAS
Some books use SAA in place of AAS, and they're the same thing.
please hurry I’ll make brainiest
A marble is thrown off of a balcony, towards the ground, from a height
of 18 feet above ground level, with a velocity of 4.5 feet per second.
Which function could be used to model the height of the marble, after
t seconds?
Answer:
Option (3)
Step-by-step explanation:
A stone has been thrown off towards the ground from a height [tex]h_{0}[/tex] = 18 feet
Initial speed of the stone 'u' = 4.5 feet per second
Since height 'h' of a projectile at any moment 't' will be represented by the function,
h(t) = ut - [tex]\frac{1}{2}(g)(t)^2[/tex] + [tex]h_{0}[/tex]
h(t) = 4.5t - [tex]\frac{1}{2}(32)t^2[/tex]+ 18 [ g = 32 feet per second square]
h(t) = 4.5t - 16t² + 18
h(t) =-16t² + 4.5t + 18
Therefore, Option (3) will be the answer.
Isaac is organizing a 5-kilometer road race. The safety committee
recommends having a volunteer every 1 of a kilometer and at
the finish.
| Are 10 volunteers enough?
Answer:
10 volunteers are more than recommendedStep-by-step explanation:
The recommended number of volunteers is five (5)
Since the the distance of the race is 5km,
and the safety committees recommends 1 volunteer per kilometre.
Hence ten (10) volunteers is more than enough
8 cm
10 cm
The surface area of the above figure is
A. 816.8 cm2
B. 879.6 cm2
C. 565.5 cm2
D. 1131.0 cm
Hi there u have not given us the figure please correct the answer and I will send my answer.Is it a cylinder cuboid cube or?
Please answer this question for me thank you !! 20 Points !! Will give brainliest !!
Answer:
b
Step-by-step explanation:
In a parralel graph, the slopes would always be the same. The intercept in the answer is 2, showing that the coordinate points are (0,2)
Hope this helps!:)
Answer:
B) y = 2x + 2
Step-by-step explanation:
Firstly, you have to know that parallel lines have congruent slopes. That means that the slope of this line will be 2.
Next, make a point slope form of the equation:
y - y1 = m(x - x1)
y - 2 = 2(x - 0)
y - 2 = 2x - 0
Now, we can make it into slope intercept form.
y - 2 = 2x
y = 2x + 2
Hope this helps :)
Consider the system:
y = 3x + 5
y = ax + b
What values for a and b make the system
inconsistent? What values for a and b make the
system consistent and dependent? Explain.
Answer:
Step-by-step explanation:
In this problem, we have the following linear equations:
y=3x+5
y=ax+b
We know that a linear equation is an equation for a line. In a system of linear equations, two or more equations work together.
1. What values for a and b make the system inconsistent?
A system is inconsistent if and only if the lines are parallel in which case the system has no solution. This is illustrated in the first Figure bellow. Two lines are parallel if they share the same slope. So, the system is inconsistent for:
a=3
for any value of b
2. What values for a and b make the system consistent and dependent?
A system is consistent if and only if the lines are the same in which case the system has infinitely many solutions. This is illustrated in the second Figure bellow. So, the system is consistent and dependent for:
a=3 and b=5
Answer:
When a = 3 and b ≠ 5, the system will be inconsistent because the lines will be parallel. When a = 3 and b = 5, the system will be consistent and dependent because they represent the same line.
Step-by-step explanation:
Simplify this equation x2-5x-36
Answer:
[tex]=\left(x+4\right)\left(x-9\right)[/tex]
Step-by-step explanation:
[tex]x^2-5x-36\\\mathrm{Break\:the\:expression\:into\:groups}\\=\left(x^2+4x\right)+\left(-9x-36\right)\\\mathrm{Factor\:out\:}x\mathrm{\:from\:}x^2+4x\mathrm{:\quad }x\left(x+4\right)\\\mathrm{Factor\:out\:}-9\mathrm{\:from\:}-9x-36\mathrm{:\quad }-9\left(x+4\right)\\=x\left(x+4\right)-9\left(x+4\right)\\\mathrm{Factor\:out\:common\:term\:}x+4\\=\left(x+4\right)\left(x-9\right)[/tex]
In a grinding operation, there is an upper specification of 3.150 in. on a dimension of a certain part after grinding. Suppose that the standard deviation of this normally distributed dimension for parts of this type ground to any particular mean dimension LaTeX: \mu\:is\:\sigma=.002 μ i s σ = .002 in. Suppose further that you desire to have no more than 3% of the parts fail to meet specifications. What is the maximum (minimum machining cost) LaTeX: \mu μ that can be used if this 3% requirement is to be met?
Answer:
Step-by-step explanation:
Let X denote the dimension of the part after grinding
X has normal distribution with standard deviation [tex]\sigma=0.002 in[/tex]
Let the mean of X be denoted by [tex]\mu[/tex]
there is an upper specification of 3.150 in. on a dimension of a certain part after grinding.
We desire to have no more than 3% of the parts fail to meet specifications.
We have to find the maximum [tex]\mu[/tex] such that can be used if this 3% requirement is to be meet
[tex]\Rightarrow P(\frac{X- \mu}{\sigma} <\frac{3.15- \mu}{\sigma} )\leq 0.03\\\\ \Rightarrow P(Z <\frac{3.15- \mu}{\sigma} )\leq 0.03\\\\ \Rightarrow P(Z <\frac{3.15- \mu}{0.002} )\leq 0.03[/tex]
We know from the Standard normal tables that
[tex]P(Z\leq -1.87)=0.0307\\\\P(Z\leq -1.88)=0.0300\\\\P(Z\leq -1.89)=0.0293[/tex]
So, the value of Z consistent with the required condition is approximately -1.88
Thus we have
[tex]\frac{3.15- \mu}{0.002} =-1.88\\\\\Rrightarrow \mu =1.88\times0.002+3.15\\\\=3.15[/tex]
The mean family income for a random sample of 600 suburban households in Loganville shows that a 95 percent confidence interval is ($43,100, $59,710). Alma is conducting a test of the null hypothesis H0: µ = 42,000 against the alternative hypothesis Ha: µ ≠ 42,000 at the α = 0.05 level of significance. Does Alma have enough information to conduct a test of the null hypothesis against the alternative?
Answer:
[tex] 43100 \leq \mu \leq 59710[/tex]
And for this case we want to test the following hypothesis:
Null hypothesis: [tex] \mu =42000[/tex]
Alternative hypothesis: [tex] \mu \neq 42000[/tex]
For this case since the lower value of the confidence interval is higher than 42000 we have enough evidence to reject the null hypothesis at the 55 of significance and we can conclude that the true mean is significantly different from 42000
Step-by-step explanation:
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
And for this case the 95% confidence interval is already calculated as:
[tex] 43100 \leq \mu \leq 59710[/tex]
And for this case we want to test the following hypothesis:
Null hypothesis: [tex] \mu =42000[/tex]
Alternative hypothesis: [tex] \mu \neq 42000[/tex]
For this case since the lower value of the confidence interval is higher than 42000 we have enough evidence to reject the null hypothesis at the 55 of significance and we can conclude that the true mean is significantly different from 42000
Answer: Yes, because $42,000 is not contained in the 95% confidence interval, the null hypothesis would be rejected in favor of the alternative, and it could be concluded that the mean family income is significantly different from $42,000 at the α = 0.05 level
Step-by-step explanation:
took the test
The graph of an absolute value function has a
vertex at (-2,3) and passes through the point (-1,
0). Using transformations of the parent function,
has the graph been dilated by a scale factor other
than 1? Explain
Answer:
Yes. The graph of the parent function has been dilated by a scale factor other than 1.
Step-by-step explanation:
Let the parent function of the absolute value function is,
f(x) = |x|
This function passes through (0, 0) and slope = 1 or -1.
After transformation vertex (0, 0) becomes (-2, 3) and a point through which this function passes through is (-1, 0)
Slope of the function = [tex]\frac{3-0}{-2+1}[/tex]
= -3
Since slope of the transformed function is less than the parent function. (-3 < -1)
Therefore, parent function will be dilated by a scale factor other than 1.
Answer:
edge answer
Step-by-step explanation:
Yes, the graph has been dilated.
Using the standard form of the equation, substitute in the values: h = –2, k = 3, x = –1, and y = 0.
Solve the equation to get a = –3.
Graphically, the parent function follows the pattern of right 1, up 1. Moving 1 unit to the right from the vertex, you can move down 3 units to get to the point (–1, 0), so it has been horizontally compressed.
Zed went to the store and bought a bag of chips. He estimated there would 1 point
be 350 chips in the package, but realized there were only 210 chips in that
package. What was his percent error?'
Answer:
66.67%
Step-by-step explanation:
They do not say that I estimate a value of 350 chips but in reality there were 210 chips in total, we have that the error formula is:
Percentage error (%) = (estimated value - actual value) / actual value × 100 (in absolute value)
replacing:
Percentage error (%) = | 350 - 210 | / 210 × 100
Percentage error (%) = 140/210 * 100
Percentage error (%) = 66.67
Which means that the percentage error is 66.67%
Nam owns a used car lot. He checked the odometers of the cars and recorded how far they had driven. He
then created both a histogram and a box plot to display this same data (both diagrams are shown below).
Which display can be used to find how many vehicles had driven more than 200,000 km (kilometers)?
Choose 1 answer:
Answer:
a histogram
Step-by-step explanation:
You can count easily from hiistogram how many vehicles had driven more than 200,000 km (kilometers) and that's not the case with the box plot
if you’re good with permutations in math 30 help out with this easy question
In how many ways can five boys and three girls sit in a row such that all boys sit together?
a) 4800
b) 5760
c) 2880
d) 1440
Answer:
2880
Step-by-step explanation:
Consider the 5 boys to be 1 group. The boys and 3 girls can be arranged in 4! ways.
Within the group, the boys can be arranged 5! ways.
The total number of permutations is therefore:
4! × 5! = 2880
What is the solution to the equation a+5-2/3=9
Answer:
a= [tex]\frac{14}{3}[/tex]
a≈4.6
Step-by-step explanation:
a+5- [tex]\frac{2}{3}[/tex] =9
a+ [tex]\frac{15}{3} -\frac{2}{3}[/tex] =9
a+ [tex]\frac{13}{3}[/tex] =9
Subtract [tex]\frac{13}{3}[/tex] from both sides
a=[tex]\frac{14}{3}[/tex]
a≈4.6
Answer:
a
Step-by-step explanation:
Which triangle’s area would be calculated using the trigonometric area formula?
Triangle E F D is shown. The length of E F is 10, the length of D F is 7, and the length of D E is 12.
Triangle Q R P is shown. The length of Q R is 5 and the length of R P is 6. Angle Q R P is 40 degrees.
Triangle A B C is shown. The length of A B is 4 and the length of B C is 5. Angle B C A is 25 degrees.
Triangle X Y Z is shown. The length of Y Z is 4. Angle Z X Y is 29 degrees and angle X Y Z is 110 degrees.
Answer:
Triangle Q R P is shown. The length of Q R is 5 and the length of R P is 6. Angle Q R P is 40 degrees.
Step-by-step explanation:
The trigonometric formula refers the two sides length of the triangle and it also consists of included angle to find out the area
A = [tex]\frac{1}{2}[/tex] ab sin C
QPR contains two sides and the included angle
XYZ has one side and the two angles
DEF has only three sides
And, the ABC contains two sides but does not have the included angle
Based on the explanation above, the correct option is B
Answer: the second option aka B
Step-by-step explanation: The other person explained it and I'm just here to tell you they gave the correct and answer for edge 2020.
Expansion Numerically Impractical. Show that the computation of an nth-order determinant by expansion involves multiplications, which if a multiplication takes sec would take these times:
n 10 15 20 25
Time 0.004 sec 22 min 77 years 0.5.109years
Answer:
number of multiplies is n!n=10, 3.6 msn=15, 21.8 minn=20, 77.09 yrn=25, 4.9×10^8 yrStep-by-step explanation:
Expansion of a 2×2 determinant requires 2 multiplications. Expansion of an n×n determinant multiplies each of the n elements of a row or column by its (n-1)×(n-1) cofactor determinant. Then the number of multiplies is ...
mpy[n] = n·mp[n-1]
mpy[2] = 2
So, ...
mpy[n] = n! . . . n ≥ 2
__
If each multiplication takes 1 nanosecond, then a 10×10 matrix requires ...
10! × 10^-9 s ≈ 0.0036288 s ≈ 0.004 s . . . for 10×10
Then the larger matrices take ...
n=15, 15! × 10^-9 ≈ 1307.67 s ≈ 21.8 min
n=20, 20! × 10^-9 ≈ 2.4329×10^9 s ≈ 77.09 years
n=25, 25! × 10^-9 ≈ 1.55112×10^16 s ≈ 4.915×10^8 years
_____
For the shorter time periods (less than 100 years), we use 365.25 days per year.
For the longer time periods (more than 400 years), we use 365.2425 days per year.
How do I set up this problem. I'm lost
Answer:
the answer is 64 .
Step-by-step explanation:
basically i just divided 48 by 2.4 and got 20 .. so that means that 20 has to be the multiplied factor so i just multiplied 3.2 by 20 and got 64.
(Please hurry)
Explain how to find the value of x
Answer:
96
Step-by-step explanation:
Exterior angles add up to 360
360 - 134-130 = 96
x = 96
Solve X squared minus 8X +3 equals zero by completing the square which equation is used in the process?
Answer:
x = 4 ± √13
Step-by-step explanation:
x² − 8x + 3 = 0
Complete the square. (-8/2)² = 16.
x² − 8x + 16 − 13 = 0
(x − 4)² − 13 = 0
(x − 4)² = 13
x − 4 = ±√13
x = 4 ± √13
3.
QR
find the arc length
02.83
021.99
O 12.57
0 34.56
18. The servicing of a machine requires two separate steps, with the time needed for the
first step being an exponential random variable with mean 0.2 hour and the time for the
second step being an independent exponential random variable with mean 0.3 hour. If a
repair person has 20 machines to service, what is approximately the probability that all the
work can be completed in 8 hours?
Answer:
Step-by-step explanation:
Let X denote the first step
Let Y denote the second step
Then
E(X) = 0.2
E (Y) = 0.3
V (X) = 0.04
V (Y) = 0.09
Now,
E(X,Y) = E[X] + E{Y}
0.2 + 0.3 = 0.5
And since X and Y are independent
Therefore,
V(X , Y) = V(X) + V(Y)
= 0.04 + 0.09
= 0.13
Now required probability is
[tex]P\{ \sum X_i+\sum Y_i<8 \}=P\{ \frac{\sum X_i + \sum Y_i-nE[X+Y]}{\sqrt{Var(X+Y)n} } <\frac{8-20\times0.5}{\sqrt{0.13\times20} } \}\\\\=P\{Z_n<\frac{8-10}{\sqrt{2.6} } \}\\\\=P\{Z_n<-1.24\}[/tex]
= Φ(-1.24)
= 1 - Φ (1.24)
= 1 - 0.8925
= 0.1075
What’s the correct answer for this question?
Answer: choice D 1/2
Step-by-step explanation:
Events A and B are independent if the equation P(A∩B) = P(A) · P(B) holds true.
so
1/6=1/3*p(A)
p(A)=1/2
If (-2, y) lies on the graph of y=3x, then y=
1/9
0-6
hi
if reduce equation of line is y = 3x
and if x = -2 so y = 3*-2 = -6
I NEED HELP WITH THIS PLEASE HELP ME
Answer:
156 minutes
Step-by-step explanation:
So we need to create an equation to represent how Frank's phone company bills him
I will denote "y" as the total for his billI will denote "x" as the number of minutes Frank usesSo the phone company charges an $8 monthly fee, so this value remains constant and will be our "y-intercept"
They then charge $0.06 for every minute he talks, this will be our "slope"
Combining everything into an equation, we have: y = 0.06x + 8
Now since we were given Franks phone bill total and want to figure out how many minutes he used, we just need to solve the equation for x and plug in our known y value
y = 0.06x + 8 → y - 8 = 0.06x → [tex]x=\frac{y-8}{0.06}[/tex] Then plugging in our y value we get [tex]x=\frac{17.36-8}{0.06}=\frac{9.36}{0.06}= 156[/tex]Frank used up a total of 156 minutes
If the discriminant of a quadratic equation is equal to -8, which statement describes the roots?
There are two complex roots.
There are two real roots.
There is one real root.
There is one complex root.
Answer:
There are two complex roots.
Step-by-step explanation:
When the discriminant is a negative number, the parabola will not intersect the x-axis. This means that there are no solutions/two complex solutions.
A customer visiting the suit department of a certain store will purchase a suit with probability 0.22, a shirt with probability 0.30, and a tile with probability 0.28. The customer will purchase both a suit and a shirt with probability 0.11, both a suit and a tie with probability 0.14, and both a shirt and a tie with probability 0.10. A customer will purchase all 3 items with probability 0.06. What’s the probability that a customer purchase: (a) none of these items? (b) exactly 1 of these items?
Answer:
a. The probability that a customer purchase none of these items is 0.49
b. The probability that a customer purchase exactly 1 of these items would be of 0.28
Step-by-step explanation:
a. In order to calculate the probability that a customer purchase none of these items we would have to make the following:
let A represents suit
B represents shirt
C represents tie
P(A) = 0.22
P(B) = 0.30
P(C) = 0.28
P(A∩B) = 0.11
P(C∩B) = 0.10
P(A∩C) = 0.14
P(A∩B∩C) = 0.06
Therefore, the probability that a customer purchase none of these items we would have to calculate the following:
1 - P(A∪B∪C)
P(A∪B∪C) =P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C)
= 0.22+0.28+0.30-0.11-0.10-0.14+0.06
= 0.51
Hence, 1 - P(A∪B∪C) = 1-0.51 = 0.49
The probability that a customer purchase none of these items is 0.49
b.To calculate the probability that a customer purchase exactly 1 of these items we would have to make the following calculation:
= P(A∪B∪C) - ( P(A∩B) +P(C∩B) +P(A∩C) - 2 P(A ∩ B ∩ C))
=0.51 -0.23 = 0.28
The probability that a customer purchase exactly 1 of these items would be of 0.28
A stuffed animal business has a total cost of production C=12x+30 and a revenue function R=20x. Find the break-even point and express it as an ordered pair in the form (x,y).
Answer:
The break-even point is when x is equal to 3.75
Step-by-step explanation:
At the break-even point, total cost function is equal to the total revenue function. In that regard, break-even is when;
C = 12x + 30 is equal to R = 20x.
thus, 12x + 30 = 20x
then, 12x - 12x + 30 = 20x - 12x
therefore, 30 = 8x
then, 30/8 = 8x/8
finally, x = 15/4 or 3.75
A stuffed animal business has a total cost of production C=12x+30 and a revenue function R=20x, the Break even point is (3.75,75)
Given :
A stuffed animal business has a total cost of production C=12x+30 and a revenue function R=20x.
Break even point occurs when revenue = cost
R=C
Replace the expression and solve for x
[tex]R=C\\20x=12x+30\\20x-12x=30\\8x=30\\divide \; by \; 8\\x=\frac{15}{4}\\x=3.75[/tex]
Now we find out y using Revenue
[tex]R= 20x\\R=20(3.75)\\R=75[/tex]
So y is 75
Break even point is (3.75,75)
Learn more : brainly.com/question/15281855
Please answer this correctly
Answer:
Stem | Leaf
13 | 4 9 9
16 | 0 2 3 6
Step-by-step explanation:
134, 139, 139
160, 162, 163, 166
If a variable has a distribution that is bell-shaped with mean 16 and standard deviation 6, then according to the Empirical Rule, 99.7% of the data will lie between which values? g
Answer:
99,7 % of all values will be in the interval ( -2 ; 34)
Step-by-step explanation:
Empirical Rule for the normal distribution with mean X, implies that the intervals :
X ± σ will contain 68 % of all values
X ± 2σ will contain 95 % of all values
X ± 3σ will contain 99,7 % of all values
Therefore in the interval X - 3σ ; X + 3σ
X - 3*6 = X -18 = 16 - 18 = -2
And
X + 3*6 = X + 18 = 16 + 18 = 34
99,7 % of all values will be in the interval ( -2 ; 34)
If a triangle has sides that are 21 and 6 what is the range for third side x?
Enter your answer without spaces in range format.
Example: 1<x<3
Answer:
15<x<27
Step-by-step explanation:
Rule for the sides of a triangle:
The sum of the two smallest sides of a triangle must be greater than the biggest side.
In this question:
Sides of 6, 21 and x. We have to find the range for x.
If 21 is the largest side:
Two smallest are 6 and x.
x + 6 > 21
x > 21 - 6
x > 15
If x is the largest side:
Two smallest and 6 and 21. So
21 + 6 > x
27 > x
x < 27
Then
x has to be greater than 15 and smaller than 27. So the answer is:
15<x<27
I need help asaap!!!!
Answer:
Answer choice 3
Step-by-step explanation:
Option 3 is correct one
∠TQS ≅ ∠RSQ
⇒ ΔTQS ≅ ΔRSQ
⇒ QR≅ST and QT≅RS
QRST is parallelogram by definition
Answer:
Option 3
Step-by-step explanation:
Angle TQS is congruent to angle RSQ and can be proved by alternating interior angle theorem.
Triangle TQS is congruent to triangle RSQ.
Line QR is congruent to line ST.
Line QT is congruent to line RS.