Answer:
The first one
Step-by-step explanation:
Took the test
Answer: 1/10 of the store's total sales last month were in appliances (lower right corner)
Step-by-step explanation:
Let's go through the four possible answers
In the upper left corner it says "Total mobile phone sales is likely 27,000" which is a paraphrase of what is given. The chart gives 9000 as the phone sales for that one particular store. If all stores are identical in performance, then we have 4*9000 = 36000 in total mobile phone sales. Of course, it's impossible to know for sure how the other stores did. So we can eliminate this as one of the answers.
In the upper right corner, it says "13% of the stores sales was in car electronics" (also paraphrased). We have 13 thousand in car electronics out of 17+13+6+9+15 = 60 thousand total. Divide the two values: 13/60 = 0.2167 = 21.67% approximately. So we can eliminate this as an answer.
In the lower left corner, it says "the total sales is likely greater than $300,000" but we don't know for sure because again we don't have the other charts for the three other stores. Assuming the four stores perform the same, then we'd have 4*60 = 240 thousand as the total and not 300 thousand. It's safe to say we can eliminate this as an answer.
In the lower right corner, it says "1/10 of the stores sales were appliances". This statement is true. Why? Because 6 thousand is the sales figure for appliances out of 60 thousand total. Divide the values: 6/60 = 1/10. So this is why the lower right corner is the answer.
Jess is cutting bows of ribbon which will be used to wrap gifts. If jess needs 1 7/11 feet of ribbon to make a bow and she has 36 feet of ribbon, then how many bows can jess make?
Answer:
22
Step-by-step explanation:
You need to divide 36 ft by 1 7/11 ft, and then round down if you don't get a whole number.
[tex]\dfrac{36~ft}{1 \frac{7}{11}~ft} =[/tex]
[tex]= \dfrac{36}{\frac{18}{11}}[/tex]
[tex] = \dfrac{36}{1} \times \dfrac{11}{18} [/tex]
[tex] = \dfrac{36 \times 11}{1 \times 18} [/tex]
[tex] = 22 [/tex]
Answer: 22
Simplify the expression (5j+5) – (5j+5)
Answer:
0
Step-by-step explanation:
multiply the negative thru the right part of the equation so, 5j+5-5j-5. The 5j and the 5 than cancel out with each other. Hope this helps!
Answer:
0
Explanation:
step 1 - remove the parenthesis from the expression
(5j + 5) - (5j + 5)
5j + 5 - 5j - 5
step 2 - combine like terms
5j + 5 - 5j - 5
5j - 5j + 5 - 5
0 + 0
0
therefore, the simplified form of the given expression is 0.
If -5(x+8) =-25, then x=-3
Answer:
Correct!
Step-by-step explanation:
-5(x+8)=-25
x+8=5
x=-3
Answer:
here, -5(x+8)=-25
or, -5x +(-40)= -25
or, -5x=-25+40
or, x= 15/-5
therefore the value of x is -3....ans..
hope u understood..
will give brainliest Evaluate 15/k when k is 3
Answer:
Hey there!
15/k, when k=3
15/3=5
Answer:
5
Step-by-step explanation:
its a simple as 15/3 = 5
have fun
Which of the following best describes the algebraic expression 5(x + 2) - 3 ?
bre
Answer:
D
Step-by-step explanation:
Kylie and miranda began arguing about who did better on their tests, but they couln't decide who did better given that they took different tests, kylie took a test in Art History and earned a 77.3, and Tan took a test in English and earned a 62.9. Use the fact that all the students' test grades in the Art History class had a mean of 73 and a standard deviation of 10.7, and all the students' test grades in English had a mean of 66.8 and a standard deviation of 10.8 to answer the following questions.
a) Calculate the Z-score for Isaac's test grade.
b) Calculate the 2-score for lan's test grade.
c) Which person did relatively better?
A. Kylie
B. miranda
C. They did equally well.
Answer:
a) 77.3-73/10.7= 0.40187
b) 62.9-66.8/10.8= -0.36111
c) Kylie did relatively better
Step-by-step explanation:
Determine the logarithmic regression of the data below using either a calculator or spreadsheet program. Then, estimate the x−value when the y−value is 5.2. Round your answer to one decimal place. (4.7,10.7),(7.8,20.6),(10.5,30.2),(15.6,41),(20.8,56.1),(22,65.1). Please help right away! Thank you so much!
Answer:
y ≈ 33.7·ln(x) -45.94.6Step-by-step explanation:
A graphing calculator can perform logarithmic regression, as can a spreadsheet. The least-squares best fit log curve is about ...
y ≈ 33.7·ln(x) -45.9
The value of x estimated to make y = 5.2 is about 4.6.
The problem is: On a Map, 3 inches represents 40 miles, How many inches represents 480 miles?
Please answer this correctly without making mistakes
Answer:
Question 2
Step-by-step explanation:
2) The time when she woke up was - 3° C
During nature walk, temperature got 3° C warmer than when she woke up.
So, temperature during nature walk = - 3 + 3 = 0° C
An instructor asks students to rate their anxiety level on a scale of 1 to 100 (1 being low anxiety and 100 being high anxiety) just before the students take their final exam. The responses are shown below. Construct a relative frequency table for the instructor using five classes. Use the minimum value from the data set as the lower class limit for the first row, and use the lowest possible whole-number class width that will allow the table to account for all of the responses. Use integers or decimals for all answers.
48,50,71,58,56,55,53,70,63,74,64,33,34,39,49,60,65,84,54,58
Provide your answer below:
Lower Class Limit Upper Class Limit Relative Frequency
Answer:
The frequency table is shown below.
Step-by-step explanation:
The data set arranged ascending order is:
S = {33 , 34 , 39 , 48 , 49 , 50 , 53 , 54 , 55 , 56 , 58 , 58, 60 , 63 , 64 , 65 , 70 , 71 , 74 , 84}
It is asked to use the minimum value from the data set as the lower class limit for the first row.
So, the lower class limit for the first class interval is 33.
To determine the class width compute the range as follows:
[tex]\text{Range}=\text{Maximum}-\text{Minimum}[/tex]
[tex]=84-33\\=51[/tex]
The number of classes requires is 5.
The class width is:
[tex]\text{Class width}=\frac{Range}{5}=\frac{51}{2}=10.2\approx 10[/tex]
So, the class width is 10.
The classes are:
33 - 42
43 - 52
53 - 62
63 - 72
73 - 82
83 - 92
Compute the frequencies of each class as follows:
Class Interval Values Frequency
33 - 42 33 , 34 , 39 3
43 - 52 48 , 49 , 50 3
53 - 62 53 , 54 , 55 , 56 , 58 , 58, 60 7
63 - 72 63 , 64 , 65 , 70 , 71 5
73 - 82 74 1
83 - 92 84 1
TOTAL 20
Compute the relative frequencies as follows:
Class Interval Frequency Relative Frequency
33 - 42 3 [tex]\frac{3}{20}\times 100\%=15\%[/tex]
43 - 52 3 [tex]\frac{3}{20}\times 100\%=15\%[/tex]
53 - 62 7 [tex]\frac{7}{20}\times 100\%=35\%[/tex]
63 - 72 5 [tex]\frac{5}{20}\times 100\%=25\%[/tex]
73 - 82 1 [tex]\frac{1}{20}\times 100\%=5\%[/tex]
83 - 92 1 [tex]\frac{1}{20}\times 100\%=5\%[/tex]
TOTAL 20 100%
I NEED HELP PLEASE, THANKS! :)
A rock is tossed from a height of 2 meters at an initial velocity of 30 m/s at an angle of 20° with the ground. Write parametric equations to represent the path of the rock. (Show work)
Answer:
x = 28.01t,
y = 10.26t - 4.9t^2 + 2
Step-by-step explanation:
If we are given that an object is thrown with an initial velocity of say, v1 m / s at a height of h meters, at an angle of theta ( θ ), these parametric equations would be in the following format -
x = ( 30 cos 20° )( time ),
y = - 4.9t^2 + ( 30 cos 20° )( time ) + 2
To determine " ( 30 cos 20° )( time ) " you would do the following calculations -
( x = 30 * 0.93... = ( About ) 28.01t
This represents our horizontal distance, respectively the vertical distance should be the following -
y = 30 * 0.34 - 4.9t^2,
( y = ( About ) 10.26t - 4.9t^2 + 2
In other words, our solution should be,
x = 28.01t,
y = 10.26t - 4.9t^2 + 2
These are are parametric equations
In a study of the accuracy of fast food drive-through orders, one restaurant had 40 orders that were not accurate among 307 orders observed. Use a 0.05 significance level to test the claim that the rate of inaccurate orders is greater than 10%. State the test result in terms of the claim. Identify the null and alternative hypotheses for this test The test statistic for this hypothesis test is? The P-value for this hypothesis test is? Identify the conclusion for this hypothesis test. State the test result in terms of the claim.
Answer:
We conclude that the rate of inaccurate orders is greater than 10%.
Step-by-step explanation:
We are given that in a study of the accuracy of fast food drive-through orders, one restaurant had 40 orders that were not accurate among 307 orders observed.
Let p = population proportion rate of inaccurate orders
So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\leq[/tex] 10% {means that the rate of inaccurate orders is less than or equal to 10%}
Alternate Hypothesis, [tex]H_A[/tex] : p > 10% {means that the rate of inaccurate orders is greater than 10%}
The test statistics that will be used here is One-sample z-test for proportions;
T.S. = [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of inaccurate orders = [tex]\frac{40}{307}[/tex] = 0.13
n = sample of orders = 307
So, the test statistics = [tex]\frac{0.13-0.10}{\sqrt{\frac{0.10(1-0.10)}{307} } }[/tex]
= 1.75
The value of z-test statistics is 1.75.
Also, the P-value of the test statistics is given by;
P-value = P(Z > 1.75) = 1 - P(Z [tex]\leq[/tex] 1.75)
= 1 - 0.95994 = 0.04006
Now, at 0.05 level of significance, the z table gives a critical value of 1.645 for the right-tailed test.
Since the value of our test statistics is more than the critical value of z as 1.75 > 1.645, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region.
Therefore, we conclude that the rate of inaccurate orders is greater than 10%.
HELP ASAP WILL MARK BRAINIEST IF YOU ARE RIGHT !Which of the following represents a function?
Answer:
Option C.
Step-by-step explanation:
This is a function because all of the numbers have a partner, and none of them have more than one.
Example of Not a Function
Function Not a Function
-4 to 5 -4 to 5 <
9 to 7 -4 to 3 <
13 to 3 13 to 3 ^
-7 to 5 9 to 7 ^
-7 to 5 ^
Not a Function because of this
The number of people arriving for treatment at an emergency room can be modeled by a Poisson process with a rate parameter of six per hour.
(a) What is the probability that exactly three arrivals occur during a particular hour? (Round your answer to three decimal places.)
(b) What Is the probability that at least three people arrive during a particular hour? (Round your answer to three decimal places.)
(c) How many people do you expect to arrive during a 15-min period?
Answer:
a) P(x=3)=0.089
b) P(x≥3)=0.938
c) 1.5 arrivals
Step-by-step explanation:
Let t be the time (in hours), then random variable X is the number of people arriving for treatment at an emergency room.
The variable X is modeled by a Poisson process with a rate parameter of λ=6.
The probability of exactly k arrivals in a particular hour can be written as:
[tex]P(x=k)=\lambda^{k} \cdot e^{-\lambda}/k!\\\\P(x=k)=6^k\cdot e^{-6}/k![/tex]
a) The probability that exactly 3 arrivals occur during a particular hour is:
[tex]P(x=3)=6^{3} \cdot e^{-6}/3!=216*0.0025/6=0.089\\\\[/tex]
b) The probability that at least 3 people arrive during a particular hour is:
[tex]P(x\geq3)=1-[P(x=0)+P(x=1)+P(x=2)]\\\\\\P(0)=6^{0} \cdot e^{-6}/0!=1*0.0025/1=0.002\\\\P(1)=6^{1} \cdot e^{-6}/1!=6*0.0025/1=0.015\\\\P(2)=6^{2} \cdot e^{-6}/2!=36*0.0025/2=0.045\\\\\\P(x\geq3)=1-[0.002+0.015+0.045]=1-0.062=0.938[/tex]
c) In this case, t=0.25, so we recalculate the parameter as:
[tex]\lambda =r\cdot t=6\;h^{-1}\cdot 0.25 h=1.5[/tex]
The expected value for a Poisson distribution is equal to its parameter λ, so in this case we expect 1.5 arrivals in a period of 15 minutes.
[tex]E(x)=\lambda=1.5[/tex]
how many solution does this equation have LOOK AT SCREENSHOT ATTACHED
Answer:
One solution
Step-by-step explanation:
99% of the time, linear equations (equations that have the first degree) have only one solution. However, it's always good to check.
6 - 3x = 12 - 6x
6 = 12 - 3x
-3x = -6
x = 2
As you can see, only one solution. Hope this helps!
The width of a casing for a door is normally distributed with a mean of 24 inches and a standard deviation of 1/8 inch. The width of a door is normally distributed with a mean of 23 7/8 inches and a standard deviation of 1/16 inch. Assume independence. a. Determine the mean and standard deviation of the difference between the width of the casing and the width of the door. b. What is the probability that the width of the casing minus the width of the door exceeds 1/4 inch? c. What is the probability that the door does not fit in the casing?
Answer:
a) Mean = 0.125 inch
Standard deviation = 0.13975 inch
b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25) = 0.18673
c) Probability that the door does not fit in the casing = P(X < 0) = 0.18673
Step-by-step explanation:
Let the distribution of the width of the casing be X₁ (μ₁, σ₁²)
Let the distribution of the width of the door be X₂ (μ₂, σ₂²)
The distribution of the difference between the width of the casing and the width of the door = X = X₁ - X₂
when two independent normal distributions are combined in any manner, the resulting distribution is also a normal distribution with
Mean = Σλᵢμᵢ
λᵢ = coefficient of each disteibution in the manner that they are combined
μᵢ = Mean of each distribution
Combined variance = σ² = Σλᵢ²σᵢ²
λ₁ = 1, λ₂ = -1
μ₁ = 24 inches
μ₂ = 23 7/8 inches = 23.875 inches
σ₁² = (1/8)² = (1/64) = 0.015625
σ₂ ² = (1/16)² = (1/256) = 0.00390625
Combined mean = μ = 24 - 23.875 = 0.125 inch
Combined variance = σ² = (1² × 0.015625) + [(-1)² × 0.00390625] = 0.01953125
Standard deviation = √(Variance) = √(0.01953125) = 0.1397542486 = 0.13975 inch
b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25)
This is a normal distribution problem
Mean = μ = 0.125 inch
Standard deviation = σ = 0.13975 inch
We first normalize/standardize 0.25 inch
The standardized score of any value is that value minus the mean divided by the standard deviation.
z = (x - μ)/σ = (0.25 - 0.125)/0.13975 = 0.89
P(X > 0.25) = P(z > 0.89)
Checking the tables
P(x > 0.25) = P(z > 0.89) = 1 - P(z ≤ 0.89) = 1 - 0.81327 = 0.18673
c) Probability that the door does not fit in the casing
If X₂ > X₁, X < 0
P(X < 0)
We first normalize/standardize 0 inch
z = (x - μ)/σ = (0 - 0.125)/0.13975 = -0.89
P(X < 0) = P(z < -0.89)
Checking the tables
P(X < 0) = P(z < -0.89) = 0.18673
Hope this Helps!!!
Five thousand tickets are sold at $1 each for a charity raffle. Tickets are to be drawn at random and monetary prizes awarded as follows: 1 prize of $800, 3 prizes of $200, 5 prizes of $50, and 20 prizes of $5. What is the expected value of this raffle if you buy 1 ticket?
Answer:
The expected value of this raffle if you buy 1 ticket is $0.41.
Step-by-step explanation:
The expected value of the raffle if we buy one ticket is the sum of the prizes multiplied by each of its probabilities.
This can be written as:
[tex]E(X)=\sum p_iX_i[/tex]
For example, the first prize is $800 and we have only 1 prize, that divided by the number of tickets gives us a probability of 1/5000.
If we do this with all the prizes, we can calculate the expected value of a ticket.
[tex]E(X)=\sum p_iX_i\\\\\\E(X)=\dfrac{1\cdot800+3\cdot200+5\cdot50+20\cdot20}{5000}\\\\\\E(X)=\dfrac{800+600+250+400}{5000}=\dfrac{2050}{5000}=0.41[/tex]
I need help pls pls pls pls
Answer:
D. 4
Step-by-step explanation:
If he leaves the science assignments for the next day, he will spend zero hours on science assignments. This means that y is equal to 0. Plug this into the given equation and solve for x.
2x + y = 8
2x + 0 = 8
2x = 8
x = 4
Gerald can complete 4 math assignments.
Silver Lake has a population of 114,000. The population is decreasing at a rate of 1.5% each year. Which of the following choices is the correct function? a p(s) = 114000• 0.985x b p(s) = 114000x c p(s) = 114000x + 0.985 d None of these choices are correct.
Answer: D
Step-by-step explanation:
According to the question, Silver Lake has a population of 114,000. The population is decreasing at a rate of 1.5% each year
The initial population Po = 114000
Rate = 1.5% = 0.015
The declining population formula will be:
P = Po( 1 - R%)x^2
The decay formula
Since the population is decreasing, take away 0.015 from 1
1 - 0.015 = 0.985
Substitutes all the parameters into the formula
P(s) = 114000(0.985)x^2
P(s) = 114000× 0985x^2
The correct answer is written above.
Since option A does not have square of x, we can therefore conclude that the answer is D - non of the choices is correct.
[!] Urgent [!] Find the domain of the graphed function.
The graphs below are the same shape what is the equation of the blue graph
Answer:
B. g(x) = (x-2)^2 +1
Step-by-step explanation:
When you see this type of equation your get the variables H and K in a quadratic equation. In this case the (x-2)^2 +1 is your H. The (x-2)^2 +1 is your K.
For the H you always do the opposite so in this case instead of going to the left 2 times you go to the right 2 times (affects your x)
For the K you go up or down which in this case you go up one (affects your y)
And that's how you got your (2,1) as the center of the parabola
-Hope this helps :)
find the circumference of a circle with a diameter of 6 cm
Circumference = πd
~substitute → (π)(6 cm)
~simplify → 6π cm.
So the circumference of the circle shown here is 6π cm.
Answer:
18.85 cm
Step-by-step explanation:
The circumference of a circle has a formula.
Circumference = π × diameter
The diameter is 6 centimeters.
Circumference = π × 6
Circumference ≈ 18.85
The circumference of the circle is 18.85 centimeters.
The average life a manufacturer's blender is 5 years, with a standard deviation of 1 year. Assuming that the lives of these blenders follow approximately a normal distribution, find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.
Answer:
55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
[tex]\mu = 5, \sigma = 1, n = 9, s = \frac{1}{\sqrt{9}} = 0.3333[/tex]
Find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.
This is the pvalue of Z when X = 5.1 subtracted by the pvalue of Z when X = 4.5. So
X = 5.1
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{5.1 - 5}{0.3333}[/tex]
[tex]Z = 0.3[/tex]
[tex]Z = 0.3[/tex] has a pvalue of 0.6179
X = 4.5
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{4.5 - 5}{0.3333}[/tex]
[tex]Z = -1.5[/tex]
[tex]Z = -1.5[/tex] has a pvalue of 0.0668
0.6179 - 0.0668 = 0.5511
55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.
A cardboard box without a lid is to have a volume of 8,788 cm3. Find the dimensions that minimize the amount of cardboard used.
Answer:
x = y = 26 cm; z = 13 cm
Step-by-step explanation:
We can calculate the dimensions of the square base as
∛(2·8788) = 26 cm
the height of the box will be half of 26/2 which is 13 cm.
x = y = 26 cm; z = 13 cm
then the minimum area for the given volume can be calculated using what we call Lagrange multipliers, this makes it easier
area = xy +2(xz +yz)
But we were given the volume as 8788
Now we will make the partial derivatives of L to be in respect to the cordinates x, y, z, as well as λ to be equal to zero, then
L = xy +2(xz +yz) +λ(xyz -8788)
For x: we have
y+2z +λyz=0
For y we have
y: x +2z +λxz=0
For z we have 2x+2y +λxy=0............eqn(*)
For we have xyz -8788=0
If we simplify the partial derivative equation of y and x above then we have
λ = (y +2z)/(yz).
= 1/z +2/y............eqn(1)
λ = (x +2z)/(xz)
= 1/z +2/x.............eqn(2)
Set eqn(1 and 2) to equate we have
1/z +2/y = 1/z +2/x
x = y
From eqn(*) we can get z
λ = (2x +2y)/(xy) = 2/y +2/x
If we simplify we have
1/z +2y = 2/x +2/y
Then z = x/2
26/2 =13
Therefore,
x = y = 2z = ∛(2·8788)
X= 26
y = 26 cm
z = 13 cm
i am stuck on this please help!
Answer:
[tex]20 {x}^{3} - 36 {x}^{2} + 7x + 3[/tex]Solution,
[tex](5x + 1)(2x - 1)(2x - 3)[/tex]
[tex] = 5x(2x - 1) + 1(2x - 1) \times (2x - 3) \\ = (10 {x}^{2} - 5x + 2x - 1)(2x - 3) \\ = (10 {x}^{2} - 3x - 1)(2 x - 3) \\ = 10 {x}^{2} (2x - 3) - 3x(2 x - 3) - 1(2x - 3) \\ = 20 {x}^{3} - 30 {x}^{2} - 6 {x }^{2} + 9x - 2x + 3 \\ = 20 {x}^{3} - 36 {x}^{2} + 7x + 3[/tex]
Hope this helps..
Good luck on your assignment...
Which of the following statements about feasible solutions to a linear programming problem is true?A. Min 4x + 3y + (2/3)z
B. Max 5x2 + 6y2
C. Max 5xy
D. Min (x1+x2)/3
Answer:
The answer is "Option A"
Step-by-step explanation:
The valid linear programming language equation can be defined as follows:
Equation:
[tex]\Rightarrow \ Min\ 4x + 3y + (\frac{2}{3})z[/tex]
The description of a linear equation can be defined as follows:
It is an algebraic expression whereby each term contains a single exponent, and a single direction consists in the linear interpolation of the equation.
Formula:
[tex]\to \boxed{y= mx+c}[/tex]
the ellipse is centered at the origin, has axes of lengths 8 and 4, its major axis is horizontal. how do you write an equation for this ellipse?
Answer:
The equation for this ellipse is [tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex].
Step-by-step explanation:
The standard equation of the ellipse is described by the following expression:
[tex]\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} = 1[/tex]
Where [tex]a[/tex] and [tex]b[/tex] are the horizontal and vertical semi-axes, respectively. Given that major semi-axis is horizontal, [tex]a > b[/tex]. Then, the equation for this ellipse is written in this way: (a = 8, b = 4)
[tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex]
The equation for this ellipse is [tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex].
M/J Grade 8 Pre-Algebra-PT-FL-1205070-003
Answer:
Following are the description of the given course code:
Step-by-step explanation:
The given course code is Pre-Algebra, which is just an introduction arithmetic course programs to train high school in the Algebra 1. This course aims to strengthen required problem solving skills, datatypes, equations, as well as graphing.
In this course students start to see the "big picture" of maths but also understand that mathematical, algorithmic, and angular principles are intertwined to form a basis for higher mathematics education.The duration of this code is in year and it is divided into two levels. In this, code it includes PreK to 12 Education Courses , with the general mathematics .Answer:
A
Step-by-step explanation:
Consider the function represented by 9x + 3y = 12 with x as the independent variable. How can this function be
written using function notation?
Of) = -
O F(x) = - 3x + 4
Of(x) = -x +
O fb) = - 3y+ 4
Answer:
f(x) = -3x + 4
Step-by-step explanation:
Step 1: Move the 9x over
3y = 12 - 9x
Step 2: Divide everything by 3
y = 4 - 3x
Step 3: Rearrange
y = -3x + 4
Step 4: Change y to f(x)
f(x) = -3x + 4
a) Al usar un microscopio el microscopio se amplía una célula 400 veces. Escribe el factor de ampliación como cociente o como escala.
b) La imagen de una célula usando dicho microscopio mide 1,5 mm ¿ Cuánto mide la célula en la realidad?
Answer:
x = 0,00375 mm
Step-by-step explanation:
a) El factor de ampliación es 400/1 es decir el tamaño real se verá ampliado 400 veces mediante el uso del microscopio
b) De acuerdo a lo establecido en la respuesta a la pregunta referida en a (anterior) podemos establecer una regla de tres, según:
Si al microscopio el tamaño de la célula es 1,5 mm, cual será el tamaño verdadero ( que es reducido 400 en relación al que veo en el microscopio)
Es decir 1,5 mm ⇒ 400
x (mm) ⇒ 1 (tamaño real de la célula)
Entonces
x = 1,5 /400
x = 0,00375 mm