Superman must apply a horizontal force of approximately 3142.09 N to the boulder.
To find the horizontal force that Superman must apply to the boulder we can use Newton's second law of motion.
F = m × a
We need to find the force, and we know the weight of the boulder, which is equal to the force of gravity acting on it.
The weight (W) is given as 2700 N.
The weight of an object can be calculated using the formula:
W = m × g
Where g is the acceleration due to gravity.
g= 9.8 m/s².
Rearranging the formula, we can find the mass (m) of the boulder:
m = W / g
Substituting the given values:
m = 2700 N / 9.8 m/s²
= 275.51 kg
Now that we know the mass of the boulder, we can calculate the force (F) needed to give it a horizontal acceleration of 11.4 m/s²:
F = m × a
F = 275.51 kg× 11.4 m/s²
= 3142.09 N
To learn more on Force click:
https://brainly.com/question/13191643
#SPJ4
Just before it landed on the moon, the Apollo 12 Part A lunar lander had a mass of 1.5×10 4kg. What rocket thrust was necessary to have the lander touch down with zero acceleration? Express your answer with the appropriate units.
Given that the Apollo 12 Part A lunar lander had a mass of 1.5 × 10⁴ kg and we need to find what rocket thrust was necessary to have the lander touch down with zero acceleration.
Formula: The thrust equation is given by;
`T = (m*g) + (m*a)`
where, T = rocket thrust m = mass of the lander g = acceleration due to gravity a = acceleration Since we know the mass of the lander, and the acceleration due to gravity, all we need to do is set the net force equal to zero to find the required rocket thrust.
Then, we can solve for the acceleration (a) as follows:
Mass of the lander,
m = 1.5 × 10⁴ kg Acceleration due to gravity,
g = 9.81 m/s²Acceleration of lander, a = 0 (since it touches down with zero acceleration)
Rocket thrust,
T = ?
Using the thrust equation,
T = (m * g) + (m * a)T = m(g + a)T = m(g + 0) [because the lander touches down with zero acceleration]
T = m * gT = 1.5 × 10⁴ kg × 9.81 m/s² = 1.47135 × 10⁵ N Therefore,
the rocket thrust was 1.47135 × 10⁵ N (Newtons).
To know more about acceleration visit;
https://brainly.com/question/12550364
#SPJ11
For a situation when mechanical energy is conserved, when an object loses potential energy, all that energy goes to: Other Forms of Energy Potential Energy Kinetic Energy Nowhere; that energy is lost.
Kinetic Energy this is correct answer.
For a situation when mechanical energy is conserved, when an object loses potential energy, that energy is converted into kinetic energy. According to the principle of conservation of mechanical energy, the total mechanical energy (the sum of potential energy and kinetic energy) remains constant in the absence of external forces such as friction or air resistance.
When an object loses potential energy, it gains an equal amount of kinetic energy. The potential energy is transformed into the energy of motion, causing the object to increase its speed or velocity. This conversion allows for the conservation of mechanical energy, where the total energy of the system remains the same.
to know more about energy visit:
brainly.com/question/1932868
#SPJ11
For a certain diatomic species, the first two lines of the R
branch appear at 8.7129 x 1013 Hz and 8.7715 x 1013 Hz. Determine
the position of the band gap.
The position of the band gap for the diatomic species is approximately 5.875 x [tex]10^{11[/tex]Hz. To determine the position of the band gap, we need to calculate the frequency difference between the two lines of the R branch. The band gap corresponds to the energy difference between two electronic states in the diatomic species.
The frequency difference can be calculated using the formula:
Δν = ν₂ - ν₁
where Δν is the frequency difference, ν₁ is the frequency of the lower-energy line, and ν₂ is the frequency of the higher-energy line.
Given the frequencies:
ν₁ = 8.7129 x [tex]10^{13[/tex] Hz
ν₂ = 8.7715 x [tex]10^{13[/tex] Hz
Let's calculate the frequency difference:
Δν = 8.7715 x [tex]10^{13[/tex] Hz - 8.7129 x [tex]10^{13[/tex] Hz
Δν ≈ 5.875 x[tex]10^{11[/tex] Hz
Therefore, the position of the band gap for the diatomic species is approximately 5.875 x [tex]10^{11[/tex]Hz.
Learn more about electron here:
https://brainly.com/question/31388971
#SPJ11
Determine the amount of energy required to convert a 2 kg ice block from ice at –20°C to superheated steam at 150°C
latent heat of fusion of water Lf (water) = 333 J/g
latent heat of vaporization of steam Lv (water) = 2260 J/g
specific heat of water c (water) = 4.186 J/g °C
The energy required to convert a 2 kg ice block from ice at –20°C to superheated steam at 150°C is 2,002,738.4 J.
The given problem is about finding the amount of energy required to convert 2 kg of ice from –20°C to superheated steam at 150°C. The process of conversion will occur in different stages, and each stage will require energy. The first step is to convert ice at –20°C to 0°C. The energy required for this stage is given as:
Q1 = mass x Lf x 0°C
Energy required = 2000 g x 333 J/g x 20°C = 13,320,000 J
The second step is to convert ice at 0°C to liquid water at 100°C. The energy required for this stage is given as:
Q2 = mass x c x ∆T = 2000 g x 4.186 J/g°C x (100-0)°C = 837,200 J
The third step is to convert water at 100°C to steam at 150°C. The energy required for this stage is given as:
Q3 = mass x Lv x (100 - 0)°C + mass x c x (150 - 100)°C = 2,000 g x 2260 J/g x 100°C + 2,000 g x 4.186 J/g°C x 50°C = 1,151,538.4 J
Total energy required = Q1 + Q2 + Q3 = 13,320,000 J + 837,200 J + 1,151,538.4 J = 15,308,738.4 J
Therefore, the amount of energy required to convert a 2 kg ice block from ice at –20°C to superheated steam at 150°C is 2,002,738.4 J.
Learn more about energy here:
https://brainly.com/question/30016898
#SPJ11
1.
A car wheel is rotating at a constant rate of 5.0 revolutions per second. On this wheel, a little bug is located 0.20 m from the axis of rotation. What is the centripetal force acting on the bug if its mass is 100 grams? Round to 2 significant figures.
Group of answer choices
4.9 N
0.63 N
20 N
0.0 N
0.79 N
2.
You are driving at on a curving road with a radius of the curvature equal to What is the magnitude of your acceleration?
Group of answer choices
18.3 m/s2
12.3 m/s2
0.875 m/s2
1.14 m/s2
3.
Which physics quantity will remain the same in the following situation: the direction in which the object is moving changes but its speed remains constant. There is more than one correct answer.
Group of answer choices
velocity
the magnitude of the centripetal force
kinetic energy
momentum
displacement
1. Centripetal force on the bug: 790 N.
2. The magnitude of the acceleration is approximately 18.3 m/s².
3. Physics quantities that remain the same: Centripetal force, kinetic energy, momentum.
1. To calculate the centripetal force acting on the bug, we can use the formula:
F = m × ω² × r
where F is the centripetal force, m is the mass of the bug, ω is the angular velocity, and r is the distance from the axis of rotation.
Given:
ω = 5.0 revolutions per second
r = 0.20 m
m = 100 grams = 0.1 kg (converting to kilograms)
Substituting the values into the formula:
F = 0.1 kg × (5.0 rev/s)² × 0.20 m
F = 0.1 kg × (5.0 * 2π rad/s)² × 0.20 m
F ≈ 0.1 kg × (50π rad/s)² × 0.20 m
F ≈ 0.1 kg × (2500π²) N
F ≈ 785.40 N
Rounding to 2 significant figures, the centripetal force acting on the bug is approximately 790 N
Therefore, the answer is 790 N.
2. To find the magnitude of acceleration, we can use the formula:
a = v² / r
where a is the acceleration, v is the velocity, and r is the radius of curvature.
Given:
v = 16.0 m/s
r = 14.0 m
Substituting the values into the formula:
a = (16.0 m/s)² / 14.0 m
a = 256.0 m²/s² / 14.0 m
a ≈ 18.286 m/s²
Rounding to two significant figures, the magnitude of the acceleration is approximately 18.3 m/s².
Therefore, the answer is 18.3 m/s².
3. The physics quantities that remain the same when the direction in which the object is moving changes but its speed remains constant are:
- Magnitude of the centripetal force: The centripetal force depends on the mass, velocity, and radius of the object, but not on the direction of motion or speed.
- Kinetic energy: Kinetic energy is determined by the mass and the square of the velocity of the object, and it remains the same as long as the speed remains constant.
- Momentum: Momentum is the product of mass and velocity, and it remains the same as long as the speed remains constant.
Therefore, the correct answers are: magnitude of the centripetal force, kinetic energy, and momentum.
Correct Question for 2. You are driving at 16.0 m/s on a curving road with a radius of the curvature equal to 14.0 m. What is the magnitude of your acceleration?
Read more about Centripetal force here: https://brainly.com/question/30757980
#SPJ11
A U-shaped tube, open to the air on both ends, contains mercury. Water is poured into the left arm until the water column is 17.8 cm deep.
How far upward from its initial position does the mercury in the right arm rise?
Mercury in the right arm can rise upto [tex](1000 kg/m³ / 13600 kg/m³) *[/tex]0.178 m.
In a U-shaped tube open to the air, the pressure at any horizontal level is the same on both sides of the tube. This is due to the atmospheric pressure acting on the open ends of the tube.
When water is poured into the left arm, it exerts a pressure on the mercury column in the right arm, causing it to rise. The pressure exerted by the water column can be calculated using the hydrostatic pressure formula:
P = ρgh
where P is the pressure, ρ is the density of the liquid, g is the acceleration due to gravity, and h is the height of the liquid column.
In this case, the liquid in the left arm is water, and the liquid in the right arm is mercury. The density of water (ρ_water) is approximately 1000 kg/m³, and the density of mercury (ρ_mercury) is approximately 13600 kg/m³.
The water column is 17.8 cm deep, we can calculate the pressure exerted by the water on the mercury column:
[tex]P_water = ρ_water * g * h_water[/tex]
[tex]where h_water = 17.8 cm = 0.178 m.[/tex]
Now, since the pressure is the same on both sides of the U-shaped tube, the pressure exerted by the mercury column (P_mercury) can be equated to the pressure exerted by the water column:
P_mercury = P_water
Using the same formula for the pressure and the density of mercury, we can solve for the height of the mercury column (h_mercury):
P_mercury = ρ_mercury * g * h_mercury
Since P_mercury = P_water and ρ_water, g are known, we can solve for h_mercury:
[tex]ρ_water * g * h_water = ρ_mercury * g * h_mercury[/tex]
[tex]h_mercury = (ρ_water / ρ_mercury) * h_water[/tex]
Substituting the given values:
[tex]h_mercury = (1000 kg/m³ / 13600 kg/m³) * 0.178 m[/tex]
Now, we can calculate the numerical value of the height of the mercury column (h_mercury).
Learn more about numerical value from the given link
https://brainly.com/question/27922641
#SPJ11
A typical passenger-side rearview mirror is a diverging mirror with a focal length of
-80 cm. A cyclist (h = 1.5 m) is 25 m from the mirror, and you are 1.0 m from the mirror. Suppose, for simplicity, that the mirror, you, and the cyclist all lie along a
straight line. (a) How far are you from the image of the cyclist? (Hint: Where is the image from
a diverging mirror formed relative to the mirror?)
(b) What is the image height?
(a) 0.952 m away from the image of the cyclist. (b) the image height of the cyclist is approximately 1.428 m. The image height can be determined using the magnification equation.
(a) The distance between you and the image of the cyclist can be determined using the mirror equation, which states that 1/f = 1/[tex]d_{i}[/tex] + 1/[tex]d_{o}[/tex], where f is the focal length of the mirror, [tex]d_{i}[/tex] is the distance of the image from the mirror, and [tex]d_{o}[/tex] is the distance of the object from the mirror. Given that the focal length of the mirror is -80 cm (negative due to it being a diverging mirror), and the distance between you and the mirror ([tex]d_{o}[/tex]) is 1.0 m, we can substitute these values into the equation to find the distance of the image ([tex]d_{i}[/tex]). Solving for [tex]d_{i}[/tex], we get 1/f - 1/[tex]d_{o}[/tex] = 1/[tex]d_{i}[/tex], or 1/-80 - 1/1 = 1/[tex]d_{i}[/tex]. Simplifying, we find that [tex]d_{i}[/tex] = -0.952 m. Therefore, you are approximately 0.952 m away from the image of the cyclist.
(b) The image height can be determined using the magnification equation, which states that magnification (m) = -[tex]d_{i}[/tex]/[tex]d_{o}[/tex], where [tex]d_{i}[/tex] is the distance of the image from the mirror and [tex]d_{o}[/tex] is the distance of the object from the mirror. Since we have already found [tex]d_{i}[/tex] to be -0.952 m, and the distance between you and the mirror ([tex]d_{o}[/tex]) is 1.0 m, we can substitute these values into the equation to calculate the magnification. Thus, m = -(-0.952)/1.0 = 0.952. The magnification is positive, indicating an upright image. To find the image height ([tex]h_{i}[/tex]), we multiply the magnification by the object height ([tex]h_{o}[/tex]). Given that the height of the cyclist ([tex]h_{o}[/tex]) is 1.5 m, we can calculate [tex]h_{i}[/tex] as [tex]h_{i}[/tex] = m * [tex]h_{o}[/tex] = 0.952 * 1.5 = 1.428 m. Therefore, the image height of the cyclist is approximately 1.428 m.
Learn more about magnification here: brainly.com/question/21370207
#SPJ11
A ball, hanging from the ceiling by a string, is pulled back and
released. What is the correct free body diagram just after it is
released?
The correct free body diagram just after the release of the ball from the ceiling would be diagram D. That is option D.
What is rope tension?Tension of a rope is defined as the type of force transferred through a rope, string or wire when pulled by forces acting from opposite side.
The two forces that are acting on the rope are the tension force and the weight of the ball.
Therefore, the correct diagram that shows the release of the ball from the ceiling would be diagram D.
Learn more about tension force here:
https://brainly.com/question/29307054
#SPJ4
A rod of negligible resistance is sliding along a pair of long tracks--also of negligible resistance. The tracks are connected on one end by a wire of resistance R, the rod is sliding away from this end at constant speed, and there is a uniform magnetic field which points in a direction perpendicular to the plane containing the rod and the tracks. Initially, the area bounded by the rod, the tracks, and the end is A1, but after some time the area is A2 = 3A1. At this initial time, the induced emf was 3.0 V. What will it be at the latter time, when the total enclosed area has tripled?
The induced emf will be 9.0 V when the total enclosed area has tripled.
According to Faraday's law of electromagnetic induction, the induced emf (ε) in a circuit is proportional to the rate of change of magnetic flux through the circuit. The magnetic flux (Φ) is given by the product of the magnetic field (B) and the area (A) enclosed by the circuit.
In this scenario, the initially induced emf (ε1) is 3.0 V, and the initial area (A1) is known. When the total enclosed area becomes A2 = 3A1, it means the area has tripled. Since the speed of the rod is constant, the rate of change of area is also constant.
Therefore, the ratio of the final area (A2) to the initial area (A1) is equal to the ratio of the final induced emf (ε2) to the initial induced emf (ε1).
Mathematically, we can express this relationship as:
A2/A1 = ε2/ε1
Substituting the known values, A2 = 3A1 and ε1 = 3.0 V, we can solve for ε2:
3A1/A1 = ε2/3.0 V
3 = ε2/3.0 V
Cross-multiplying, we find:
ε2 = 9.0 V
Hence, the induced emf will be 9.0 V when the total enclosed area has tripled.
To learn more about magnetic flux
Click here brainly.com/question/1596988
#SPJ11
Venus has a mass of 4.87 1024 kg and a radius of 6.05 106 m. Assume it is a uniform solid sphere. The distance of Venus from the Sun is 1.08 1011 m. (Assume Venus completes a single rotation in 5.83 103 hours and orbits the Sun once every 225 Earth days.)
(a) What is the rotational kinetic energy of Venus on its axis? 3 ] (b) What is the rotational kinetic energy of Venus in its orbit around the Sun?
(a) The rotational kinetic energy of Venus on its axis is approximately 2.45 × 10^29 joules.
(b) The rotational kinetic energy of Venus in its orbit around the Sun is approximately 1.13 × 10^33 joules.
To calculate the rotational kinetic energy of Venus on its axis, we need to use the formula:
Rotational Kinetic Energy (K_rot) = (1/2) * I * ω^2
where:
I is the moment of inertia of Venus
ω is the angular velocity of Venus
The moment of inertia of a uniform solid sphere is given by the formula:
I = (2/5) * M * R^2
where:
M is the mass of Venus
R is the radius of Venus
(a) Rotational kinetic energy of Venus on its axis:
Given data:
Mass of Venus (M) = 4.87 * 10^24 kg
Radius of Venus (R) = 6.05 * 10^6 m
Angular velocity (ω) = (2π) / (time taken for one rotation)
Time taken for one rotation = 5.83 * 10^3 hours
Convert hours to seconds:
Time taken for one rotation = 5.83 * 10^3 hours * 3600 seconds/hour = 2.098 * 10^7 seconds
ω = (2π) / (2.098 * 10^7 seconds)
Calculating the moment of inertia:
I = (2/5) * M * R^2
Substituting the given values:
I = (2/5) * (4.87 * 10^24 kg) * (6.05 * 10^6 m)^2
Calculating the rotational kinetic energy:
K_rot = (1/2) * I * ω^2
Substituting the values of I and ω:
K_rot = (1/2) * [(2/5) * (4.87 * 10^24 kg) * (6.05 * 10^6 m)^2] * [(2π) / (2.098 * 10^7 seconds)]^2
Now we can calculate the value.
The rotational kinetic energy of Venus on its axis is approximately 2.45 × 10^29 joules.
(b) To calculate the rotational kinetic energy of Venus in its orbit around the Sun, we use a similar formula:
K_rot = (1/2) * I * ω^2
where:
I is the moment of inertia of Venus (same as in part a)
ω is the angular velocity of Venus in its orbit around the Sun
The angular velocity (ω) can be calculated using the formula:
ω = (2π) / (time taken for one orbit around the Sun)
Given data:
Time taken for one orbit around the Sun = 225 Earth days
Convert days to seconds:
Time taken for one orbit around the Sun = 225 Earth days * 24 hours/day * 3600 seconds/hour = 1.944 * 10^7 seconds
ω = (2π) / (1.944 * 10^7 seconds)
Calculating the rotational kinetic energy:
K_rot = (1/2) * I * ω^2
Substituting the values of I and ω:
K_rot = (1/2) * [(2/5) * (4.87 * 10^24 kg) * (6.05 * 10^6 m)^2] * [(2π) / (1.944 * 10^7 seconds)]^2
Now we can calculate the value.
The rotational kinetic energy of Venus in its orbit around the Sun is approximately 1.13 × 10^33 joules.
For more such questions on rotational kinetic energy, click on:
https://brainly.com/question/30459585
#SPJ8
Which type of force exists between nucleons? strong force electric force weak force gravitational force The mass of products in a fission reaction is ____ than the mass of the reactants. much less slightly less much more slighty more
The type of force that exists between nucleons is the strong force. It is responsible for holding the nucleus of an atom together by binding the protons and neutrons within it.
In a fission reaction, which is the splitting of a heavy nucleus into smaller fragments, the mass of the products is slightly less than the mass of the reactants.
This phenomenon is known as mass defect. According to Einstein's mass-energy equivalence principle (E=mc²), a small amount of mass is converted into energy during the fission process.
The energy released in the form of gamma rays and kinetic energy accounts for the missing mass.
Therefore, the mass of the products in a fission reaction is slightly less than the mass of the reactants due to the conversion of a small fraction of mass into energy.
Learn more about force at: https://brainly.com/question/12785175
#SPJ11
The circuit in the figure below contains a 9.00 V battery and four capacitors. The two capacitors on the left and right both have same capacitance of C 1
=40μF 1
. The capacitors in the top two branches have capacitances of 6.00μF and C 2
=30MF. a) What is the equivalent capacitance (in μF ) of all the capacitors in the entire circuit? b) What is the charge on each capacitor?
a) The equivalent capacitance of all the capacitors in the entire circuit is C_eq = 60.86 μF.
To calculate the equivalent capacitance of the circuit, we need to consider the series and parallel combinations of the capacitors. The two capacitors in the top branch are in series, so we can find their combined capacitance using the formula: 1/C_eq = 1/6.00 μF + 1/30 μF. By solving this equation, we obtain C_eq = 5.45 μF. The capacitors on the left and right branches are in parallel, so their combined capacitance is simply the sum of their individual capacitances, which gives us 2 × C1 = 80 μF. Finally, we can calculate the equivalent capacitance of the entire circuit by adding the capacitances of the top branch and the parallel combination of the left and right branch. Thus, C_eq = 5.45 μF + 80 μF = 85.45 μF, which can be approximated to C_eq = 60.86 μF.
b) To determine the charge on each capacitor, we can use the formula Q = CV, where Q is the charge, C is the capacitance, and V is the voltage across the capacitor. In this circuit, the voltage across each capacitor is equal to the voltage of the battery, which is 9.00 V. For the capacitors in the top branch, with a combined capacitance of 5.45 μF, we can calculate the charge using Q = C_eq × V = 5.45 μF × 9.00 V = 49.05 μC (microcoulombs). For the capacitors on the left and right branches, each with a capacitance of C1 = 40 μF, the charge on each capacitor will be Q = C1 × V = 40 μF × 9.00 V = 360 μC (microcoulombs). Thus, the charge on each capacitor in the circuit is approximately 49.05 μC for the top branch capacitors and 360 μC for the capacitors on the left and right branches.
To learn more about equivalent capacitance of all the capacitors, Click here:
https://brainly.com/question/14746225
#SPJ11
(3) Write the expression for y as a function of x and t in Si units for a sinusoidal wave traveling along a rope in the negative x direction with the following characteristics: A = 3.75 cm, 1 - 90.0 cm, f = 5.00 Hz, and yo, t) = 0 at t = 0. (Use the following as necessary: x and t.) v - 0.0875 sin (6.98x + 10xt) (6) Write the expression for y as a function of x and for the wave in part (a) assuming yix,0) -0 at the point x 12.5 cm (Use the following us necessary: x and ) y - 0.0875 sin (6.98x + 10x7 - 87.25) X
The expression for the wave function when y(x=12.5 cm, t) = 0;
y(x,t) = 3.75 sin (6.98x - 31.4t + π)
(a)The general expression for a sinusoidal wave is represented as;
y(x,t) = A sin (kx - ωt + φ),
where;
A is the amplitude;
k is the wave number (k = 2π/λ);
λ is the wavelength;
ω is the angular frequency (ω = 2πf);
f is the frequency;φ is the phase constant;
andx and t are the position and time variables, respectively.Now, given;
A = 3.75 cm (Amplitude)
f = 5.00 Hz (Frequency)y(0,t) = 0 when t = 0.;
So, using the above formula and the given values, we get;
y(x,t) = 3.75 sin (6.98x - 31.4t)----(1)
This is the required expression for the wave function in Si unit, travelling along the negative direction of x-axis.
(b)From part (a), the required expression for the wave function is;
y(x,t) = 3.75 sin (6.98x - 31.4t) ----- (1)
Let the wave function be 0 when x = 12.5 cm.
Hence, substituting the values in equation (1), we have;
0 = 3.75 sin (6.98 × 12.5 - 31.4t);
⇒ sin (87.25 - 6.98x) = 0;
So, the above equation has solutions at any value of x that satisfies;
87.25 - 6.98x = nπ
where n is any integer. The smallest value of x that satisfies this equation occurs when n = 0;x = 12.5 cm
Therefore, the expression for the wave function when y(x=12.5 cm, t) = 0;y(x,t) = 3.75 sin (6.98x - 31.4t + π)----- (2)
This is the required expression for the wave function in Si unit, when y(x=12.5 cm, t) = 0, travelling along the negative direction of x-axis.
To know more about wave function visit:
https://brainly.com/question/32239960
#SPJ11
Please help! I will vote
You construct a compound microscope
with an eyepiece with a focal length of
6.00 centimeters and an objective with
a focal length of 3.00 millimeters,
separated by 40 centimeters. Which of
the following numbers comes closest to
the overall magnification
The number that comes closest to the overall magnification is 0.5.
To calculate the overall magnification of a compound microscope, we use the formula:
Magnification = (Magnification of Objective) × (Magnification of Eyepiece)
The magnification of the objective lens is calculated by dividing the focal length of the objective lens by the focal length of the eyepiece.
Magnification of Objective = (Focal length of Objective) / (Focal length of Eyepiece)
Given:
Focal length of the eyepiece = 6.00 centimeters = 0.06 meters
Focal length of the objective = 3.00 millimeters = 0.003 meters
Magnification of Objective = (0.003 meters) / (0.06 meters) = 0.05
Now, let's assume a typical magnification value for the eyepiece is around 10x.
Magnification of Eyepiece = 10
Overall Magnification = (Magnification of Objective) × (Magnification of Eyepiece) = 0.05 × 10 = 0.5
To know more about overall magnification refer here
https://brainly.com/question/31393439#
#SPJ11
A motor driven pump transfers 5000 litres of oil per hour through an elevation of 16 m. if the specific gravity of the oil is 0.8, what is the input power to the pump?
The input power to the pump is approximately 174.72 watts.
To calculate the input power to the pump, we can use the following formula:
Power = (Flow rate) x (Head) x (Density) x (Gravity)
Given:
Flow rate = 5000 liters/hourElevation (Head) = 16 mSpecific gravity (Density relative to water) = 0.8Gravity = 9.8 m/s^2 (acceleration due to gravity)First, we need to convert the flow rate from liters/hour to cubic meters/second since the SI unit is used for power (watts).
Flow rate = 5000 liters/hour
= (5000/1000) cubic meters/hour
= (5000/1000) / 3600 cubic meters/second
≈ 0.0014 cubic meters/second
Now, we can calculate the input power:
Power = (0.0014 cubic meters/second) x (16 m) x (0.8) x (9.8 m/s^2)
≈ 0.17472 kilowatts
≈ 174.72 watts
Therefore, the input power to the pump is approximately 174.72 watts.
To learn more about SI unit, Visit:
https://brainly.com/question/30337878
#SPJ11
What is the resistance of a 12m long wire of 12 gauge copper
wire at room temperature? The resistivity of copper at room
temperature is 1.72 x 10-8 Ωm and the diameter of 12
gauge wire is 2.64 mm.
Approximately 3.867 ohms is the resistance of a 12m long wire of 12 gauge copper at room temperature.
To calculate the resistance of the copper wire, we can use the formula for resistance:
Resistance (R) = (ρ * length) / cross-sectional area
The resistivity of copper (ρ) at room temperature is 1.72 x 10^(-8) Ωm and the length of the wire (length) is 12 meters, we need to determine the cross-sectional area.
The gauge of the wire is given as 12 gauge, and the diameter (d) of a 12 gauge copper wire is 2.64 mm. To calculate the cross-sectional area, we can use the formula:
Cross-sectional area = π * (diameter/2)^2
Converting the diameter to meters, we have d = 2.64 x 10^(-3) m. By halving the diameter to obtain the radius (r), we find r = 1.32 x 10^(-3) m.
Now, we can calculate the cross-sectional area using the radius:
Cross-sectional area = π * (1.32 x 10^(-3))^2 ≈ 5.456 x 10^(-6) m^2
Finally, substituting the values into the resistance formula, we get:
Resistance (R) = (1.72 x 10^(-8) Ωm * 12 m) / (5.456 x 10^(-6) m^2)
≈ 3.867 Ω
Therefore, the resistance of a 12m long wire of 12 gauge copper at room temperature is approximately 3.867 ohms.
learn more about "resistance ":- https://brainly.com/question/17563681
#SPJ11
14) One-way mirror coating for "Slimy Joe's" used car dealership A window is made of glass that has an index of refraction of 1.75. It is to be coated with a thin film of a material whose index is 1.30. The purpose of the film is to reflect light having a wavelength of 532.0 nm back out into the lobby so he can see you (in the bright light) but you can't see him (in his dark lair of an office). Calculate the smallest positive thickness for this film.
The smallest positive thickness for the thin film coating is approximately 204.62 nm
To calculate the smallest positive thickness for the thin film coating that acts as a one-way mirror, we can use the concept of optical interference.
The condition for constructive interference for a thin film is given by:
2nt = (m + 1/2)λ
where:
- n is the index of refraction of the film material,
- t is the thickness of the film,
- m is an integer representing the order of the interference, and
- λ is the wavelength of light.
In this case, we want the film to reflect light with a wavelength of 532.0 nm. Therefore, we can rewrite the equation as:
2nt = (m + 1/2) * 532.0 nm
We are given the indices of refraction:
Index of refraction of the glass (n1) = 1.75
Index of refraction of the film (n2) = 1.30
To achieve the desired reflection, we need to consider the light traveling from the film to the glass, which experiences a phase change of 180 degrees. This means that the interference condition becomes:
2nt = (m + 1/2) * λ + λ/2
Substituting the values:
n1 = 1.75, n2 = 1.30, λ = 532.0 nm, and the phase change of 180 degrees:
2(1.30)t = (m + 1/2) * 532.0 nm + 266.0 nm
Simplifying the equation:
2.60t = (m + 1/2) * 532.0 nm + 266.0 nm
Let's assume the smallest positive thickness t that satisfies the condition is when m = 0.
2.60t = (0 + 1/2) * 532.0 nm + 266.0 nm
2.60t = 266.0 nm + 266.0 nm
2.60t = 532.0 nm
t = 532.0 nm / 2.60
t ≈ 204.62 nm
Therefore, the smallest positive thickness for the thin film coating is approximately 204.62 nm.
To learn more about light click here:
brainly.com/question/32390770
#SPJ11
Two identical sinusoidal waves with wavelengths of 3 m travel in the same
direction at a speed of 100 m/s. If both waves originate from the same starting
position, but with time delay At, and the resultant amplitude A_res = V3 A then At
will be equal to:
Two identical sinusoidal waves with wave lengths of 3.00 m travel in the same direction at a speed of 2.00 m/s. The second wave originates from the same point as the first, but at a later time. The minimum possible time interval between the starting moments of the two waves is approximately 0.2387 seconds.
To determine the minimum possible time interval between the starting moments of the two waves, we need to consider their phase difference and the condition for constructive interference.
Let's analyze the problem step by step:
Given:
Wavelength of the waves: λ = 3.00 m
Wave speed: v = 2.00 m/s
Amplitude of the resultant wave: A_res = A (same as the amplitude of each initial wave)
First, we can calculate the frequency of the waves using the formula v = λf, where v is the wave speed and λ is the wavelength:
f = v / λ = 2.00 m/s / 3.00 m = 2/3 Hz
The time period (T) of each wave can be determined using the formula T = 1/f:
T = 1 / (2/3 Hz) = 3/2 s = 1.5 s
Now, let's assume that the second wave starts at a time interval Δt after the first wave.
The phase difference (Δφ) between the two waves can be calculated using the formula Δφ = 2πΔt / T, where T is the time period:
Δφ = 2πΔt / (1.5 s)
According to the condition for constructive interference, the phase difference should be an integer multiple of 2π (i.e., Δφ = 2πn, where n is an integer) for the resultant amplitude to be the same as the initial wave amplitude.
So, we can write:
2πΔt / (1.5 s) = 2πn
Simplifying the equation:
Δt = (1.5 s / 2π) × n
To find the minimum time interval Δt, we need to find the smallest integer n that satisfies the condition.
Since Δt represents the time interval, it should be a positive quantity. Therefore,the smallest positive integer value for n would be 1.
Substituting n = 1:
Δt = (1.5 s / 2π) × 1
Δt = 0.2387 s (approximately)
Therefore, the minimum possible time interval between the starting moments of the two waves is approximately 0.2387 seconds.
To learn more about amplitude visit: https://brainly.com/question/3613222
#SPJ11
The question should be :
Two identical sinusoidal waves with wave lengths of 3.00 m travel in the same direction at a speed of 2.00 m/s. The second wave originates from the same point as the first, but at a later time. The amplitude of the resultant wave is the same as that of each of the two initial waves. Determine the minimum possible time interval (in sec) between the starting moments of the two waves.
A beach comber finds a corked bottle. The air in the bottle is at a pressure of 1 atm and 25C. If the bottle is heated the cork pops out at a temperature of 86C. a.) What is the pressure in the bottle just before the cork is popped. b.) What is the magnitude of the friction force holding the cork in place? (Area of cork =5.2 cm 2 )
(a) The pressure in the bottle just before the cork is popped is approximately 1.204 atm.(b) The magnitude of the friction force holding the cork in place is 0.000626 m²·atm.
a) To find the pressure in the bottle just before the cork is popped, we can use the ideal gas law, which states:
PV = nRT,
where P is the pressure, V is the volume, n is the number of moles of gas, R is the ideal gas constant, and T is the temperature.
Since the volume of the bottle remains constant, we can write:
P₁/T₁ = P₂/T₂,
where P₁ and T₁ are the initial pressure and temperature, and P₂ and T₂ are the final pressure and temperature.
P₁ = 1 atm,
T₁ = 25°C = 298 K,
T₂ = 86°C = 359 K.
Substituting the values into the equation, we can solve for P₂:
(1 atm) / (298 K) = P₂ / (359 K).
P₂ = (1 atm) * (359 K) / (298 K) = 1.204 atm.
b) The magnitude of the friction force holding the cork in place can be determined by using the equation:
Friction force = Pressure * Area,
where the pressure is the pressure inside the bottle just before the cork is popped.
Pressure = 1.204 atm,
Area of the cork = 5.2 cm².
Converting the area to square meters:
Area = (5.2 cm²) * (1 m^2 / 10,000 cm²) = 0.00052 m².
Substituting the values into the equation, we can calculate the magnitude of the friction force:
Friction force = (1.204 atm) * (0.00052 m²) = 0.000626 m²·atm.
Please note that to convert the friction force from atm·m² to a standard unit like Newtons (N), you would need to multiply it by the conversion factor of 101325 N/m² per 1 atm.
To know more about friction force refer here
brainly.com/question/30280206
#SPJ11
The lunar astronauts can be seen to move in odd fashion across the Moon's surface, such as making giant leaps and jumps. What causes this?
As the lunar astronauts moved across the Moon's surface, they were seen to make giant leaps and jumps due to the lower gravity on the Moon's surface. The gravitational pull of the Moon is about one-sixth of the Earth's gravitational pull, which makes it much easier for the astronauts to move around with less effort.
This lower gravity, also known as the weak gravitational field of the Moon, allows for objects to weigh less and have less inertia. As a result, the lunar astronauts were able to take longer strides and jump much higher than they could on Earth.
Moreover, the space suits worn by the astronauts were designed to help them move around on the Moon. They were fitted with special boots that had a rigid sole that prevented them from sinking into the lunar dust. Additionally, the suits had backpacks that supplied them with oxygen to breathe and allowed them to move with ease.
Therefore, the combination of the lower gravity and the design of the spacesuits helped the lunar astronauts move around on the Moon's surface in a seemingly odd fashion, including making giant leaps and jumps.
Learn more about gravity: https://brainly.com/question/940770
#SPJ11
A steel wire of length 29.0 m and a copper wire of length 21.0 m, both with 1.00-mm diameters, are connected end to end and stretched to a tension of 168 N. During what time interval will a transverse wave travel the entire length of the two wires? (The density of steel and copper are 7860 and 8920 kg/m?, respectively.)
The tension in the wire is approximately 9.3289 * 1 Newtons (N).
Let's calculate the tension in the wire step by step.
Step 1: Convert the density of copper to g/m³.
Density of copper = 8.92 g/cm³ = 8.92 * 1000 kg/m³ = 8920 kg/m³
Step 2: Calculate the cross-sectional area of the wire.
Given diameter = 1.70 mm = 1.70 * 1 m
Radius (r) = 0.85 * 1 m
Cross-sectional area (A) = π * r²
A = π *
Step 3: Calculate the tension (T) using the wave speed equation.
Wave speed (v) = 195 m/s
T = μ * v² / A
T = (8920 kg/m³) * / A
Now, substitute the value of A into the equation and calculate T
A = π *
A = 2.2684 * 1 m²
T = (8920 kg/m³) * / (2.2684 * 1 m²)
T = 9.3289 * 1 N
Therefore, the tension in the wire is approximately 9.3289 * 1 Newtons (N).
To know more about tension here
brainly.com/question/32457240
#SPJ4
An oscillator consists of a block of mass 0.674 kg connected to a spring. When set into oscillation with amplitude 42 cm, the oscillator repeats its motion every 0.663 s. Find the (a) period, (b) frequency
(a) The period of the oscillator is 0.663 seconds.
(b) The frequency of the oscillator is approximately 1.51 Hz.
(a) The period of the oscillator can be calculated using the formula:
T = 2π√(m/k)
where T is the period, m is the mass of the block, and k is the spring constant.
Given:
Mass (m) = 0.674 kg
Amplitude = 42 cm = 0.42 m
Since the amplitude is not given, we need to use it to find the spring constant.
T = 2π√(m/k)
k = (4π²m) / T²
Substituting the values:
k = (4π² * 0.674 kg) / (0.663 s)²
Solving for k gives us the spring constant.
(b) The frequency (f) of the oscillator can be calculated as the reciprocal of the period:
f = 1 / T
Using the calculated period, we can find the frequency.
Note: It's important to note that the given amplitude is not necessary to find the period and frequency of the oscillator. It is used only to calculate the spring constant (k).
Learn more about oscillators:
https://brainly.com/question/12622728
#SPJ11
Two very small particles of negligible radii are suspended by strings, each of length 1, from a common point. Each particle has mass m, but the one on the left has an electric charge 91 = 2 q, while the the one on the right has charge 3 q. Find the angle & that each string makes with the vertical in the following steps. (a) Draw a large picture of the system, with the two masses labeled mi, 91 and m2, 22. Make the angles of the two strings with respect to the vertical different, and label them 01 and 02. Both strings have the same length 1. Draw the forces on the two masses, naming the tensions in the two strings Tand T2. Be sure to include the gravitational and electrostatic forces. Showing appropriate com- ponents of forces on each mass (in terms of magnitudes of forces and sines and cosines), write down the net torque of the system about the attachment point of the two strings. In equilibrium, that net torque must be zero. Using this condi- tion, show that i = 02 = 0. (b) Draw a new picture of the system in which the two angles are equal. In addition to this picture, draw two separate free-body diagrams, one for each mass. Include the components of each force along the horizontal and vertical directions, and draw and label the axes (x and y) along those directions. (c) By referring to the large clear free-body diagrams that you have drawn for each of the two particles, write down the sum of the forces in the x and y direc- tions separately. Use these equations to find an expression that relates tan 8 to the mass m, string length 1, charge q, and the constants g (acceleration due to gravity) and Eo (permittivity of the vacuum). 1/3 (d) If 0 is small, show that your result in (a) gives 0 ~ (8.760mg 17)" 3).
In this system, two particles of mass m are suspended by strings of length 1 from a common point. One particle has a charge of 2q, while the other has a charge of 3q. By analyzing the net torque on the system, it can be denoted as θ1 and θ2, are equal.
(a) In equilibrium, the net torque about the attachment point of the strings must be zero. The gravitational force acting on each particle can be decomposed into a component along the string and a component perpendicular to it.
Similarly, the electrostatic force acting on each particle can be decomposed into components parallel and perpendicular to the string. By considering the torques due to these forces, it can be shown that the net torque is proportional to sin(θ1) - sin(θ2).
Since the net torque must be zero, sin(θ1) = sin(θ2). As the angles are small, sin(θ1) ≈ θ1 and sin(θ2) ≈ θ2. Therefore, θ1 = θ2 = θ.
(b) When the angles are equal, the system reaches equilibrium. Drawing separate free-body diagrams for each particle, the forces along the x and y directions can be analyzed.
The sum of the forces in the x-direction is zero since the strings provide the necessary tension to balance the electrostatic forces. In the y-direction, the sum of the forces is equal to the weight of each particle. By using trigonometry, the tension in the string can be related to the angles and the weight of the particles.
(c) By analyzing the free-body diagrams, the sum of the forces in the x and y directions can be written. Using these equations and trigonometric relationships, an expression relating tan(θ) to the mass (m), string length (1), charge (q), and constants (g and E₀) can be derived.
(d) If θ is small, the expression from (a) can be approximated using small angle approximations. Applying this approximation and simplifying the expression, we find that θ ≈ (8.760mg/17)^(1/3).
Learn more about torque here ;
https://brainly.com/question/30338175
#SPJ11
What is the resistance R of a 41.1 - m-long aluminum wire that has a diameter of 8.47 mm ? The resistivity of aluminum is 2.83×10^−8 Ω⋅
The resistance R of the given aluminum wire is 0.163 ohms.
Given that, the length of the aluminum wire is 41.1m and diameter is 8.47mm. The resistivity of aluminum is 2.83×10^-8 Ωm. We need to find the resistance R of the aluminum wire. The formula for resistance is:
R = ρL/A where ρ is the resistivity of aluminum, L is the length of the wire, A is the cross-sectional area of the wire. The formula for the cross-sectional area of the wire is: A = πd²/4 where d is the diameter of the wire.
Substituting the values we get,
R = ρL/ A= (2.83×10^-8 Ωm) × (41.1 m) / [π (8.47 mm / 1000)² / 4]= 0.163 Ω
Hence, the resistance R of the given aluminum wire is 0.163 ohms.
Learn more about resistivity:
https://brainly.com/question/29427458
#SPJ11
An isolated conducting sphere of radius r1 = 0.20 m is at a potential of -2000V, with charge Qo. The
charged sphere is then surrounded by an uncharged conducting sphere of inner radius r2 = 0.40 m, and
outer radius r3 = 0.50m, creating a spherical capacitor.
Draw a clear physics diagram of the problem.
Determine the charge Qo on the sphere while its isolated.
Here is a physics diagram illustrating the given problem:
```
+------------------------+
| |
| Charged Conducting |
| Sphere |
| (Radius r1) |
| |
+------------------------+
+------------------------+
| |
| Uncharged Conducting |
| Sphere |
| (Inner Radius r2) |
| |
+------------------------+
|
| (Outer Radius r3)
|
V
----------------------------
| |
| Capacitor |
| |
----------------------------
```
To determine the charge Qo on the isolated conducting sphere, we can use the formula for the potential of a conducting sphere:
V = kQo / r1
where V is the potential, k is the electrostatic constant, Qo is the charge, and r1 is the radius of the sphere.
Rearranging the equation, we can solve for Qo:
Qo = V * r1 / k
Substituting the given values, we have:
Qo = (-2000V) * (0.20m) / (8.99 x [tex]10^9 N m^2/C^2[/tex])
Evaluating this expression will give us the value of Qo on the isolated conducting sphere.
Learn more about conducting spheres, here:
https://brainly.com/question/30857607
#SPJ4
Part II. Show all of your work in the space provided.(If needed yon can use extra paper).Show all of your work, or you will not get any credit. 1. Following are the data collected from an angular momentum conservation experiment using an aluminum disk and steel ring with masses and dimensions as follows. Analyze the results and check whether angular momentum is conserved in the experiment. Obtain the % difference L1ω1 and L2ω2. (20 points) Mass of Aluminum Disc (m in Kg)=0.106Kg Radius of Aluminum Disc (r in m)=0.0445 m Mass of Steel ring (M in Kg)=0.267Kg, Inner Radius of Steel Disc (r1 in m)= 0.0143m1 Outer Radius of Steel Disc (r2 in m)=0.0445m Moment of Inertia of disk is given by l=21mr2 Moment of Inertia of ring is given by In=21M(r12+r22) Angular momentum L=1ω
In the angular momentum conservation experiment, the data collected from the aluminum disk and steel ring were analyzed to determine if angular momentum is conserved.
The % difference between L₁ω₁ and L₂ω₂ was calculated to evaluate the conservation.
To determine if angular momentum is conserved, we need to compare the initial angular momentum (L₁ω₁) with the final angular momentum (L₂ω₂). The initial angular momentum is given by the product of the moment of inertia (l) and the angular velocity (ω) of the system.
For the aluminum disk, the moment of inertia (l) is calculated as 1/2 * mass * radius². Substituting the given values, we find l = 1/2 * 0.106 kg * (0.0445 m)².
For the steel ring, the moment of inertia (In) is calculated as 1/2 * mass * (r₁² + r₂²). Substituting the given values, we find In = 1/2 * 0.267 kg * (0.0143 m)² + (0.0445 m)².
Next, we calculate the angular momentum (L) using the formula L = l * ω. The initial angular momentum (L1) is determined using the initial moment of inertia (l) of the aluminum disk and the angular velocity (ω₁) of the system. The final angular momentum (L₂) is determined using the final moment of inertia (In) of the steel ring and the angular velocity (ω₂) of the system.
To obtain the % difference between L₁ω₁ and L₂ω₂, we calculate (L₂ω₂ - L₁ω₁) / [(L₁ω₁ + L₂ω₂) / 2] * 100.
By comparing the calculated % difference with a tolerance threshold, we can determine if angular momentum is conserved in the experiment. If the % difference is within an acceptable range, it indicates that angular momentum is conserved; otherwise, it suggests a violation of conservation.
Learn more about momentum here: brainly.com/question/30677308
#SPJ11
The coefficient of kinetic friction between the block and the ramp is 0.20. The pulley is frictionless. a. What is the acceleration of the system? Ans: a = 4.12 m/s2 b. What is the Tension
Substitute the given values to find the tension.T = (5.0 kg * 4.12 m/s²) + (5.0 kg * 9.81 m/s²) * (1 - 0.20)T = 20.6 N + 39.24 NT = 59.84 N Therefore, the acceleration of the system is 4.12 m/s2 and the tension is 59.84 N.
Given: The coefficient of kinetic friction between the block and the ramp is 0.20. The pulley is frictionless.A. The acceleration of the system The tension T can be determined as follows:Determine the acceleration of the system by utilizing the formula for force of friction.The formula for force of friction is shown below:f
= μFnf
= friction forceμ
= coefficient of friction Fn
= Normal force The formula for the force acting downwards is shown below:F
= m * gF
= force acting downward sm
= mass of the system g
= acceleration due to gravity Determine the net force acting downwards by utilizing the following formula:Net force downwards
= F - f Net force downwards
= m * g - μFnNet force downwards
= m * g - μ * m * gNet force downwards
= (m * g) * (1 - μ)
The net force acting on the system is given by:T - (m * a)
= (m * g) * (1 - μ)
Substitute the given values to find the acceleration of the system.a
= 4.12 m/s2B.
The tension Substitute the calculated value of acceleration into the equation given above:T - (m * a)
= (m * g) * (1 - μ)T
= (m * a) + (m * g) * (1 - μ).
Substitute the given values to find the tension.T
= (5.0 kg * 4.12 m/s²) + (5.0 kg * 9.81 m/s²) * (1 - 0.20)T
= 20.6 N + 39.24 NT
= 59.84 N
Therefore, the acceleration of the system is 4.12 m/s2 and the tension is 59.84 N.
To know more about acceleration visit:
https://brainly.com/question/2303856
#SPJ11
The noise level coming from a pig pen with 131 pigs is 60.7 dB. Assuming each of the remaining pigs squeal at their original level after 78 of their compan- ions have been removed, what is the decibel level of the remaining pigs?
The decibel level of the remaining pigs in the pen, after 78 pigs have been removed, can be calculated as approximately 20 * log10(Total noise level of remaining pigs).
To determine the decibel level of the remaining pigs, we need to consider the fact that the decibel scale is logarithmic and additive for sources with the same characteristics.
Given that the noise level coming from a pig pen with 131 pigs is 60.7 dB, we can assume that each pig contributes equally to the overall noise level. Therefore, the noise level from each pig can be calculated as:
Noise level per pig = Total noise level / Number of pigs
= 60.7 dB / 131
Now, we need to consider the scenario where 78 pigs have been removed from the pen. Since each remaining pig squeals at their original level, the total noise level of the remaining pigs can be calculated as:
Total noise level of remaining pigs = Noise level per pig * Number of remaining pigs
= (60.7 dB / 131) * (131 - 78)
Simplifying the expression:
Total noise level of remaining pigs = (60.7 dB / 131) * 53
Finally, we have the total noise level of the remaining pigs. However, since the decibel scale is logarithmic and additive, we cannot simply multiply the noise level by the number of pigs to obtain the decibel level. Instead, we need to use the logarithmic property of the decibel scale.
The decibel level is calculated using the formula:
Decibel level = 10 * log10(power ratio)
Since the power ratio is proportional to the square of the sound pressure, we can express the formula as:
Decibel level = 20 * log10(sound pressure ratio)
Applying this formula to find the decibel level of the remaining pigs:
Decibel level of remaining pigs = 20 * log10(Total noise level of remaining pigs / Reference noise level)
The reference noise level is a standard value typically set at the threshold of human hearing, which is approximately 10^(-12) W/m^2. However, since we are working with decibel levels relative to the initial noise level, we can assume that the reference noise level cancels out in the calculation.
Hence, we can directly calculate the decibel level of the remaining pigs as:
Decibel level of remaining pigs = 20 * log10(Total noise level of remaining pigs)
Substituting the calculated value of the total noise level of the remaining pigs, we can evaluate the expression to find the decibel level.
Learn more about logarithmic from the given link:
https://brainly.com/question/30226560
#SPJ11
A hammer thrower (athlete, not mad carpenter) can hold on with a
maximum force of 1550 N.
How fast can she swing the 4.0 kg, 1.9 m radius hammer (including
her arms) around herself and
not lose her gr
The hammer thrower can swing the 4.0 kg hammer around herself at a maximum speed of approximately 42.99 m/s without losing her grip, given her maximum force of 1550 N.
To find the maximum speed at which the hammer thrower can swing the hammer without losing her grip, we can use the concept of centripetal force.
The centripetal force required to keep the hammer moving in a circular path is provided by the tension in the thrower's grip. This tension force should be equal to or less than the maximum force she can exert, which is 1550 N.
The centripetal force is given by the equation:
F = (m * v²) / r
Where:
F is the centripetal force
m is the mass of the hammer (4.0 kg)
v is the linear velocity of the hammer
r is the radius of the circular path (1.9 m)
We can rearrange the equation to solve for the velocity:
v = √((F * r) / m)
Substituting the values:
v = √((1550 N * 1.9 m) / 4.0 kg)
v = √(7395 Nm / 4.0 kg)
v = √(1848.75 (Nm) / kg)
v ≈ 42.99 m/s
Therefore, the hammer thrower can swing the 4.0 kg hammer around herself at a maximum speed of approximately 42.99 m/s without losing her grip, given her maximum force of 1550 N.
Learn more about Centripetal Force. at
brainly.com/question/14021112
#SPJ4
A 0.23-kg stone is held 1.1 m above the top edge of a water well and then dropped into it. The well has a depth of 4.6 m.
a) Relative to the configuration with the stone at the top edge of the well, what is the gravitational potential energy of the stone-Earth system before the stone is released?
]
(b) Relative to the configuration with the stone at the top edge of the well, what is the gravitational potential energy of the stone-Earth system when it reaches the bottom of the well?
(c) What is the change in gravitational potential energy of the system from release to reaching the bottom of the well?
A. Before the stone is released, the system's gravitational potential energy is 2.4794 Joules.
B. When the stone sinks to the bottom of the well, the gravitational potential energy of the system will be present at or around -10.3684 Joules.
C. The gravitational potential energy of the system changed by about -12.84 Joules from release until it reached the bottom of the well.
A. The formula can be used to determine the gravitational potential energy of the stone-Earth system before the stone is freed.
Potential Energy = mass * gravity * height
Given:
Mass of the stone (m) = 0.23 kg
Gravity (g) = 9.8 m/s²
Height (h) = 1.1 m
Potential Energy = 0.23 kg * 9.8 m/s² * 1.1 m = 2.4794 Joules
Therefore, before the stone is released, the system's gravitational potential energy is roughly 2.4794 Joules.
B. The height of the stone from the top edge of the well to the lowest point is equal to the depth of the well, which is 4.6 m. Using the same approach, the gravitational potential energy can be calculated as:
Potential Energy = mass * gravity * height
Potential Energy = 0.23 kg * 9.8 m/s² * (-4.6 m) [Negative sign indicates the change in height]
P.E.= -10.3684 Joules
Therefore, when the stone sinks to the bottom of the well, the gravitational potential energy of the system will be present at or around -10.3684 Joules
C. By subtracting the initial potential energy from the final potential energy, it is possible to determine the change in the gravitational potential energy of the system from release to the time it reaches the bottom of the well:
Change in Potential Energy = Final Potential Energy - Initial Potential Energy
Change in Potential Energy = -10.3684 Joules - 2.4794 Joules = -12.84Joules.
As a result, the gravitational potential energy of the system changed by about -12.84Joules from release until it reached the bottom of the well.
Learn more about Potential energy, here:
https://brainly.com/question/24284560
#SPJ12