Answer:
The probability that neither box contains a prize is 0.5625 or 56.25%
Step-by-step explanation:
It's referred as to the case when the probability of success (or failure) of the event A doesn't interfere with the probability of B. In this question we'll assume there are enough boxes of cereal of each type to make the choosing of one of them affect very little the choosing of the other one.
Let's call p=0.25 to the probability of getting a cereal box with a prize, and q=0.75 to the negation of p, i.e. the probability of getting a ceral box without a prize. There are four possible combinations: {pp,pq,qp,qq}. We need to find the probability of the combination qq. We compute it as the product of the individual probabilities
In other words, the probability that neither box contains a prize is 0.5625 or 56.25%
Unlock your full potential
Lose the ads
Learn quicker
Earn better grades
+98
punineep and 98 others just upgraded their grades
Is 47 a prime number or composite?
Answer:
Prime number
Step-by-step explanation:
A prime number has 2 factors.
A composite number has more than 2 factors.
47 has the factors 1 and 47.
47 is a prime number.
Answer:
47 is prime.
Step-by-step explanation:
Its factors are 1 and 47.
If a number has only 2 factors, then it's prime.
a city grid of Anytown, USA is shown on the grid below the fire department is represented by the quadrilateral RSTU. Another fire department is opening in a different part of the city to maximize fire protection. The size of the new department's property must be congruent to the older department. Vertices A and B are plotted on the grid below to represent two vertices of the new?fire Department quadrilateral ABCD:
What could be the ordered pairs of representing vertices C and D of quadrilateral ABCD so that the new fire department to congruent to the old fire department?
Answer:
C(1, 1)D(4, 1)Step-by-step explanation:
The fire department property is 2 units in height. 2 units from the line y=3 can be on the line y=5, or on the line y=1.
There are no answer choices with y=5, so the appropriate choices are those with C and D having the x-coordinates of B and A, respectively, and y=1.
C(1, 1), D(4, 1)
find the local and/or absolute extrema for the function over the specified domain. (Order your answers from smallest to largest x.) f(x)
Answer:
Minimum 8 at x=0, Maximum value: 24 at x=4
Step-by-step explanation:
Retrieving data from the original question:
[tex]f(x)=x^{2}+8\:over\:[-1,4][/tex]
1) Calculating the first derivative
[tex]f'(x)=2x[/tex]
2) Now, let's work to find the critical points
Set this
[tex]2x=0\\x=0[/tex]
0, belongs to the interval. Plug it in the original function
[tex]f(0)=(0)^2+8\\f(0)=8[/tex]
3) Making a table x, f(x) then compare
x| f(x)
-1 | f(-1)=9
0 | f(0)=8 Minimum
4 | f(4)=24 Maximum
4) The absolute maximum value is 24 at x=4 and the absolute minimum value is 8 at x=0.
What is the horizontal asymptote of the function f (x) = StartFraction (x minus 2) Over (x minus 3) squared EndFraction?
The horizontal asymptote of the function f(x) = (x-2)/(x-3)² is at y = 0 which is the x-axis.
What is an asymptote?An asymptote is a line that is approached by a curve but never touches it. In other words, an asymptote is a line where the graph of a function converges.
What is the horizontal asymptote?Because a horizontal asymptote is a horizontal line, its equation is of the form y = k. The horizontal asymptote of a rational function is at y = 0, which is the x-axis if the degree of the numerator is smaller than the degree of the denominator.
How to solve this problem?Here, the function is f(x) = (x-2)/(x-3)². Here the degree of the numerator of this rational function is 1 and the degree of the denominator is 2. Since 1<2, the horizontal asymptote is at y = 0 which is the x-axis.
The horizontal asymptote of the function f(x) = (x-2)/(x-3)² is at y = 0 which is the x-axis.
Learn more about horizontal asymptotes here -
https://brainly.com/question/14357352
#SPJ2
Answer:
c
Step-by-step explanation:
Average rate of change from G from x=1 to x=4 is
Answer:
3
Step-by-step explanation:
minus the variable, 4-1 is 3.
Applying the Segment Addition Postulate
Point B lies between points A and C on AC. Let x
represent the length of segment AB in inches.
A
B
3x
Use the segment to complete the statements.
The value of x is v.
The length of AR in inches is
✓x
C
The length of BC in inches is
20 inches
Intro
Answer:
x = 5, AB=5, BC = 15
Step-by-step explanation:
AC = AB + BC (Segment Addition)
AC= 20, AB =x Bc = 3x,
20= x+3x 20=4x
x=5
AB=x, AB =5
BC=3x BC= 15
The segment addition postulate states gives the value of x as 5, given
that the sum of x and 3·x is 20.
Responses:
The value of x is 5The length of [tex]\overline{AB}[/tex] is 5 inchesThe length of [tex]\overline{BC}[/tex] is 15 inchesHow does segment addition postulate give the value of x?From the given diagram, we have;
[tex]\overline{AB}[/tex] = x
[tex]\overline{BC}[/tex] = 3·x
According to segment addition postulate we have;
[tex]\overline{AB}[/tex] + [tex]\overline{BC}[/tex] = [tex]\overline{AC}[/tex] = 20 inches
Which gives;
x + 3·x = 20
Therefore;
4·x = 20
[tex]x = \dfrac{20}{4} = 5[/tex]
The value of x is 5The length of [tex]\overline{AB}[/tex] is 5 inches[tex]\mathbf{\overline{BC}}[/tex] = 3·x
[tex]\mathbf{\overline{BC}}[/tex] = 3 × 5 = 15
The length of [tex]\overline{BC}[/tex] is 15 inchesLearn more about segment addition postulate here:
https://brainly.com/question/1397818
Suppose that vehicles taking a particular freeway exit can turn right (R), turn left (L), or go straight (S). Consider observing the direction for each of three successive vehicles.
A) List all outcomes in the event A that all three vehicles go in the same direction.
B) List all outcomes in the event B that all three vehicles take different directions.C) List all outcomes in the event C that exactly two of the three vehicles turn right.D) List all outcomes in the event D that exactly two vehicles go in the same direction.E) List outcomes in D'.F) List outcomes in C ∪ D.G) List outcomes in C ∩ D.
Answer:
A) A = {RRR, LLL, SSS}
B) B = {LRS. LSR, RLS, RSL, SLR, SRL}
C) C = {RRL, RRS, RSR, RLR, LRR, SRR}
D) D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
E) D' ={RRR, LLL, SSS, LRS. LSR, RLS, RSL, SLR, SRL}
F) C ∪ D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
G) C ∩ D = {RRL, RRS, RSR, RLR, LRR, SRR}
Step-by-step explanation:
A) All vehicles must go right, left or straight ahead (three possibilities):
A = {RRR, LLL, SSS}
B) One vehicle must go right, one must go left, and the remaining one must go straight ahead (six possibilities):
B = {LRS. LSR, RLS, RSL, SLR, SRL}
C) There are three ways that exactly two vehicles go right (1 and 3, 2 and 3, 1 and 2), there are then two options for the remaining vehicle (left and straight) for a total of six possibilities:
C = {RRL, RRS, RSR, RLR, LRR, SRR}
D) Follow the same reasoning from the previous item, but multiply the number of possibilities by 3 (for each direction in which both cars can go: right, left or straight):
D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
E) D' is the set containing all possibilities not present in set D. D' is comprised by the possibilities of all vehicles going in the same direction, or each vehicle in a different direction:
D' ={RRR, LLL, SSS, LRS. LSR, RLS, RSL, SLR, SRL}
F) The outcomes in C ∪ D is the union of elements from set C and D (neglecting repeated values), which happens to be all values in set D.
C ∪ D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
G) The outcomes in C ∩ D is the list of values present in both sets C and D, which happens to be all values in set C:
C ∩ D = {RRL, RRS, RSR, RLR, LRR, SRR}
4x+y=10 Complete the missing value in the solution to the equation. (left parenthesis ( -),−6)
Answer: x = 4
4x - 6=10
4x = 10 + 6
4x = 16
[tex]x = \frac{16}{4}[/tex]
x = 4 ← the missing value
Therefore the the solution is (4,-6) of the equation 4x+y=10 .
Hope this helped You!
anyone mind lending a helping hand (asap!?!?)
Answer:
Q9 X=42.5
Step-by-step explanation:
let unknown angle be x
cos x=45/61
X=cos^-1 45/61
X=42.463...
X=42.5 (1 decimal place)
A chemist wishes to test the effect of four chemical agents on the strength of a particular type of cloth. Because there might be variability from one bolt to another, the chemist decides to use a randomized block design, with the bolts of cloth considered as blocks. She selects five bolts and applies all four chemicals in random order to each bolt. The resulting tensile strengths follow. Analyze the data from this experiment (use α = 0.05) and draw appropriate conclusions.
Bolt
Chemical 1 2 3 4 5
1 73 68 73 71 67
2 73 67 75 72 70
3 75 68 78 73 68
4 73 71 75 75 69
Answer:
p > α
0.7038 > 0.05
Also since F < F critical
0.475 < 3.238
We failed to reject H₀
We do not have significant evidence at the given significance level to show that there is a difference among the four chemical agents on the strength of a particular type of cloth.
Step-by-step explanation:
We are given that a chemist wishes to test the effect of four chemical agents on the strength of a particular type of cloth.
Since we are given data for four independent chemical agents to determine the effect on the strength of a particular type of cloth, therefore, a one-way analysis of variance may be used for the given problem.
ANOVA:
The one-way analysis of variance (ANOVA) may be used to find out whether there is any significant difference between the means of two or more independent categories of data.
Set up hypotheses:
Null hypotheses = H₀: μ₁ = μ₂ = μ₃ = μ₄
Alternate hypotheses = H₁: μ₁ ≠ μ₂ ≠ μ₃ ≠ μ₄
Set up decision rule:
We Reject H₀ if p ≤ α
OR
We Reject H₀ if F > F critical
ANOVA in Excel:
Step 1:
In the data tab, select data analysis
Step 2:
Select "Anova single factor" from the analysis tools
Step 3:
Select the destination of input data in the "input range"
Step 4:
Select "rows" for the option "Group By"
Step 5:
Tick the option "labels in first row"
Step 6:
Set alpha = 0.05
Step 7:
Select the destination of output data in the "output options"
Conclusion:
Please refer to the attached results.
The p-value is found to be
p = 0.7038
The F value is found to be
F = 0.475
The F critical value is found to be
F critical = 3.238
Since p > α
0.7038 > 0.05
We failed to reject H₀
Also since F < F critical
0.475 < 3.238
We failed to reject H₀
We do not have significant evidence at the given significance level to show that there is a difference among the four chemical agents on the strength of a particular type of cloth.
Rewrite 100⋅(200⋅300) using the Associative Law of Multiplication.
Answer:
6 x 10⁶ or 6,000,000
Step-by-step explanation:
100 × (200 × 300)
100 x 60,000 → 6,000,000
6,000,000 → 6 x 10⁶
Hope this helps! :)
Determine whether the sequence is arithmetic, geometric, or neither:
-2, -4,-8, -16,...
a) arithmetic b)geometric
c) neither
Answer:
b) geometric
Step-by-step explanation:
Notice that each new term is derived by multiplying the previous term by 2. Thus: the first term is -2 and the common ratio is 2. This is a geometric sequence.
Find the surface area of this composite solid.
Answer:
B
Step-by-step explanation:
area of top on triangle=1/2×4×3=6m²
area of four top triangles=6×4=24 m²
area of bottom square=4×4=16 m²
area of four side rectangles=4×(4×5)=80 m²
Total area= 24+16+80=120m²
Please help me the venn diagram is wrong too im confused on how to do this :(((
Answer:
probability of chosing a student that has a cat and a dog is 9/25
Step-by-step explanation:
And yes the Venn diagram is wrong because you forgot to subtract 9 from 15 and 16
This makes it
[ 3 ( 6 ( 9 ) 7 ) ]
3 + 6 + 9 + 7 = 25
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.
The table gives the boiling point of water at different altitudes.
Altitude (1,000 feet) Boiling Point of Water (°F)
0 212.0
0.5 211.1
1.0 210.2
2.0 208.4
2.5 207.5
3.0 206.6
4.0 204.8
4.5 203.9
Based on the table, the linear equation that represents the change in water’s boiling point for every 1,000-foot change in altitude has a slope of
units.
Answer:
[tex]\large \boxed{\text{-1.8$^{\circ}$F/1000 ft}}[/tex]
Step-by-step explanation:
Identify the changes (Δ) in each consecutive pair of x-values and y-values, then calculate the corresponding values of Δy/Δx
Your working table should look like the one below.
[tex]\begin{array}{cccc}\textbf{Alt/1000 ft} & \textbf{B.p.$/^{\circ}$F} & \Delta\textbf{B. p}& \Delta\textbf{B.p/1000 ft}\\0 & 212.0 & & \\& &-0.9 & -1.8\\0.5 & 211.1 & & \\& &-0.9 & -1.8\\1.0 & 210.2 & & \\& &-1.8 & -1.8\\2.0 & 208.4 & & \\& &-1.8 & -1.8\\3.0 & 206.6 & & \\& &-1.8 & -1.8\\4.0 & 204.8 & & \\& &-0.9 & -1.8\\4.5 & 203.9 & & \\\end{array}[/tex]
[tex]\text{ The change in boiling point per thousand feet of altitude is $\large \boxed{\textbf{-1.8$^{\circ}$F/1000 ft}}$}[/tex]
Answer:
Answer:
Step-by-step explanation:
Identify the changes (Δ) in each consecutive pair of x-values and y-values, then calculate the corresponding values of Δy/Δx
Your working table should look like the one below.
Step-by-step explanation:
When (81x^2/7) (2/9x^3/7) is simplified, it can be written in the form ax^b where a and b are real numbers. Find ab.
Answer:
In improper form your solution will be [tex]\frac{90}{7}[/tex]. As a mixed fraction it will be [tex]12\frac{6}{7}[/tex].
Step-by-step explanation:
The first thing we want to do here is to simplify this expression. After doing so, " a " and " b " should be multiplied to result in a possible improper fraction,
[tex]\left(81x^{\frac{2}{7}}\right)\:\left(2/9x^{\frac{3}{7}}\right)\:[/tex] - Apply exponential rule " [tex]\:a^b\cdot \:a^c=a^{b+c}[/tex] "
= [tex]81\cdot \frac{2}{9}x^{\frac{2}{7}+\frac{3}{7}}[/tex] - Combine fractions [tex]\frac{2}{7}[/tex] and [tex]\frac{3}{7}[/tex]
= [tex]81\cdot \frac{2}{9}x^{\frac{5}{7}}[/tex] - Multiply the fractions, and simplify further
= [tex]\frac{162x^{\frac{5}{7}}}{9}[/tex] = [tex]18x^{\frac{5}{7}}[/tex] - This is out simplified expression
Now that we have this simplified expression, we can see that a = [tex]18[/tex], and b = [tex]\frac{5}{7}[/tex]. Therefore, multiplying the two we should receive the improper fraction as follows,
[tex]18 * \frac{5}{7}[/tex] = [tex]\frac{90}{7}[/tex] - Note that this is in improper form. If you want your solution in a mixed fraction, it will be [tex]12\frac{6}{7}[/tex].
Maria’s office is located at (–7,–5) on the coordinate plane. Her home is located at (4,–6) and the supermarket is located at (–2,–6). When returning back from the office, she first goes to the supermarket to buy some groceries, and then goes back home. Find the total distance she traveled from her office to home.
Answer:
Total distance= 15.055 unit
Step-by-step explanation:
Distance between the first journey i.e from her office to the supermarket is calculated as follows given the coordinates.
(-5,-7) and (4,-6)
The distance between those tow points
Is
= √((4-(-5))² +( (-6)-(-7))²)
= √(9²+1²)
= √ 81+1
= √ 82
= 9.055
Noe the distance between the second journey traveled i.e from the supermarket to her house is calculated as follows given the coordinates.
(4,-6) and (-2,-6)
Distance= √((4--2)² +( -6--6)12
Distance = √(4+2)² + 0
Distance = √ 6²
Distance = 6
Total distance= 9.055 + 6
Total distance= 15.055
Solve the following system by substitution.
y = - 3x + 11
5x + y = 21
Answer:
x = 5 and y = -4
Step-by-step explanation:
y = - 3x + 11 ______(1)
5x + y = 21______(2)
Substitute (1) into (2).
5x + (-3x + 11) = 21
5x - 3x + 11 = 21
2x = 21-11
2x = 10
x = 10/2
x = 5
Now substitute x = 5 into (1).
y = -3(5) + 11
y = -15 + 11
y = -4
Hence, x = 5 and y = -4
Ok, so. I know It’s -27 + 23x and X = 7 right?? Or am I doing something wrong.
Answer:
134 degrees
Step-by-step explanation:
Right so far. To find the numerical measure of the angle, you need to use x=7 in your expression for the angle measure:
m∠STU = -27 +23(7) = 134 . . . degrees
I NEED HELP PLEASE, THANKS! :)
Write 18(cos169° + isin169°) in rectangular form. Round numerical entries in the answer to two decimal places. (Show work)
Answer:
z = -17.67 + i3.43
Step-by-step explanation:
Let us apply the formula z = r(cos Ф + i sin Ф), given 18(cos169° + isin169°) -
z = 18( cos169 + isin169 ),
z = r(cos Ф + i sin Ф)
Now we can solve this question in the form z = a + bi, in this case where a = 18 cos169, and b = 18 sin169. This is as a = r cos Ф and b = r sin Ф -
sin169 is positive, while cos169 is negative, thus -
a = -17.6692893021...,
b = 3.43456191678...
Rectangular Form, z = -17.67 + i3.43
Hope that helps!
Tensile strength tests were carried out on two different grades of wire rod, resulting in the accompanying data.
Grade Sample Size sample mean(kg/mm^2) Sample S
AISI 1064 m = 126 x = 102.8 s1 = 1.2
AISI 1078 n = 126 y = 121.3 s2 = 2.0
a. Does the data provide compelling evidence for concluding that true average strength for the 1078 grade exceeds that for the 1064 grade by more than 10 kg/mm^2.
b. Test the appropriate hypotheses using the P-value approach.
c. Calculate the test statistic and p-value.
d. State the conclusion in the problem context.
Answer:
The null hypothesis is rejected.
There is enough evidence to support the claim that the true average strength for the 1078 grade exceeds that for the 1064 grade by more than 10 kg/mm^2.
Test statistic t=-40.91
P-value = 0
Step-by-step explanation:
This is a hypothesis test for the difference between populations means.
The claim is that the true average strength for the 1078 grade exceeds that for the 1064 grade by more than 10 kg/mm^2.
Then, the null and alternative hypothesis are:
[tex]H_0: \mu_1-\mu_2=-10\\\\H_a:\mu_1-\mu_2< -10[/tex]
The significance level is 0.05.
The sample 1 (AISI 1064), of size n1=126 has a mean of 102.8 and a standard deviation of 1.2.
The sample 2 (AISI 1078), of size n2=126 has a mean of 121.3 and a standard deviation of 2.
The difference between sample means is Md=-18.5.
[tex]M_d=M_1-M_2=102.8-121.3=-18.5[/tex]
The estimated standard error of the difference between means is computed using the formula:
[tex]s_{M_d}=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}=\sqrt{\dfrac{1.2^2}{126}+\dfrac{2^2}{126}}\\\\\\s_{M_d}=\sqrt{0.011+0.032}=\sqrt{0.043}=0.2078[/tex]
Then, we can calculate the t-statistic as:
[tex]t=\dfrac{M_d-(\mu_1-\mu_2)}{s_{M_d}}=\dfrac{-18.5-(-10)}{0.2078}=\dfrac{-8.5}{0.2078}=-40.91[/tex]
The degrees of freedom for this test are:
[tex]df=n_1+n_2-2=126+126-2=250[/tex]
This test is a left-tailed test, with 250 degrees of freedom and t=-40.91, so the P-value for this test is calculated as (using a t-table):
[tex]\text{P-value}=P(t<-40.91)=0[/tex]
As the P-value (0) is smaller than the significance level (0.05), the effect is significant.
The null hypothesis is rejected.
There is enough evidence to support the claim that the true average strength for the 1078 grade exceeds that for the 1064 grade by more than 10 kg/mm^2.
If a varies inversely with b, and a=12 when b=1/3, find the equation that relates a and b
Answer:
a = 4 /b
or ab = 4
Step-by-step explanation:
An inverse relation is given by
a = k/b where k is the constant
Rewriting
ab = k
12 * 1/3 = k
4 = k
a = 4 /b
or ab = 4
Thomas wants to invite Madeline to a party. He has an 80% chance of bumping into her at school. Otherwise, he’ll call her on the phone. If he talks to her at school, he’s 90% likely to ask her to a party. However, he’s only 60% likely to ask her over the phone. What is the probability of Thomas inviting Madeline to the party at school?
Answer:
84%
Step-by-step explanation:
The probability of Thomas bumping into her at school is 80%, so the probability of not bumping into her is 100% - 80% = 20%.
If he doesn't bump into her (20% chance), he will call her, and the probability of asking her in this case is 60%, so the final probability of asking her in this case is:
[tex]P_1 = 20\% * 60\% = 12\%[/tex]
If he bumps into her (80% chance), the probability of asking her is 90%, so the final probability of asking her in this case is:
[tex]P_2 = 80\% * 90\% = 72\%[/tex]
To find the probability of Thomas inviting Madeline to the party, we just have to sum the probabilities we found above:
[tex]P = P_1 + P_2[/tex]
[tex]P = 12\% + 72\% = 84\%[/tex]
g Steel used for water pipelines is often coated on the inside with cement mortar to prevent corrosion. In a study of the mortar coatings of the pipeline used in a water transmission project in California, researchers noted that the mortar thickness was specified to be 7/16 inch. A very large sample of thickness measurements produced a mean equal to 0.635 inch and astandard deviation equal to 0.082 inch. If the thickness measurements were normally distributed, approximately what proportion were less than 7/16 inch?
Answer:
[tex]P(X<0.4375)=P(\frac{X-\mu}{\sigma}<\frac{0.4375-\mu}{\sigma})=P(Z<\frac{0.4375-0.635}{0.082})=P(z<-2.41)[/tex]
And we can find this probability using the z table and we got:
[tex]P(z<-2.41)=0.0080[/tex]
Step-by-step explanation:
Let X the random variable that represent the thickness of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(0.635,0.082)[/tex]
Where [tex]\mu=0.635[/tex] and [tex]\sigma=0.032[/tex]
We are interested on this probability
[tex]P(X<0.4375)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X<0.4375)=P(\frac{X-\mu}{\sigma}<\frac{0.4375-\mu}{\sigma})=P(Z<\frac{0.4375-0.635}{0.082})=P(z<-2.41)[/tex]
And we can find this probability using the z table and we got:
[tex]P(z<-2.41)=0.0080[/tex]
06:Pretest 06:Quadrilaterals
27. Which statement is true?
O All squares are quadrilaterals,
O All quadrilaterals are parallelograms,
All rectangles are squares,
O All quadrilaterals are squares,
Answer:
all squares are quadrilaterals
Please help ?!!! Solve the three equations in the table using any method of your choice. List the method you used.
Equation
x^2-4=-12
-9x^2+4x-10=0
x^2+8x=-17
With solutions and method
Step-by-step explanation:
[tex]x = \frac{ - b \frac{ + }{ - } \sqrt{ {b}^{2} - 4ac } }{2a} [/tex]
The quadratic formula is honestly the most straightforward way of solving here.
Your other options are completing the square (which is the same thing as the quadratic formula but it's good to know that method if you have to take Integral Calculus at some point) or maybe factoring by grouping if it's appropriate. But the quadratic formula will work for you in all three equations:
1) a=1, b=0, c=8
This reduces pretty quickly into x=8i,-8i due to the negative under the radical. (Actually we didn't even really need the formula here.)
2) a=-9, b=4, c=-10
This reduces into x=(-4+i√(344))/-18, (-4-i√(344))/-18 and doesn't go any further because 344 isn't a perfect square.
3) a=1, b=8, c=17
This reduces to x=(-4+i), (-4-i)
So those are the answers for each.
Please Refer to the screenshot. Hope this helps!
Lisa is in charge of planning a reception for 3600 people. She is trying to decide which snacks to buy. She has asked a random sample of people who are coming to the reception what their favorite snack is. Here are the results.
Favorite Snack Number of People
Brownies 32
Cookies 22
chips 56
other 65
Based on the above sample, predict the number of the people at the reception whose favorite snack will be chips. Round your answer to the nearest whole number. Do not round any intermediate calculations.
Answer:
The expected number of the people at the reception whose favorite snack will be chips is 1152
Step-by-step explanation:
Given
The data in the above table and
Reception = 3600
Required
Predict the number of the people at the reception whose favorite snack will be chips.
The first step is to determine the total number of samples;
[tex]Total = Brownies + Cookies + Chips + Other[/tex]
[tex]Total = 32 + 22 + 56 + 65[/tex]
[tex]Total = 175[/tex]
The next step is to determine the fraction of people whose favorite is chips
[tex]Fraction = \frac{Chips}{Total}[/tex]
[tex]Fraction = \frac{56}{175}[/tex]
The product of the above fraction and the expected number of people in the reception is the solution to this question;
[tex]Expected\ Number = \frac{56}{175} * 3600[/tex]
[tex]Expected\ Number = \frac{56* 3600}{175}[/tex]
[tex]Expected\ Number = \frac{201600}{175}[/tex]
[tex]Expected\ Number = 1152[/tex]
Hence, the expected number of the people at the reception whose favorite snack will be chips is 1152
A survey of 128 DeVry statistics students found that 83% read the announcements each week. What is the population and what is the sample
Answer:
-Population is DeVry statistics students - Sample is 128 DeVry statistics students.
Step-by-step explanation:
First of all, population is defined as a set of all elements while sample includes some or all those of elements, whereas, sample never includes more elements when compared to population.
Hence, we select sample from the population.
Now, in this question, the survey include 128 DeVry statistics students. Thus, these 128 statistics students would be a sample while total number of Devry statistics students will be the population.
83% is the sample statistic because it gives us numerical information about the sample.
Thus, we can conclude that;
-Population is DeVry statistics students - Sample is 128 DeVry statistics students.
Find the lateral (side) surface area of the cone generated by revolving the line segment y equals seven halves x , 0 less than or equals x less than or equals 5, about the x-axis. Check your answer with the following geometry formula. Lateral surface areaequalsone half times base circumference times slant height
Answer:
[tex]Area=7\,\pi\,\sqrt{\frac{53}{4}}\,\,\frac{25}{2}[/tex]
Step-by-step explanation:
Let's use the integral formula for the surface area of revolution of the function y(x) around the x-axis, which is:
[tex]Area=\int\limits^b_a {2\,\pi\,y\,\sqrt{1+(\frac{dy}{dx} )^2} } \, dx[/tex]
and which in our case, we can obtain the following:
[tex]y=\frac{7}{2} \,x\\\frac{dy}{dx} =\frac{7}{2} \\(\frac{dy}{dx})^2=\frac{49}{4} \\\sqrt{1+(\frac{dy}{dx})^2} =\sqrt{1+\frac{49}{4} } =\sqrt{\frac{53}{4} }[/tex]
Recall as well that [tex]0\leq x\leq 5[/tex], which gives us the limits of integration:
[tex]Area=\int\limits^b_a {2\,\pi\,y\,\sqrt{1+(\frac{dy}{dx} )^2} } \, dx\\Area=\int\limits^5_0 {2\,\pi\,(\frac{7}{2}\,x) \,\sqrt{\frac{53}{4} } } \, dx\\Area=7\,\pi\,\sqrt{\frac{53}{4}}\,\, \int\limits^5_0 {x} \, dx \\Area=7\,\pi\,\sqrt{\frac{53}{4}}\,\,\frac{x^2}{2} |\limits^5_0\\Area=7\,\pi\,\sqrt{\frac{53}{4}}\,\,\frac{25}{2}[/tex]
If we compare it with the geometry formula:
Lateral surface of cone = [tex]\frac{1}{2} \,\,(Base_{circ})\,\,(slant\,height)= \frac{1}{2} (2\,\pi\,\frac{7}{2} 5)\.(\sqrt{5^2+(\frac{35}{2})^2 } =\frac{7}{2} \,\pi\,25\.\,\sqrt{\frac{53}{4} }[/tex]
which is exactly the expression we calculated with the integral.
Find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues. (Assume that n begins with 1.) −3, 2, − 4 3 , 8 9 , − 16 27 , ...
Answer:
The general term is
Sn = -(-2)ⁿ.3¹⁻ⁿ
step by step Explanation:
we were told to find a general term of the above sequence, what should come to mind is that the terms will follow an order....
CHECK THE ATTACHMENT FOR DETAILED EXPLANATION