Answer:
The answer is "39.95 J".
Explanation:
Please find the complete question in the attached file.
[tex]\to W_{AC}=(\mu \ m \ g \ \cos \theta ) d[/tex]
[tex]=(0.45 \times 1.60 \times 9.8 \times \cos 26^{\circ}) 6.30 \\\\=(7.056 \times \cos 26^{\circ}) 6.30 \\\\=6.34189079\times 6.30\\\\=39.95 \ J\\\\[/tex]
[tex]\therefore \\\\\bold{\Delta E =39.95 \ J}[/tex]
Match the following:
machinery part :nickel or chromium
ornamentation and decoration pieces :silver and gold
processed food :tin coated iron can
bridges and automobiles :zinc metal
distilled water:bad conductor
Answer:
iron metal :chromium
machinery part :nickel or chromium
ornamentation and decoration pieces :silver and gold
processed food :tin coated iron can
bridges and automobiles :zinc metal
distilled water:bad conductor
Explanation:
A truck with a mass of 1370 kg and moving with a speed of 12.0 m/s rear-ends a 593 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second.
Answer:
speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s
Explanation:
Given:
mass of truck M = 1370 kg
speed of truck = 12.0 m/s
mass of car m = 593 kg
collision is elastic therefore,
Applying law of momentum conservation we have
momentum before collision = momentum after collision
1370×12 + 0( initially car is at rest) = 1370×v1+ 593×v2 ....(i)
Also for a collision to be elastic,
velocity of approach = velocity of separation
12 -0 = v2-v1 ....(ii)
using (i) and (ii) we have
So speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s
A hot air balloon is rising at a speed of 10 km/hr. One hour later, the balloon
is still rising at 10 km/hr. What is its acceleration?
A scientist analyzes the light from a distant galaxy and finds that it is shifted to the longer wavelength of the electromagnetic spectrum. What does this data help to study?
1) the color of the galaxy
2) the distance of the galaxy from Earth
3) the existence of life on any planet in the galaxy
4) the study of the amount of light scattered by dust in space
Answer:
Option 2
Explanation:
As per the relation between the distance of the galaxy and shifting of the light of the galaxy towards any specific wavelength of the electromagnetic spectrum, a galaxy at great distance shifts more towards the red spectra that has the highest wavelength.
Thus, this observation give details about the distance of the galaxy from earth.
Answer:
b
Explanation:
What is your hypothesis (or hypotheses) for this experiment?
(about Thermal Energy Transfer)
Answer:
I hypothesis that the motion involving the balls in the experiment were moving to create data.
Explanation:
I hope this helps!
A metal pot feels hot to the touch after a short time on the shove. what type of material is the metal pot
2.Test the age of your eyes. a.Hold a pencil or ballpoint pen vertically at arm's length. b.Close your left eye and focus on the tip. c.Quickly bring the pencil closer to your eye until it is out of focus. d.Have your partner measure the distance between your eye and the pencil. e.Repeat for both eyes. f.Try it with and without glasses (if you wear glasses). Age of your Eyes Cm91013185083
Answer:
See Explanation
Explanation:
Given
Steps: a - f
Table
[tex]\begin{array}{ccccccc}{cm} & {9} & {10} & {13} & {18} & {50} & {83} \ \\ {Age} & {10} & {20} & {30} & {40} & {50} & {60} \ \end{array}[/tex]
Note that: The question is a practical question and the result may differ base on individuals and environment.
So, I will pick up the question from how to determine the age of the eye after the distance between the eyes and the pencil has been established
In my case, the measurement is:
[tex]Length= 10.4[/tex]
Approximate
[tex]Length= 10[/tex]
From the above table, the corresponding age to 10cm is:
[tex]Age = 20cm[/tex]
If in your measurement, the length is approximately (for example):
[tex]Length = 9cm[/tex]
The age will be:
[tex]Age = 10[/tex]
A typical laboratory centrifuge rotates at 4000 rpm. Testtubes have to be placed into a centrifuge very carefully because ofthe very large accelerations.
Part A) What is the acceleration at the end of a test tubethat is 10 cm from the axis of rotation?
Part B) For comparison, what is the magnitude of theacceleration a test tube would experience if dropped from a heightof 1.0 m and stopped in a 1.0-ms-long encounter with a hardfloor?
Answer:
A) a_c = 1.75 10⁴ m / s², B) a = 4.43 10³ m / s²
Explanation:
Part A) The relation of the test tube is centripetal
a_c = v² / r
the angular and linear variables are related
v = w r
we substitute
a_c = w² r
let's reduce the magnitudes to the SI system
w = 4000 rpm (2pi rad / 1 rev) (1 min / 60s) = 418.88 rad / s
r = 1 cm (1 m / 100 cm) = 0.10 m
let's calculate
a_c = 418.88² 0.1
a_c = 1.75 10⁴ m / s²
part B) for this part let's use kinematics relations, let's start looking for the velocity just when we hit the floor
as part of rest the initial velocity is zero and on the floor the height is zero
v² = v₀² - 2g (y- y₀)
v² = 0 - 2 9.8 (0 + 1)
v =√19.6
v = -4.427 m / s
now let's look for the applied steel to stop the test tube
v_f = v + a t
0 = v + at
a = -v / t
a = 4.427 / 0.001
a = 4.43 10³ m / s²
plz help me with my career!!!
part one...
Answer:
#1 Yes
Explanation: #1: The rest of them are used mainley by farmers, and crops are used by common citizens in the world.
Question 1: Crops.
Question 2: Diagnostic Services.
Question 3: A cable company needs to lay new fiber optic cable to reach its customers across a large lake.
Question 4: A bachelor's degree in energy research.
Question 5: Environmental Resources.
If any of these answers are incorrect, please tell me, so I can fix my mistake. Thank you.
A ball is dropped off the side of a bridge,
After 1.55 S, how far has it fallen?
(Unit=m)
Answer:
Distance S = 11.77 m (Approx.)
Explanation:
Given:
Time t = 1.55 Second
Gravity acceleration = 9.8 m/s²
Find:
Distance S
Computation:
S = ut + (1/2)(g)(t)²
S = (0)(1.55) + (1/2)(9.8)(1.55)²
S = (0)(1.55) + (1/2)(9.8)(1.55)²
Distance S = 11.77 m (Approx.)
Let's assume raspberries are 10 wt% protein solids and the remainder water. When making jam, raspberries are crushed and mixed with sugar, in a 45:55 berry to sugar ratio, by mass. Afterward, the mixture is heated, boiling off water until the remaining mixture is 0.4 weight fraction water, resulting in the final product, jam. How much water, in kilograms, is boiled off per kilogram of raspberries processed
Answer:
The mass of water boiled off is [tex]0.0 \overline{185}[/tex] kg
Explanation:
The given percentage by weight of protein solids in raspberries = 10 weight%
The ratio of sugar to raspberries in ja-m = 45:55
The mass of the mixture after boiling = 0.4 weight fraction water
Let 's' represent the mass of sugar in the mixture, and let 'r' represent the mass of raspberry
The mass of raspberry, r = 1 kg
The percentage by weight of water in raspberry = 90 weight %
The mass of water in 1 kg of raspberry = 90/100 × 1 kg = 0.9 kg
The ratio of the mass of sugar to the mass of raspberry in jam = r/s = 45/55
∴ s = 1 kg × 55/45 = 11/9 kg
The mass of the mixture before boiling = 1 kg + 11/9 kg = 20/9 kg
The weight fraction of water in the remaining mixture after boiling = 0.4 weight fraction
Let 'w' represent the mass of water boiled off, we have;
(0.9 - w)/(20/9 - w) = 0.4
(0.9 - w) = 0.4 × (20/9 - w)
0.9 - w = 8/9 - 0.4·w
9/10 - 8/9 = w - 0.4·w = 0.6·w = (6/10)·w
(81 - 80)/(90) = (6/10)·w
1/90 = (6/10)·w
w = ((10/6) × 1/90) = 1/54
w = 1/54
The mass of water boiled off, w = (1/54) kg = [tex]0.0 \overline{185}[/tex] kg