Answer:
The metallic oxide is Li₂O
Explanation:
Let the metallic oxide be M₂O
Thus;
M₂O + H₂ = 2M + H₂O
Molar mass of M₂O = (2x + 16)
We assumed Molar mass of M to be x.
We are told that 5.00 g of the metallic oxide produces 2.32 g of the metal.
By proportion, we can write the following;
5g of M₂O × (1 mole of M₂O/(2x + 16)) × (2 moles of M/1 mole of M₂O) = 2.32 g of M × 1 mole of M/x g of M
This cancels out to give us;
10/(2x + 16) = 2.32/x
Cross multiply to get;
10x = 2.32(2x + 16)
10x = 4.64x + 37.12
10x - 4.64x = 37.12
5.36x = 37.12
x = 37.12/5.36
x = 6.925 g/mol
The metal with a molar mass closest to this value of x is Lithium which has a molar mass of 6.94 g/mol
Thus the metal is Lithium and as such the metallic oxide is Li₂O
What provides the source of energy for the water cycle?
rain
soil
the Sun
the Moon
Does warm air rise or fall?
rise and cold air
it doesn't fall cause I already fall inlove with levi
Which one of the following statements best describes electronegativity in atoms?
A) Electronegativity is what happens when an atom gains an electron to become an anion.
B) Electronegativity is the attraction an element's nucleus has for the electrons in a chemical bond
C) Electronegativity is the energy lost when an atom gains an electron
D) Electronegativity is the energy absorbed when an atom loses an electron
Answer: B) Electronegativity is the attraction an element's nucleus has for the electrons in a chemical bond
Explanation:
Electronegativity is defined as the property of an element to attract a shared pair of electron towards itself.
When the size of an atom decreases as we move across the period, as the electrons get added to the same shell and the nuclear charge keeps on increasing. Thus the electrons get more tightly held by the nucleus.
As, the size of an element decreases, the valence electrons come near to the nucleus. So, the attraction between the nucleus and the shared pair of electrons increases and thus the electronegativity increases.
How many molecules are in 85g of silver nitrate?
3.0 × 10²³ molecules AgNO₃
General Formulas and Concepts:Math
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightChemistry
Atomic Structure
Reading a Periodic TableWriting CompoundsAvogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.Stoichiometry
Using Dimensional AnalysisExplanation:Step 1: Define
85 g AgNO₃ (silver nitrate)
Step 2: Identify Conversions
Avogadro's Number
[PT] Molar Mass of Ag - 107.87 g/mol
[PT] Molar Mass of N - 14.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of AgNO₃ - 107.87 + 14.01 + 3(16.00) = 169.88 g/mol
Step 3: Convert
Set up: [tex]\displaystyle 85 \ g \ AgNO_3(\frac{1 \ mol \ AgNO_3}{169.88 \ g \ AgNO_3})(\frac{6.022 \cdot 10^{23} \ molecules \ AgNO_3}{1 \ mol \ AgNO_3})[/tex]Multiply/Divide: [tex]\displaystyle 3.01313 \cdot 10^{23} \ molecules \ AgNO_3[/tex]Step 4: Check
Follow sig fig rules and round. We are given 2 sig figs.
3.01313 × 10²³ molecules AgNO₃ ≈ 3.0 × 10²³ molecules AgNO₃
If two reactant molecules collide with each other what two reasons might they not combine ?
How much energy would it take to heat a section of the copper tubing that weighs about 665.0 g, from 15.71 ∘C to 27.09 ∘C ? Copper has a specific heat of 0.3850 (J/g)⋅∘C.
Answer:
2914 J
Explanation:
Step 1: Given data
Mass of the copper tubing (m): 665.0 gInitial temperature: 15.71 °CFinal temperature: 27.09 °CSpecific heat of copper (c): 0.3850 J/g.°CStep 2: Calculate the temperature change
ΔT = 27.09 °C - 15.71 °C = 11.38 °C
Step 3: Calculate the energy required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.3850 J/g.°C × 665.0 g × 11.38 °C
Q = 2914 J
What is the boiling point of a solution formed by dissolving 0.75 mol of KCl in 1.00 kg of water?
The boiling point of water generally increases as the amount of impurities (which a solute like KCl technically can be thought of) dissolved increases. This relation can be quantified using the equation,
[tex]\Delta T_b = i \times K_b \times m[/tex]
where [tex]\Delta{T}_{b}[/tex] is the change in the water's boiling point (normally taken to be 100 °C), [tex]i[/tex] is the Van 't Hoff factor (the number of particles a single formula unit of the solute dissociates into in water), [tex]K_b[/tex] is the boiling point elevation constant, and [tex]m[/tex] is the molality (moles of solute/kilogram(s) of solvent) of the solution.
We are forming a solution by dissolving KCl in water. KCl is an electrolyte that, in water, will dissociate into K⁺ and Cl⁻ ions. So, for every formula unit, KCl, we obtain two particles. Thus, the Van 't Hoff factor, or [tex]i[/tex], will be 2.
The molality of the solution can be calculated by dividing the number of moles of KCl by the mass of water in kilograms. Since we have 1.00 kg of water, we would be dividing 0.75 mol KCl by 1, giving us a molality (m) of 0.75 m.
We aren't provided the boiling point elevation constant for water. Several authoritative sources give the value 0.512 °C/m, so we will adopt that as our [tex]K_b[/tex].
Note: m = mol/kg as used in this problem.
Plugging everything in,
[tex]\Delta T_b = i \times K_b \times m \\\Delta T_b = 2 \times 0.512 \text{ } \frac{^oC}{mol/kg} \times 0.75 \text{ } \frac{mol}{kg} \\\Delta T_b = 0.768 \text{ } \mathrm{ ^oC}[/tex]
As you can see, our change in boiling point is positive (the boiling point is elevated), and it is also quite modest. Taking 100 °C to be the boiling point of pure water, the boiling point of our solution would be 100 ⁰C + 0.768 ⁰C, or 100.768 ⁰C.
If we are considering significant figures, then we must give our answer to two significant figures (since 0.75 has two sig figs). We can regard the boiling point of water (100 ⁰C) as a defined value. Since our final answer is a sum, the boiling point of our solution to two significant figures would be 100.77 ⁰C.
Given:
Mol = 0.75Mass = 1.00 kgWe know,
Boiling point constant, Kb = 0.51The molality of the solution will be:
= [tex]\frac{Mole}{Mass}[/tex]
= [tex]\frac{0.75}{1}[/tex]
= [tex]0.75 \ m[/tex]
Now,
→ [tex]T_{solution}-T_{water} = Kb\times m\times i[/tex]
By putting the values, we get
[tex]= 0.51\times 0.75\times 2[/tex]
[tex]= 0.765[/tex]
Boiling point of water = 100°Chence,
Solution's boiling point will be:
→ [tex]T_{solution} = 100+0.765[/tex]
[tex]= 100.765^{\circ} C[/tex]
Thus the above approach is right.
Learn more about boiling point here:
https://brainly.com/question/23549697
issues guidelines for financial system operated by all commerical banks in India
Organic Molecules worksheet
Answer:
ok
Explanation:
Use the atom builder interactive to identify each nucleus. Two protons represented as purple spheres and one neutron represented as a white sphere.Two protons represented as purple spheres and four neutrons represented as white spheres.Four protons represented as purple spheres and three neutrons represented as white spheres. One proton represented as a purple sphere and two neutrons represented as white spheres.Four protons represented as purple spheres and two neutrons represented as white spheres.Three protons represented as purple spheres and four neutrons represented as white spheres. Answer Bank
Answer:
[tex]\frac{3}{2}He[/tex]
[tex]\frac{6}{2} He[/tex]
[tex]\frac{7}{4}Be[/tex]
[tex]\frac{3}{1} H[/tex]
[tex]\frac{6}{4}Be[/tex]
[tex]\frac{7}{3} Li[/tex]
Explanation:
In the first nucleus we are told that there are two protons and one neutron. Let us remember that the mass number = number of protons + number of neutrons.
This implies that, for the first specie the mass number is 3, for the second specie the mass number is 6 and the third specie has a mass number of 7 and so on. The mass number is indicated as a superscript.
The atomic number is the number of protons in the nucleus of the atom and helps us to identify the atom. It is always written as a subscript as shown.
Which of the following is true of cartilage?
absorbs shock
is relatively stretchy
does not attach to bone
is not considered connective tissue
Answer:
absorbs shock
Explanation:
Answer: absorbs shock
Explanation:
Convert 5.802 g/cm^3 to Kg/L
Answer:
5.80200 Kg / L
Explanation:
Acetylene gas is often used in welding torches because of the very high heat produced when it reacts with oxygen gas, producing carbon dioxide gas and water vapor. Calculate the moles of oxygen needed to produce of water. Be sure your answer has a unit symbol, if necessary, and round it to the correct number of significant digits.
Answer:
0.225 mol = 0.23 mol to 2 significant figures
Explanation:
Calculate the moles of oxygen needed to produce 0.090 mol of water
The equation of the reaction is given as;
2 C2H2 + 5 O2 --> 4 CO2 + 2 H2O
From the equation of the reaction;
5 mol of O2 produces 2 mol of H2O
x mol of O2 produces 0.090 mol of H2O
5 = 2
x = 0.090
x = 0.090 * 5 / 2
x = 0.225 mol
The reform reaction between steam and gaseous methane (CH4) produces "synthesis gas," a mixture of carbon monoxide gas and dihydrogen gas. Synthesis gas is one of the most widely used industrial chemicals, and is the major industrial source of hydrogen. Suppose a chemical engineer studying a new catalyst for the reform reaction finds that 924. liters per second of methane are consumed when the reaction is run at 261.°C and 0.96atm. Calculate the rate at which dihydrogen is being produced.
Answer:
The answer is "[tex]= 0.078 \ kg \ H_2[/tex]".
Explanation:
calculating the moles in [tex]CH_4 =\frac{PV}{RT}[/tex]
[tex]=\frac{(0.58 \ atm) \times (923 \ L) }{ (0.0821 \frac{L \cdot atm}{K \cdot mol})(232^{\circ} C +273)}\\\\=\frac{(535.34 \ atm \cdot \ L) }{ (0.0821 \frac{L \cdot atm}{K \cdot mol})(505)K}\\\\=\frac{(535.34 \ atm \cdot \ L) }{ (41.4605 \frac{L \cdot atm}{mol})}\\\\= 12.9 \ mol[/tex]
Eqution:
[tex]CH_4 +H_2O \to 3H_2+ CO \ (g)[/tex]
Calculating the amount of [tex]H_2[/tex] produced:
[tex]= 12.9 \ mol CH_4 \times \frac{3 \ mol \ H_2 }{1 \ mol \ CH_4}\times \frac{2.016 g H_2}{1 \ mol \ H_2}\\\\= 78 \ g \ H_2 \\\\= 0.078 \ kg \ H_2[/tex]
So, the amount of dihydrogen produced = [tex]0.078 \frac{kg}{s}[/tex]
What is the mass in grams of 1.00 x 10 24 atoms of Mn?
a)91.3 g
b) 123.4 g
c) 1.66 g
d) 166 g
91.2 g Mn
General Formulas and Concepts:Math
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightChemistry
Atomic Structure
Reading a Periodic TableAvogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.Stoichiometry
Using Dimensional AnalysisExplanation:Step 1: Define
[Given] 1.00 × 10²⁴ atoms Mn
Step 2: Identify Conversions
Avogadro's Numer
[PT] Molar Mass of Mn - 54.94 g/mol
Step 3: Convert
[DA] Set up: [tex]\displaystyle 1.00 \cdot 10^{24} \ atoms \ Mn(\frac{1 \ mol \ Mn}{6.022 \cdot 10^{23} \ atoms \ Mn})(\frac{54.94 \ g \ Mn}{1 \ mol \ Mn})[/tex][DA] Multiply/Divide [Cancel out units]: [tex]\displaystyle 91.2321 \ g \ Mn[/tex]Step 4: Check
Follow sig fig rules and round. We are given 3 sig figs.
91.2321 g Mn ≈ 91.2 g Mn
5) The stability of an atom is determined by
Re 1) P+n
2)P-n
3) P/N
4) N/P
Answer:
the answer p+n
Explanation:
A reaction that proceeds by first-order irreversible kinetics is oxidizing chemical A in a wastewater treatment basin with a mean residence time of 1.5 hours. The reaction rate constant is The basin is unbaffled and may be characterized as two completely mixed tanks in series. If the steady-state influent concentration is 30 mg/l, find the effluent concentration. If baffles are placed in the basin so that the basin may be characterized as four completely mixed tanks in series, and the mean residence time remains constant, find the effluent concentration.
This question is incomplete, the complete question is;
A reaction that proceeds by first-order irreversible kinetics is oxidizing chemical A in a wastewater treatment basin with a mean residence time of 1.5 hours. The reaction rate constant is 2.0 Hr-1.The basin is unbaffled and may be characterized as two completely mixed tanks in series. If the steady-state influent concentration is 30 mg/l, find the effluent concentration.
If baffles are placed in the basin so that the basin may be characterized as four completely mixed tanks in series, and the mean residence time remains constant, find the effluent concentration.
Answer:
a) (two completely mixed tanks in series) the find the effluent concentration is 4.8 [tex]\frac{mg}{l}[/tex]
b) (four completely mixed tanks in series) find the effluent concentration is 3.2 [tex]\frac{mg}{l}[/tex]
Explanation:
Given the data in the question;
we can determine the effluent concentration of two completely mixed tanks in series for first order irreversible reaction using the following equation;
C = Co ( 1 / ( 1 + K[tex]\frac{t}{n}[/tex] )ⁿ
t is the mean hydraulic residence time for two completely mixed tanks in series ( 1.5 hr)
Co is initial concentration of the influent ( 30 [tex]\frac{mg}{l}[/tex] )
C is final concentration of effluent,
n is the number of tanks series ( 2)
k is rate constant for the given first order reaction( 2[tex]\frac{1}{hour}[/tex] )
so we substitute
C = 30 [tex]\frac{mg}{l}[/tex] ( 1 / ( 1 + 2[tex]\frac{1}{hour}[/tex] . [tex]\frac{1.5}{2}[/tex] )²
C = 30 [tex]\frac{mg}{l}[/tex] × ( 1/2.5)²
C = 30 [tex]\frac{mg}{l}[/tex] × 0.16
C = 4.8 [tex]\frac{mg}{l}[/tex]
Therefore, (two completely mixed tanks in series) the find the effluent concentration is 4.8 [tex]\frac{mg}{l}[/tex]
b)
using;
C = Co ( 1 / ( 1 + K[tex]\frac{t}{n}[/tex] )ⁿ
t is the mean hydraulic residence time for two completely mixed tanks in series ( 1.5 hr)
Co is initial concentration of the influent ( 30 [tex]\frac{mg}{l}[/tex] )
C is final concentration of effluent,
n is the number of tanks series ( 4)
k is rate constant for the given first order reaction( 2[tex]\frac{1}{hour}[/tex] )
so we substitute
C = 30 [tex]\frac{mg}{l}[/tex] ( 1 / ( 1 + 2[tex]\frac{1}{hour}[/tex] . [tex]\frac{1.5}{4}[/tex] )⁴
C = 30 [tex]\frac{mg}{l}[/tex] × ( 1/1.75)²
C = 30 [tex]\frac{mg}{l}[/tex] × 0.107
C = 3.2 [tex]\frac{mg}{l}[/tex]
Therefore, (four completely mixed tanks in series) find the effluent concentration is 3.2 [tex]\frac{mg}{l}[/tex]
For the reaction 2Fe+o2 -->Feo how many grams of iron(ll) oxide are produced from 479.6 grams of iron in an excess of oxygen (Fe=56gmol, O=16g mol)
Mass of iron(ll) oxide= 616.608 g
Further explanationGiven
Reaction
2Fe+O2 -->2FeO
479.6 grams of iron
Required
mass of iron(ll) oxide
Solution
mol of iron :
= mass : Ar Fe
= 479.6 g : 56 g/mol
= 8.564
From the equation, mol FeO :
= 2/2 x mol Fe
= 2/2 x 8.564
= 8.564 moles
Mass of iron(ll) oxide :
= mol x MW
= 8.564 x 72 g/mol
= 616.608 g
6.) The bond between which two atoms is most polar?*
1)C-O
2)OFF
3)он-0
4)Ο N-Η
Answer:
O-H bond
Explanation:
Let us work out the electronegativity difference between the elements in each bond in order to decide which of them is most polar.
For the C-O bond
2.55 - 2.2 =0.35
For the F-F bond
3.98 - 3.98 = 0
For the O-H bond
3.44 - 2.2 = 1.24
For the N-H bond
3.04 - 2.2 = 0.84
The O-H bond has the highest electronegativity difference, hence it is he most polar bond.
HELPPPP PLZ
Using an applied force to move an object in the direction of the force is...
potential energy
the scientific definition of work
none of these
the scientific definition of power
Answer:
the scientific definition of work
Explanation:
In physics, work is defined as the use of force to move an object. For work to be done, the force must be applied in the same direction that the object moves.
I hope it helps! ^^
☁️☁️☁️☁️☁️☁️☁️
Consider the following reaction where K. = 9.52 10 2 at 350 K.
CH,(g) + CC14(2)—2CH2Cl2(g)
A reaction mixture was found to contain 2.21*10-2 moles of CH4(E), 3.8710-2 moles of CC1,(g) and 1.06-10-2 moles of CH,C12(2), in
a 1.00 liter container
Is the reaction at equilibrium?
If not, what direction must it run in order to reach equilibrium?
The reaction quotient, Qc equals
The reaction
A. must run in the forward direction to reach equilibrium
B. must run in the reverse direction to reach equilibrium
C. is at equilibrium
Answer:
The correct answer is A :))
What is the mass of 2.14 mol CaCl2?
Answer:
237.5 grams CaCl2
Explanation:
Use the periodic table to calculate the mass of CaCl2
40.078+(35.45*2)=110.97800
Convert: 2.14 mol CaCl2 * 110.98g CaCl2/1 mol CaCl2 = 237.4972 g
What kind of intermolecular forces act between a hydrogen cyanide (HCN) molecule and a carbon monoxide molecule?
Answer:
Dispersion forces
Dipole-Dipole interaction
Explanation:
The London dispersion force refers to the temporary attractive force that acts between the electrons in two adjacent atoms when the atoms develop temporary dipoles. Dispersion forces act between any two molecules even when other intermolecular forces are in operation as long as the molecules are in close proximity to each other.
Now, CO is polar and the HCN is also polar molecule. Hence, dipole - dipole interaction forces are also in operation and acts between the two molecules in close proximity to each other.
Dispersion forces and Dipole-Dipole interaction are intermolecular forces which act between a hydrogen cyanide (HCN) molecule and a carbon monoxide molecule
The transitory attractive force that exists between the electrons in two nearby atoms when the atoms form transient dipoles is known as the London dispersion force. As long as the molecules are close to one another, dispersion forces can exist between any two molecules, even when other intermolecular forces are active.
The HCN molecule and CO are both polar molecules right now. As a result, dipole-dipole interaction forces act between the two molecules when they are close to one another.
Learn more about intermolecular forces, here:
https://brainly.com/question/31797315
#SPJ6
HELP ME PLS I WILL GIVE BRAINLYEST 1. Is this organism affecting the lives of humans? 2. How is it affecting the lives of humans? 3. What are some ways to prevent the spread of zebra mussels?
Answer:
Yes it is because it effects the food chain in many ways like it takes more time to get rid of them and they eat parasites that other living things need. We can get rid of zebra mussels by removing them little by little or putting animals in the water that eats them.
Explanation:
Answer:
By encouraging boaters to carefully clen, drain and dry their boats before launching them in different bodies of water.
Explanation:
Rearrange each jumbled letters
1. EMITNGL IPTNO
2. USLTBIAOMNI
3. RZFENIGE OTPNI
4. ENSODIOTIP
5. ETHA
Answer:
1. MELTING POINT
2. SUBLIMATION
3. FREEZING POINT
4. DEPOSITION
5. HEAT
Explanation:
A molten sample of 1.00kg of iron with a specific heat of 0.385J/g.K at 1000.K is immersed in a sample of water. If the water absorbs 270 kJ of heat what is the final temperature of the iron?
I need all the process.
Answer:
298. 7 K.
Explanation:
Hello!
In this case, since equation we use to compute the heat in a cooling or heating process is:
[tex]Q=mC(T_f-T_i)[/tex]
Whereas we are given the heat, mass, specific heat and initial temperature. Thus, we infer that we need to solve for the final temperature just as shown below:
[tex]T_f=T_i+\frac{Q}{mC}\\\\T_f=1000 K+\frac{-270000J}{1000g*0.385\frac{J}{g*K} } \\\\T_f=298.7 K[/tex]
It is important to notice that the iron release heat as water absorbs it, that is why it is taken negative.
Best regards!
Calculate the molarity of 0.300 mol of Na2S in 1.75 L of solution.
Calculate the molarity of 31.3 g of MgS in 955 mL of solution
Answer:
Molarity[Na2S] = 0.1714
Molarity[Mgs] = 0.5811
Explanation:
Given:
0.300 mol [Na2S in 1.75 L]
31.3 g [MgS in 955 mL]
Find:
Molarity
Computation:
Molarity = Number of mole / volume in liter
Molarity[Na2S] = 0.300 / 1.75
Molarity[Na2S] = 0.1714
Molar mass of Mgs = 56.38 g/mol
Number of mole = 31.3 / 56.38
Number of mole = 0.555
Molarity[Mgs] = Number of mole / volume in liter
Molarity[Mgs] = [0.555 / 955]1000
Molarity[Mgs] = 0.5811
this is an example of what process ?
you
12. Choose one famous MLK quote as
Favorite and explain why that is your
favorite?
7. A number of reactions that take place on the surfaces of catalysts are zero order in the reactant. One example is the decomposition of ammonia on hot tungsten. In one experiment, the partial pressure of ammonia decreased from 21 kPa to 10 kPa in 770 s. (a) What is the rate constant for the zero-order reaction
Answer:
14.29 Pa/s
Explanation:
Given that, for a zero order reaction;
[A] = [A]o - kt
[A] = pressure at time =t
[A]o = initial pressure
k = rate constant
t = time taken
10 * 10^3 Pa = 21 * 10^3 Pa - 770k
10 * 10^3 Pa - 21 * 10^3 Pa = -770k
-11* 10^3 = -770k
k = -11* 10^3/-770
k = 14.29 Pa/s