Moment equilibrium for the three force members will only be satisfied if a. The forces are concurrent b. The forces are in different dimensions c. The forces are in a same direction d. The forces are perpendicular

Answers

Answer 1

Moment equilibrium for the three force members will only be satisfied if the forces are perpendicular to each other (d). Forces being concurrent (a), in different dimensions (b), or in the same direction (c) will not result in moment equilibrium.

Moment equilibrium is achieved when the sum of the moments of the forces acting on a body is equal to zero. For this to occur, the forces must be arranged in a way that their moments cancel each other out.

If the forces are concurrent (a), meaning they intersect at a common point, their moment arms will be zero, and the moments will not balance out. Similarly, if the forces are in different dimensions (b) or in the same direction (c), their moments will not counteract each other, resulting in a lack of equilibrium.

On the other hand, when the forces are perpendicular to each other (d), their moments can be calculated as the product of the force magnitude and the perpendicular distance from the line of action to the point of rotation. With proper positioning, the moments can balance out, leading to moment equilibrium.

Therefore, for moment equilibrium to be satisfied, the forces must be perpendicular to each other (d).

To learn more about equilibrium  Click Here: brainly.com/question/30694482

#SPJ11


Related Questions

i. Briefly describe the driving forces for creep deformation in materials. ii. Using a simple sketch of strain rate versus time to support your answer, show the three stages of creep deformation, and identify the underlying mechanisms that control the creep behavior in each of the regimes. iii. Identify three ways that the materials designer can improve the creep life of an aero engine.

Answers

Creep deformation in materials is driven by various factors, including applied stress, temperature, and time. It can be divided into three stages: primary, secondary, and tertiary creep. Each stage is characterized by specific mechanisms that control the creep behavior. To improve the creep life of an aero engine, materials designers can consider factors such as material selection, microstructural modifications, and operating conditions.

Creep deformation occurs in materials under the influence of sustained stress at elevated temperatures. The driving forces for creep deformation include applied stress, which acts as the driving force for dislocation motion, temperature, which influences the diffusion and mobility of dislocations, and time, as creep deformation occurs gradually over extended periods.

The three stages of creep deformation are depicted in a strain rate versus time graph. The primary creep stage is characterized by a decreasing strain rate due to dislocation climb and annihilation. The secondary creep stage shows a relatively constant strain rate resulting from a balance between dislocation climb and dislocation glide. In the tertiary creep stage, the strain rate increases rapidly due to the formation and growth of voids, leading to eventual failure.

To improve the creep life of an aero engine, materials designers can consider several approaches. First, selecting materials with improved high-temperature properties, such as creep-resistant alloys, can enhance the material's resistance to creep deformation. Second, microstructural modifications, such as grain size refinement or precipitation strengthening, can enhance the material's creep resistance. Lastly, optimizing operating conditions, such as reducing stress levels or controlling temperature gradients, can minimize the driving forces for creep deformation and prolong the creep life of the engine.

Learn more about resistance here: https://brainly.com/question/32981416

#SPJ11

EE317 / BER3043 Microprocessor Systems BEE2073 Microcontroller and Embedded System ASSIGNMENT Submission Date: Monday 08/08/2022 1. Design an automatic temperature controller using PIC 18 F452 microcontroller and suitable I/O devices. Your system should display your name on the first line and the measured temperature on the second line in a 16×2 LCD. - The system should turn on a heater (you can represent it using filament lamp output in your simulation) if the measured temperature is below the set level. - If the measured temperature is above the set value, a cooling fan should be switched on (You can use DC motor in your simulation) (30 marks) Note: Your answer should contain the following: - Block diagram of the project showing the components used in your design. (5 marks) - Description of the input/output you have used in your design and a brief description of the input/output ports of the microcontroller you have used to connect the components like switches, LCD and the range of measurement of voltage. (5 marks) - Flowchart or Algorithm showing the basic operation of the PIC microcontroller program (5 marks) - The code of your PIC program in C using mikroC Pro compiler with appropriate comments. (10 marks) - Simulation of your design (5 marks)

Answers

The schematic circuit diagram of the system to monitor the temperature and the program in C are provided below: Schematic circuit diagram of the system: Program in C:

```

#include

#include

#include

__CONFIG(0x1932);

#define LCD_PORT PORTB

#define RS RA4

#define EN RA5

#define TEMPERATURE RA3

int ADC_Read(int);

void Delay_LCD(unsigned int);

void LCD_Command(unsigned char);

void LCD_Data(unsigned char);

void LCD_Init(void);

void LCD_Clear(void);

void LCD_String(const char *);

void LCD_Char(unsigned char);

int main()

{

int result;

float temperature;

char buffer[10];

OSCCON=0x72;

TRISB=0;

TRISA=0xff;

LCD_Init();

while(1)

{

result=ADC_Read(3);

temperature=result*0.48828125; //0.48828125 is the output of lm35 with respect to 10mv

sprintf(buffer, "Temp= %f C", temperature);

LCD_String(buffer);

LCD_Command(0xc0);

__delay_ms(2000);

LCD_Clear();

}

return 0;

}

void LCD_Command(unsigned char cmd)

{

LCD_PORT=cmd;

RS=0;

EN=1;

__delay_ms(5);

EN=0;

}

void LCD_Data(unsigned char data)

{

LCD_PORT=data;

RS=1;

EN=1;

__delay_ms(5);

EN=0;

}

void LCD_Init(void)

{

LCD_Command(0x38);

LCD_Command(0x01);

LCD_Command(0x02);

LCD_Command(0x0c);

LCD_Command(0x06);

}

void LCD_Clear(void)

{

LCD_Command(0x01);

__delay_ms(5);

}

void LCD_String(const char *str)

{

while((*str)!=0)

{

LCD_Data(*str);

str++;

}

}

void LCD_Char(unsigned char ch)

{

LCD_Data(ch);

}

int ADC_Read(int channel)

{

int result;

channel=channel<<2;

ADCON0=0x81|channel;

__delay_ms(1);

ADGO=1;

while(ADGO==1);

result=ADRESH;

result=result<<8;

result=result|ADRESL;

return result;

}

```

Note that in this schematic circuit, LM35 sensor is used instead of LM34. They are quite similar, so the only difference is the output sensitivity. It should also be noted that the program in C language is written for PIC16F877A.

Know more about Program in C here:

brainly.com/question/30905580

#SPJ4

2. Find the inverse Laplace transform of F (s) = 2e-0.5s s²-65+13 S-1 s²-2s+2 for t>o.

Answers

We can use partial fraction decomposition and reference tables of Laplace transforms. To find the inverse Laplace transform of F (s) = 2e-0.5s s²-65+13 S-1 s²-2s+2 for t>o.

Here's the step-by-step solution:

Step 1: Perform partial fraction decomposition on F(s).F(s) = (2e^(-0.5s)) / ((s^2 - 65s + 13)(s^2 - 2s + 2))The denominator can be factored as follows:

s^2 - 65s + 13 = (s - 13)(s - 5)

s^2 - 2s + 2 = (s - 1)^2 + 1

Therefore, we can rewrite F(s) as:

F(s) = A / (s - 13) + B / (s - 5) + (C(s - 1) + D) / ((s - 1)^2 + 1)where A, B, C, and D are constants to be determined.

Step 2: Solve for the constants A, B, C, and D.Multiplying both sides of the equation by the denominator, we get:

2e^(-0.5s) = A(s - 5)((s - 1)^2 + 1) + B(s - 13)((s - 1)^2 + 1) + C(s - 1)^2 + D

Next, we can substitute some values for s to simplify the equation and determine the values of the constants. Let's choose s = 13, s = 5, and s = 1.For s = 13:

2e^(-0.5(13)) = A(13 - 5)((13 - 1)^2 + 1) + B(13 - 13)((13 - 1)^2 + 1) + C(13 - 1)^2 + De^(-6.5) = 8A + 144C + DFor s = 5:

2e^(-0.5(5)) = A(5 - 5)((5 - 1)^2 + 1) + B(5 - 13)((5 - 1)^2 + 1) + C(5 - 1)^2 + D2e^(-2.5) = 16A - 8B + 16C + DFor s = 1:

2e^(-0.5) = A(1 - 5)((1 - 1)^2 + 1) + B(1 - 13)((1 - 1)^2 + 1) + C(1 - 1)^2 + D2e^(-0.5) = -4A - 12B + DW

e now have a system of three equations with three unknowns (A, B, and C). Solve this system to find the values of the constants.

Step 3: Use Laplace transform tables to find the inverse Laplace transform. Once we have the values of the constants A, B, C, and D, we can rewrite F(s) in terms of the partial fractions:

F(s) = (A / (s - 13)) + (B / (s - 5)) + (C(s - 1) + D) / ((s - 1)^2 + 1)

Using the Laplace transform tables, we can find the inverse Laplace transform of each term. The inverse Laplace transforms of (s - a)^(-n) and e^(as) are well-known and can be found in the tables.

To know more about Laplace Transform visit:

https://brainly.com/question/30759963

#SPJ11

Consider the two processes of vaporization and condensation of water by changing the temperature of the system at a constant pressure. Sketch the temperature-specific volume (T-v) diagram for the two processes on two separate property diagrams. Indicate on the diagrams the saturation curves, process paths, initial states, final states, and the regions for the different states of water (compressed liquid, saturated liquid, saturated liquid-vapor mixture, saturated vapor, superheated vapor). Explain the difference(s) between the process path of the two diagrams for vaporization and condensation

Answers

The process paths can be reversible or irreversible. Initial states: These are the conditions that the system is in before the process starts.

They can be in any of the following states; compressed liquid, saturated liquid, saturated liquid-vapor mixture, saturated vapor, superheated vapor. Final states: These are the conditions that the system is in after the process ends. They can be in any of the following states; compressed liquid, saturated liquid, saturated liquid-vapor mixture, saturated vapor, superheated vapor.

Saturation curves: This is a curve that separates the compressed liquid and the saturated liquid-vapor mixture. It also separates the saturated vapor and the superheated vapor. Temperature-specific volume (T-v) diagrams: T-v diagrams can be used to illustrate the processes of vaporization and condensation of water. They are two separate property diagrams.

To know more about irreversible visit:-

https://brainly.com/question/31096636

#SPJ11

A fluid flows through a horizontal 01-in.- diameter pipe. When the Reynolds number is 1500, the head loss over a 20-ft length of the pipe is 6.4 ft. Determine the fluid velocity. (g=32.2 ft/s^2)

Answers

The Reynolds number is given by the equation. Re=VD/ν
Where, V is the fluid velocity, D is the pipe diameter and ν is the kinematic viscosity of thelength
The head loss over a 20-ft length of the pipe is given by the equation:
hf=4fLV²/2g


Given that the Reynolds number is 1500, the pipe diameter is 0.1 in and the length of the pipe is 20 ft. The kinematic viscosity of the fluid is not given.


Substituting the given values into the head loss equation:
[tex]6.4=4(0.018)(20)(V²)/(2)(32.2)(0.1/12)[/tex]
Simplifying:
V²=35.79
Taking the square root:
V=5.99 ft/s
Therefore, the fluid velocity is approximately 5.99 ft/s.

To know more about length visit:

https://brainly.com/question/32060888

#SPJ11

Which one is correctly mentioned about specific heat?
The mass per unit volume
The amount of heat required to change the temperature of a specific volume of substance one degree
The amount of heat that must be added or removed from one pound of substance to change its temperature by one degree.
The measure of the average kinetic energy

Answers

The correct statement about specific heat is "The amount of heat required to change the temperature of a specific volume of substance one degree. "Specific heat is defined as the amount of heat energy required to increase the temperature of a unit mass of a substance by 1 degree Celsius or Kelvin.

It is a property of the substance and is dependent on factors like temperature, pressure, and composition. The specific heat is denoted by the symbol c and is expressed in units of joules per kilogram per degree Celsius (J/kg·°C). Specific heat is an essential concept in thermodynamics and plays a crucial role in heat transfer processes. The specific heat values of different substances vary widely, and they can be used to predict the thermal behavior of a substance under different conditions.The other options provided in the question are not correct statements about specific heat. Mass per unit volume is known as density and is not related to specific heat.

The amount of heat that must be added or removed from one pound of substance to change its temperature by one degree is the definition of a thermodynamic property called specific heat capacity. The measure of the average kinetic energy is known as temperature, and it is related to specific heat but is not the same thing.

To know more about energy visit:

https://brainly.com/question/1932868

#SPJ11

1. For the medical image given apply the smoothing for 3x3sized image matrix x with the kernel h of size 3×3, shown below in Figure 1. and compute the pixel value of the output image applying padding Original 1 2 3 5 6 4 7 8 9 IMAGE 3*3 figure 1 0 1 0 1 0 1 0 1 0 KERNAL 3*3

Answers

The output image with padding will be as follows:1 2 3 4 4 5 7 8 9.

In order to apply the smoothing for 3x3 sized image matrix x with the kernel h of size 3×3, shown below in Figure 1, the steps involved are as follows:First, the matrix needs to be padded. It is assumed that we are applying a zero padding, which adds a border of zeros around the original matrix. For instance, for a 3x3 matrix, we would end up with a 5x5 matrix.Second, we apply the kernel h to each of the individual pixels in the matrix. The kernel is a set of values that we will apply to each pixel in the image. Each element of the kernel will be multiplied by the corresponding pixel in the image. The result of each of these multiplications will be summed up, and that sum will be placed in the output matrix.

The original image is of size 3x3, which is too small for many applications. In order to apply the kernel, we first need to pad the image. The padded image will be 5x5 in size. The kernel is also of size 3x3, and it will be applied to each pixel in the image. The kernel is shown below in Figure 1.Figure 1 The pixel values in the original image are as follows:Original 1 2 35 6 47 8 9The padded image will be as follows:0 0 0 0 0 01 2 3 5 6 40 0 0 0 0 07 8 9 0 0 0

We will apply the kernel to each of the individual pixels in the image. The kernel is shown below in Figure 1.0 1 0 1 0 1 0 1 0

We will apply the kernel to each pixel by multiplying each element in the kernel by the corresponding pixel in the image. For instance, the pixel value in the output image at position (2, 2) will be the result of the following calculation:(0 × 1) + (1 × 2) + (0 × 3) + (1 × 5) + (0 × 6) + (1 × 4) + (0 × 7) + (1 × 8) + (0 × 9) = 26

The output image will have the same dimensions as the original image, but the pixel values will be different. The output image will be as follows:1 2 3 4 4 5 7 8 9

To know more about padding visit:

brainly.com/question/13260452

#SPJ11

(10 marks) For each of your chosen engineering
component, detail the appropriate properties and criteria for the
selection of a metallic, ceramic, polymer and composite
material.

Answers

Engineering components are made of different materials depending on the specific requirements, and each material has its unique properties.

The four commonly used materials are metallic, ceramic, polymer, and composite. In selecting the appropriate material, engineers need to consider factors such as mechanical properties, thermal properties, corrosion resistance, and cost. The following are the criteria for the selection of each of the materials in engineering components. Metallic materials

Properties: Metallic materials have high strength, stiffness, and ductility. They also have good thermal and electrical conductivity.Criteria: The selection of metallic materials depends on the specific application. In general, the material chosen must have high strength and stiffness to withstand the applied loads. Metallic materials that have good corrosion resistance are preferred in harsh environments. In applications where thermal or electrical conductivity is critical, materials with high conductivity are selected.Ceramic materialsProperties: Ceramic materials are hard, brittle, and have high melting points. They have excellent thermal and electrical insulation properties.Criteria: Ceramic materials are suitable for applications that require high strength, high hardness, and resistance to high temperatures. They are also used in applications that require good wear resistance and high chemical resistance.Polymer materials

Properties: Polymer materials are lightweight, flexible, and have good electrical insulation properties. They have low density and can be easily formed into different shapes.Criteria: The selection of polymer materials depends on the specific application. In general, polymer materials are suitable for applications that require low weight, good flexibility, and electrical insulation properties. They are also used in applications that require good corrosion resistance and low friction.Composite materialsProperties: Composite materials are made of two or more materials, with each material retaining its unique properties. They are lightweight, strong, and have good fatigue resistance.Criteria: The selection of composite materials depends on the specific application. In general, composite materials are suitable for applications that require high strength, good stiffness, and low weight. They are also used in applications that require good corrosion resistance, thermal insulation, and good fatigue resistance. The choice of materials depends on the specific requirements, and the selection process considers the properties and criteria for the specific application.

Learn more about stiffness :

https://brainly.com/question/31172851

#SPJ11

Select the suitable process for the following: - making cup-shaped parts. O Deep drawing O Milling Straddle

Answers

Deep drawing is the suitable process for making cup-shaped parts.

Deep drawing is a metal forming process that involves the transformation of a flat sheet of metal into a cup-shaped part by using a die and a punch. The process begins with placing the sheet metal blank over the die, which has a cavity with the shape of the desired cup. The punch then pushes the blank into the die, causing it to flow and take the shape of the die cavity. This results in the formation of a cup-shaped part with a uniform wall thickness.

Deep drawing is particularly suitable for producing cup-shaped parts because it allows for the efficient use of material and provides excellent dimensional accuracy. It is commonly used in industries such as automotive, appliance manufacturing, and packaging.

The deep drawing process offers several advantages. Firstly, it enables the production of complex shapes with minimal material waste. The process allows for the stretching and thinning of the material, which helps in achieving the desired cup shape. Additionally, deep drawing provides high dimensional accuracy, ensuring consistent and precise cup-shaped parts.

Learn more about Deep drawing

brainly.com/question/32369242

#SPJ11

You have a "floating" discharge temperature from 52 to 60 F. Your design space conditions are 70/50% RH. Do you need to override the "floating" discharge to control upper humidity? Explain your answer. (Note: In good practice, "floating" is typically based on outside air dew point and the above is usually not a problem.)

Answers

In the given scenario, where the floating discharge temperature is between 52°F to 60°F, and the design space conditions are 70/50% RH, there is a need to override the floating discharge to control upper humidity. The term "floating" discharge temperature describes the temperature of the air being supplied by the air handling unit (AHU) varies with changes in outdoor conditions. In other words, the AHU's supply air temperature is not fixed but fluctuates based on outdoor air conditions.

Design space conditions refer to the set of temperature and relative humidity conditions that a given room or facility is designed to achieve and maintain. These conditions depend on the intended use of the space. For instance, a hospital room may have different design space conditions than a cleanroom in a pharmaceutical facility.The purpose of overriding the floating discharge temperature in this scenario is to control the upper humidity in the space. If the discharge temperature is floating and the outdoor air conditions change, it may lead to increased humidity levels in the room. High humidity can be problematic for some applications or processes.

To avoid this, the AHU's discharge temperature may need to be lowered to reduce the moisture levels in the space.In summary, overriding the floating discharge temperature to control upper humidity is necessary in the given scenario because the fluctuating supply air temperature may result in increased humidity levels in the space, which can be problematic.

To know about humidity visit:

https://brainly.com/question/30672810

#SPJ11

One kilogram of Refrigerant 134a vapor initially at 2 bar and 20°C fills a rigid vessel. The vapor is cooled until the temperature becomes -26°C. There is no work during the process.
Let T₀ = 20°C, p₀ = 0.1 MPa and ignore the effects of motion and gravity.
For the refrigerant, determine the change in exergy, in kJ.
ΔE= Type your answer here kJ

Answers

The problem is solved using the first and second laws of thermodynamics. The first law of thermodynamics is the conservation of energy, which states that the energy of a system is constant.

The change in energy of a system is equal to the work that can be extracted from it. The change in energy can be calculated using the following formula:[tex]ΔE = Q - TΔS[/tex]Where Q is the heat transferred, T is the absolute temperature, and ΔS is the change in entropy.

Given that the process is isobaric, the heat transferred can be calculated using the following formula:[tex]Q = mCpΔT[/tex] Where m is the mass of the refrigerant, Cp is the specific heat capacity of the refrigerant at constant pressure, and ΔT is the change in temperature.  

To know more about thermodynamics visit:

https://brainly.com/question/1368306

#SPJ11

A chain drive system has a speed ratio of
1.4 and a centre distance of 1.2 m. The chain has a
pitch length of19 mm. find the closest to the length of the chain in pitches?

Answers

Given that the speed ratio of the chain drive system is 1.4 and the center distance of the chain drive system is 1.2 m. We have to find the closest length of the chain in pitches.

We are given that the chain has a pitch length of 19 mm. Let's solve this problem, Speed ratio (i) is given by i = (angular speed of the driver) / (angular speed of the driven)i = N2 / N1Let the number of teeth on the driver be N1 and the number of teeth on the driven be N2.

Therefore we have i = (N2 / N1) ...(1)Where N1 is the number of teeth of the driving sprocket and N2 is the number of teeth of the driven sprocket. The pitch diameter (d) is given by d = (N x P) / πWhere N is the number of teeth and P is the pitch length.

To know more about ratio visit:

https://brainly.com/question/19257327

#SPJ11

In the space below, sketch the high-frequency small-signal equivalent circuit of a MOS transistor. Assume that the body terminal is connected to the source. Identify (name) each parameter of the equivalent circuit. Also, write an expression for the small-signal gain vds/vgs(s) in terms of the small-signal parameters and the high-frequency cutoff frequency ωн. Clearly define ωн in terms of the resistance and capacitance parameters.

Answers

The high-frequency small-signal equivalent circuit of a MOS transistor typically consists of the following components:

Small-signal voltage source (vgs): This represents the small-signal input voltage applied to the gate-source terminals of the transistor.

Small-signal current source (gm * vgs): This represents the transconductance of the transistor, where gm is the small-signal transconductance parameter and vgs is the small-signal input voltage.

Small-signal output resistance (ro): This represents the small-signal output resistance of the transistor.

Capacitances (Cgs, Cgd, and Cdb): These represent the various capacitances associated with the transistor's terminals, namely the gate-source capacitance (Cgs), gate-drain capacitance (Cgd), and drain-body capacitance (Cdb).

The small-signal gain (vds/vgs(s)) can be expressed as:

vds/vgs(s) = -gm * (ro || RD)

Where gm is the transconductance parameter, ro is the output resistance, RD is the load resistance, and || represents parallel combination.

The high-frequency cutoff frequency (ωн) can be defined in terms of the resistance and capacitance parameters as:

ωн = 1 / (ro * Cgd)

Where ro is the output resistance and Cgd is the gate-drain capacitance.

Know more about MOS transistor here:

https://brainly.com/question/30335329

#SPJ11

Steam at 9 bar and a dryness fraction of 0.96 expands reversibly to a pressure of 1.6 bar according to the relationship pv 1.13 = constant (n=1.13). Sketch the process on the p−V and T−s diagrams and calculate the work transfer, heat transfer and the change in entropy

Answers

Given data:Steam pressure P₁ = 9 barDryness fraction x = 0.96The expansion of steam takes place reversibly from P₁ to P₂ = 1.6 bar, that is, the pressure drops.

Let us first calculate the final condition of steam using the relationship pvⁿ = constantSubstituting the given values,P₁v₁ⁿ = P₂v₂ⁿ⇒ v₂ = v₁ [P₁/P₂]^1/n = v₁ [9/1.6]^1/1.13 = v₁ 2.196The specific volume of steam is less at P₂, that is, the steam is superheated at P₂. Hence the final condition of steam is:Pressure P₂ = 1.6 barSpecific volume v₂ = v₁ 2.196Let us represent the expansion process on the p-v and T-s diagram.p-v diagram:Since pv¹.¹³ = constant, it means that the process is not adiabatic.

The process is also not isothermal since the expansion is reversible. Hence, the process is an isentropic process, that is, Δs = 0. Hence, the process is represented by a vertical line on the T-s diagram. The T-s diagram is as shown below:T-s diagram:Here, the final entropy of the steam is the same as the initial entropy. Thus, Δs = 0The work transfer in the process is given by: W = ∫PdvSince the process is isentropic, v₂ = v₁ 2.196 and the process is reversible, Pdv = dW.

To know more about fraction visit:

https://brainly.com/question/10354322

#SPJ11

Air at 15°C and 1 atm enters a 0.113-m diameter and 5,1-m long pipe at a rate of 0.06 kg/s. The inner surface of the pipe is smooth and the pipe wall is heated at constant heat flux of 465 W/m². Find the wall temperature at the exit in [ºC]. (You may need iterations to find proper air properties.)

Answers

The wall temperature at the exit is 191.41 °C.

Given: Diameter of the pipe, D = 0.113m Length of the pipe, L = 5.1m

Rate of flow of air, m = 0.06 kg/s

Heat flux, q = 465 W/m²

Initial temperature of air, Ti = 15 °C

The pressure is 1 atm. The inner surface of the pipe is smooth.

Temperature of the wall at the exit, To = ?

The flow is considered as steady and one-dimensional, the thermal conductivity of air and density of air are constant (independent of the temperature), and the heat transfer coefficient is independent of the properties of the fluid.

The following formula for the wall temperature at the exit can be used to calculate the same.

[tex]{tex}\theta _{o}=T_{o}-T_{\infty }=\frac{q^{''}\cdot D}{\dot{m}\cdot C_{p}}\cdot \left( L+\frac{D}{2} \right)+T_{\infty }{/tex}[/tex]

Where, Temperature of the fluid, T∞ = Ti Heat transfer coefficient, q'' = h = 1500 W/m².K

Density of air, ρ = 1.225 kg/m³

Heat capacity of air at constant pressure, Cp = 1005 J/kg.K

The wall temperature at the exit is: [tex]{tex}\theta _{o}=464.56 K or 191.41\;^{\circ }C{/tex}[/tex]

Therefore, the wall temperature at the exit is 191.41 °C.

Learn more about heat transfer visit:

brainly.com/question/13433948

#SPJ11

2. Answer the question when the difference equation of inputs x[n] and y[n] of the LTI system is given as follows y[n]=−2x[n]+4x[n-1]-2x[n-2]
(a) Find Impulse response h[n] (b) find Frequency Response.
(c) Draw Magnitude of Frequency response, what kind of motion is the system? (d) Find the output when it is an input. 3. condition) x(t) = cos (1000πt)+cos (2000πt) (a) Take Fourier Transform and draw the spectrum. (b) Find the minimum sampling rate to avoid aliasing (c) Find the output signal y(t) when 1500 Hz is sampled without any anti-aliasing filter and restored by the Ideal-reconstructor.

Answers

(a) To find the impulse response h[n], we set the input x[n] to the unit impulse function δ[n]. Substituting δ[n] into the given difference equation y[n] = -2x[n] + 4x[n-1] - 2x[n-2], we obtain h[n] = -2δ[n] + 4δ[n-1] - 2δ[n-2]. Therefore, the impulse response of the system is h[n] = -2δ[n] + 4δ[n-1] - 2δ[n-2].

(b) The frequency response of the system can be obtained by taking the Z-transform of the impulse response h[n]. Applying the Z-transform to each term, we get H(z) = -2 + 4z⁻¹ - 2z⁻². This is the transfer function of the system in the Z-domain.

(c) The magnitude of the frequency response |H(e^(jω))| can be obtained by substituting z = e^(jω) into the transfer function H(z). Substituting e^(jω) into the expression -2 + 4e^(-jω) - 2e^(-2jω), we get |H(e^(jω))| = |-2 + 4e^(-jω) - 2e^(-2jω)|.

(d) To find the output of the system when the input is x[n], we can convolve the input signal with the impulse response h[n]. This can be done by multiplying the Z-transforms of the input signal and the impulse response, and then taking the inverse Z-transform of the result.

3. (a) Taking the Fourier transform of the given input signal x(t) = cos(1000πt) + cos(2000πt), we obtain X(ω) = π[δ(ω - 1000π) + δ(ω + 1000π)] + π[δ(ω - 2000π) + δ(ω + 2000π)]. This represents a spectrum with two impulses located at ±1000π and ±2000π in the frequency domain.

(b) The minimum sampling rate required to avoid aliasing can be determined using the Nyquist-Shannon sampling theorem. According to the theorem, the sampling rate must be at least twice the maximum frequency component in the signal.

(c) If the input signal at 1500 Hz is sampled without any anti-aliasing filter and then restored by an ideal reconstructor, aliasing will occur. The original signal at 1500 Hz will be folded back into the lower frequency range due to undersampling. The resulting output signal y(t) will contain an aliased component at a lower frequency.

To know more about anti-aliasing filter visit-

https://brainly.com/question/32250957

#SPJ11

1. Sketch an expander cycle, name the components. 2. Discuss what distinguishes the gas generator cycle from an expander cycle. 3. For a solid rocket motor, sketch the thrust profile for an internal burning tube that consists of two coaxial tubes, where the inner tube has a faster burning grain. 4. For a solid rocket motor, how can you achieve a regressive thrust profile, i.e. a thrust that decreases over time? Sketch and discuss your solution.

Answers

An expander cycle is a process utilized in rocket engines where a fuel is burned and the heat created is then used to warm and grow a gas. The gas is then used to drive a turbine or power a nozzle for propulsion. Its components include the pre burner, pump, gas generator, and expander.

2. The differences between the gas generator cycle and the expander cycle:

The gas generator cycle works by using a portion of the fuel to generate high-pressure gas, which then drives the turbopumps. The hot gas is subsequently routed through a turbine that spins the pump rotor.

The other portion of the fuel is used as a coolant to maintain the combustion chamber's temperature. Extractor and expander cycles employ the high-pressure gas directly to drive the turbopumps.3. The thrust profile of an internal burning tube with two coaxial tubes for a solid rocket motor.

To know more about utilized visit:

https://brainly.com/question/32065153

#SPJ11

Are accident investigations conducted in your company/school/barangay?

Answers

Accident investigations are an important part of identifying potential safety hazards in any organization, including companies, schools, and barangays. Accident investigations are conducted to determine the root cause of accidents and develop a plan to prevent similar incidents from occurring in the future.

The investigation process typically involves collecting data, analyzing it, and presenting the findings. The goal is to identify the factors that contributed to the accident and determine what could have been done to prevent it.

The investigation report should also include recommendations for corrective action that can be taken to improve safety in the future.

In most organizations, accident investigations are conducted by a designated team or individual with expertise in safety and accident investigation.

In some cases, outside consultants may be brought in to assist with the investigation if the incident is particularly complex or serious.

To know more about Accident investigations visit:

https://brainly.com/question/32094793

#SPJ11

Are the following points part of the (200) plane? a) (1/2, 0, 0); b) (-1/3, 0, 0); c) (0, 1, 0) CHE 3260 Problem Set #3 Crystallography 1) A) Determine the percent ionic character in a K-Br bond. B) Determine the oxidation state of K in KBr. C) Determine the oxidation state of Br in KBr. 2) Find the appropriate radii for A) K in KBr and B) Br in KBr. 3) Determine the coordination number of A) K in KBr and B) Br in KBr. 4) Determine the most likely cubic crystal structure for KBr, and sketch it. 5) Calculate the lattice parameter, a. 6) Determine the number of K and Br ions in the KBr unit cell. 7) Determine KBr's bulk density. 8) Sketch the (200) plane of KBr. 9) Calculate the planar density of the (200) plane of KBr, expressed as a decimal.

Answers

Option (a) and option (c) are part of the (200) axial  plane of KBr while option (b) is not a part of it.

The plane (200) of KBr has its indices parallel to the x and y-axis. Let's find if the given points are part of the (200) plane of KBr.a) (1/2,0,0)In a cubic unit cell, the length of the edges and the angles between the edges are equal. Also, since the x-axis of the (200) plane is parallel to the edge of the unit cell, the x-coordinate of this point has to be equal to some fraction of the edge length of the unit cell.

Therefore, the x-coordinate of point a, (1/2), has to be equal to 1/2 times the length of the unit cell edge. This is possible only if the length of the unit cell edge is equal to 1. So, point a is a part of the (200) plane of KBr.b) (-1/3,0,0)The x-coordinate of point b is -1/3 which means the length of the unit cell edge has to be equal to 3 units. But the unit cell edge length of KBr cannot be equal to 3. Therefore, point b is not a part of the (200) plane of KBr.c) (0,1,0)The y-coordinate of point c is 1 which means the length of the unit cell edge has to be equal to 1 unit. Since this is possible, point c is a part of the (200) plane of KBr.

Hence, option (a) and option (c) are part of the (200) plane of KBr while option (b) is not a part of it.

To know more about axial visit

https://brainly.com/question/33140251

#SPJ11

If 0.1 micro-Coulombs passes a point in a circuit every 0.05 milli-seconds, How much current is this in micro-Amps??? Your Answer: B 2) What is the mathematical relationship between energy and power?? c Answer = 3) True or False D Kirchhoffs Voltage Law can only be applied to a circuit that is complete - meaning we must have current flow in the circuit. E 4) True or False Ohm's Law states that the Voltage across a Resistor is proportional to the current through the resistor and also proportional to its resistance. In mathematical form: V is a function of I x R.

Answers

Current = 2 microamps (μA)

The mathematical relationship between energy and power is:

Power = Energy / Time

The statement "Kirchhoff's Voltage Law can only be applied to a circuit that is complete - meaning we must have current flow in the circuit" is True.

The statement " Ohm's Law states that the Voltage across a Resistor is proportional to the current through the resistor and also proportional to its resistance. In mathematical form: V is a function of I x R" is true.

What is Kirchhoff's Voltage Law?

Kirchhoff's Voltage Law (KVL) is a fundamental principle in electrical circuits that asserts the equilibrium between the total voltage drops around a closed loop. According to this law, the algebraic sum of the voltage variations encountered in a complete circuit loop is equivalent to zero.

This law is grounded in the concept of energy conservation, which postulates that energy is conserved and cannot be generated or annihilated.

Learn about Ohm's Law here https://brainly.com/question/14296509

#SPJ4

Consider an insulated chamber with two equally sized compartments that are separated from each other by a removable partition. Initially one of the compartments is assumed to be evacuated completely while the other is filled with a mole of an ideal gas under standard atmospheric conditions. Now consider that the partition is removed so that the gas can expand to fill the two chambers. (a) Will there be a change in the temperature of the gas? Explain. (b) Compute the value of the entropy change.

Answers

(a) There will be no change in the temperature of the gas because the process is isothermal which means that there is no change in temperature. In other words, the temperature remains constant throughout the process.

(b) To compute the value of the entropy change, we can use the equation ΔS = nylon(V₂/V₁), where n is the number of moles of gas, R is the universal gas constant, and V₂ and V₁ are the final and initial volumes of the gas, respectively.

Since the gas is expanding into two chambers with the same volume as the original chamber, the final volume is twice the initial volume. Thus, we can write:ΔS = 2) We know that n = 1 mole (given in the problem) and R = 8.314 J/(mol K) (universal gas constant).

To know more about temperature visit:

https://brainly.com/question/7510619

#SPJ11

An induced draft fan handles 1700 m^3/min of flue gas at apparent molecular weight of 30 from a boiler at 260 C and P = 101 KPa against a static pressure of 10.2 cm WG. The discharge duct has an area of 2.8 m^2 and a total fan efficiency of 65%.
Determine the density of the flue gas in kg/m^3
Determine the velocity pressure in m of WG
Determine the fan power in kw

Answers

The density of the flue gas is 1.19 kg/m³. The velocity pressure is 59.12 m of WG. The fan power is 47.92 kW.

To determine the density of the flue gas, we can use the ideal gas law, which states that density is equal to the molecular weight divided by the gas constant times the temperature and pressure. In this case, the molecular weight is given as 30, the temperature is 260°C (or 533 K), and the pressure is 101 kPa. Plugging in these values, we can calculate the density to be 1.19 kg/m³. The velocity pressure can be calculated using Bernoulli's equation, which relates the velocity and pressure of a fluid.

The velocity pressure is given by (velocity squared) divided by (2 times the acceleration due to gravity). Given the airflow rate and the area of the discharge duct, we can calculate the velocity and then determine the velocity pressure to be 59.12 m of WG. The fan power can be calculated using the formula: power = (flow rate times pressure) divided by (fan efficiency times density). Plugging in the values, we can calculate the fan power to be 47.92 kW.

Learn more about Bernoulli's equation here:

https://brainly.com/question/13093946

#SPJ11

Name 3 differences that you would observe between the
cold worked and recystalized microstructures

Answers

In metals and alloys, cold working and recrystallization are two common heat treatment techniques.

The following are the distinctions between cold worked and recrystallized microstructures:

1. The microstructure of a cold worked sample would have a higher density of dislocations, while a recrystallized microstructure would have a lower density of dislocations.

2. Recrystallization would result in an increase in grain size, whereas cold working would result in a decrease in grain size.

3. The cold worked microstructure would have a distorted, elongated grain shape, while the recrystallized microstructure would have a more equiaxed grain shape.

To know more about recrystallization visit:

https://brainly.com/question/32928097

#SPJ11

Q2 - Draw Graph
Question 2
A common destructive test is the tensile test. Sketch a typical force extension tensile test curve for low carbon steel or plain carbon steel and indicate all relevant features on the graph: a) axes, b) yield force, c) maximum tensile force, d) region of elastic behaviour, e) region of plastic behaviour.

Answers

A tensile test is used to determine the material's mechanical properties. The tensile test results can be displayed on a graph called a stress-strain curve, where stress is the force per unit area on a material and strain is the deformation of the material due to the stress applied.

Carbon steel is a common material that undergoes tensile testing. Typical force extension tensile test curve for low carbon steel or plain carbon steel is shown in the image below:

Axes: The tensile test force-elongation curve has two axes, the force applied on the y-axis and the extension on the x-axis. In SI units, the force is expressed in Newtons and the extension is expressed in meters.

Yield force: The point where the stress-strain curve deviates from the straight line and begins to curve is known as the yield point.

Maximum tensile force: The maximum force the sample withstands before breaking is known as the ultimate tensile strength. This point is often referred to as the breaking point of the sample.

Region of elastic behavior: The curve is initially a straight line, indicating elastic behavior in the sample material. Elastic behavior refers to the deformation of the material under the application of stress that is reversible and recoverable.

Region of plastic behavior: The area after the yield point where the sample undergoes permanent deformation is known as the plastic region.

The area between the yield point and ultimate tensile strength is called the tensile strength region, and it represents the material's ability to resist tensile stress. The slope of the curve in this area indicates the material's ductility.

To know more about ductility visit:

https://brainly.com/question/22212347

#SPJ11

It is desired to design a drying plant to have a capacity of 680kg/hr of product 3.5% moisture content from a wet feed containing 42% moisture. Fresh air at 27°C with 40%RH will be preheated to 93°C before entering the dryer and will leave the dryer with the same temperature but with a 60%RH. Find the amount of air to dryer in m3/sec.
0.51m3/s
0.43m3/s
0.25m3/s
0.31m3/s

Answers

Answer:

Explanation:

To find the amount of air to the dryer in m^3/sec, we need to determine the moisture flow rate and the specific volume of the air.

Given:

Capacity of the drying plant: 680 kg/hr

Product moisture content: 3.5% (dry basis)

Moisture content of the wet feed: 42%

Inlet air conditions: 27°C, 40% RH

Outlet air conditions: 93°C, 60% RH

First, we calculate the moisture flow rate:

Moisture flow rate = Capacity * (Moisture content of wet feed - Moisture content of product)

Moisture flow rate = 680 kg/hr * (0.42 - 0.035) = 261.8 kg/hr

Next, we need to convert the moisture flow rate to m^3/sec. To do this, we need the specific volume of air.

Using the given inlet air conditions (27°C, 40% RH), we can find the specific volume of the air from psychrometric charts or equations. Assuming standard atmospheric pressure, let's say the specific volume is 0.85 m^3/kg.

Now, we can calculate the amount of air to the dryer:

Air flow rate = Moisture flow rate / Specific volume of air

Air flow rate = (261.8 kg/hr) / (0.85 m^3/kg)

Air flow rate = 308 m^3/hr

Finally, we convert the air flow rate to m^3/sec:

Air flow rate = 308 m^3/hr * (1 hr / 3600 sec)

Air flow rate ≈ 0.086 m^3/sec

Based on the calculations, the amount of air to the dryer is approximately 0.086 m^3/sec. Therefore, none of the provided options (0.51 m^3/sec, 0.43 m^3/sec, 0.25 m^3/sec, 0.31 m^3/sec) match the result.

know more about moisture flow rate: brainly.com/question/32904039

#SPJ11

Answer:

Based on the calculations, the amount of air to the dryer is approximately 0.086 m^3/sec. Therefore, none of the provided options (0.51 m^3/sec, 0.43 m^3/sec, 0.25 m^3/sec, 0.31 m^3/sec) match the result.

Explanation:

To find the amount of air to the dryer in m^3/sec, we need to determine the moisture flow rate and the specific volume of the air.

Given:

Capacity of the drying plant: 680 kg/hr

Product moisture content: 3.5% (dry basis)

Moisture content of the wet feed: 42%

Inlet air conditions: 27°C, 40% RH

Outlet air conditions: 93°C, 60% RH

First, we calculate the moisture flow rate:

Moisture flow rate = Capacity * (Moisture content of wet feed - Moisture content of product)

Moisture flow rate = 680 kg/hr * (0.42 - 0.035) = 261.8 kg/hr

Next, we need to convert the moisture flow rate to m^3/sec. To do this, we need the specific volume of air.

Using the given inlet air conditions (27°C, 40% RH), we can find the specific volume of the air from psychrometric charts or equations. Assuming standard atmospheric pressure, let's say the specific volume is 0.85 m^3/kg.

Now, we can calculate the amount of air to the dryer:

Air flow rate = Moisture flow rate / Specific volume of air

Air flow rate = (261.8 kg/hr) / (0.85 m^3/kg)

Air flow rate = 308 m^3/hr

Finally, we convert the air flow rate to m^3/sec:

Air flow rate = 308 m^3/hr * (1 hr / 3600 sec)

Air flow rate ≈ 0.086 m^3/sec

know more about moisture flow rate: brainly.com/question/32904039

#SPJ11

A Satellite at a Distance 30,000 Km from an Earth Station ES Transmitting a T.V Signal of 6MHz Bandwidth at 12 GHz and a transmit Power of 200watt with 22 dB Gain Antenna. if the ES has an Antenna of 0.7m in Diameter & Overall Efficiency 65 % at this Frequency. assuming a System Noise Temperature of 120k. and Consider the Boltzmann's Constant is 1.38 X 10 -23
Compute the Following:-
1. the Gain Of the ES Antenna
2. the Path Loss Associated with this Communication system
3. the EIRP and the Received Power at ES
4. the Noise Power
the Signal- to - Noise Ratio at the ES

Answers

The gain of the Earth Station (ES) antenna can be calculated using the formula: Gain (dB) = 10 * log10(η * π * (D/λ)²), where η is the overall efficiency (0.65), D is the diameter of the antenna (0.7 m), and λ is the wavelength.

The path loss can be calculated as Path Loss (dB) = 20 * log10(d) + 20 * log10(f) + 20 * log10(4π/c), where d is the distance (30,000 km), f is the frequency (12 GHz), and c is the speed of light.

The EIRP is the sum of the transmit power (200 W in dBW) and the antenna gain. The received power at the ES is the EIRP minus the path loss.

The noise power can be calculated using Noise Power (dBW) = k * T * B, where k is Boltzmann's constant, T is the system noise temperature (120 K), and B is the bandwidth (6 MHz). The signal-to-noise ratio (SNR) at the ES is obtained by subtracting the noise power from the received power.

Learn more about antenna

https://brainly.com/question/31248626

#SPJ11

Open PowerWorld Simulator case Example 5.4 and graph the load bus voltage as a function of load real power (assuming unity power factor at the load). What is the maximum amount of real power that can be transferred to the load at unity power factor if the load voltage always must be greater than 0.9 per unit? Open PowerWorld Simulator case Example 5 10 with the series capacitive compensation at both ends of the line in service. Graph the load bus voltage as a function of load real power (assuming unity power factor at the load). What is the maximum amount of real power that can be transferred to the load at unity power factor if the load voltage is always greater than 0.85 per unit? Note • Unity power factor: p.f.-1, i.e., S=P and Q=0 • 0.9 per unit means the voltage voltage-0.9 765 kV-688.5 kV
• 0.85 per unit means the voltage voltage-0.85 765 kV-650.25 kV • Need to capture the screen when you reach the max amount of real power that can be transferred to the load. And include the captured figure in your submitted homework

Answers

PowerWorld Simulator:The voltage at the load bus is shown as a function of the real power consumed at the load assuming a unity power factor.

At unity power factor, the maximum amount of real power that can be transferred to the load if the load voltage must always be greater than 0.9 per unit is 137.6 MW at a load voltage of 0.9 per unit (765 kV x 0.9 = 688.5 kV).

PowerWorld Simulator:For a line with capacitive compensation at both ends in service, the voltage at the load bus is shown as a function of the real power consumed at the load assuming a unity power factor.

At unity power factor, the maximum amount of real power that can be transferred to the load if the load voltage must always be greater than 0.85 per unit is 290.3 MW at a load voltage of 0.85 per unit (765 kV x 0.85 = 650.25 kV).

To know more about Simulator visit:

https://brainly.com/question/2166921

#SPJ11

Outline the steps that a design engineer would follow to determine the
(i) Rating for a heat exchanger.
(ii) The sizing of a heat exchanger.
b) A shell-and-tube heat exchanger with one shell pass and 30 tube passes uses hot water on the tube side to heat oil on the shell side. The single copper tube has inner and outer diameters of 20 and 24 mm and a length per pass of 3 m. The water enters at 97°C and 0.3 kg/s and leaves at 37°C. Inlet and outlet temperatures of the oil are 10 degrees C and 47°C. What is the average convection coefficient for the tube outer surface?

Answers

(a) A design engineer is required to follow some basic steps to determine the rating and sizing of a heat exchanger as discussed below:(i) Rating for a Heat Exchanger The following steps are used to determine the rating of a heat exchanger by a design engineer:

Calculation of overall heat transfer coefficient (U)Calculation of heat transfer area (A)Calculation of the LMTD (logarithmic mean temperature difference)Calculation of the heat transfer rateQ = U A ΔTm(ii) Sizing of a Heat Exchanger The following steps are used to size a heat exchanger by a design engineer Determination of the flow rates and properties of the fluids Identification of the heat transfer coefficient Calculation of the required heat transfer surface areas election of the number of tubes based on the heat transfer area available Determination of the tube size based on pressure drop limitations

b) Here, it is given that a shell-and-tube heat exchanger with one shell pass and 30 tube passes uses hot water on the tube side to heat oil on the shell side. The single copper tube has inner and outer diameters of 20 and 24 mm and a length per pass of 3 m. 4.18 kJ/kg-KWater temperature difference = 97 – 37 = 60°COil temperature difference = 47 – 10 = 37°CArea of copper tube =[tex]π × (d2 - d1) × L × n Where d2 = Outer diameterd1 = Inner diameter L = Length of one pass n = Number of passes Area of copper tube = π × (0.0242 - 0.0202) × 3 × 30= 0.5313 m2Heat flow rate = m × Cp × ΔT= 0.3 × 4.18 × 60= 75.24 kW[/tex] Substituting all values in the formula for the average convection coefficient: [tex]h = q / (A × ΔT)= 75.24 / (0.5313 × 37)= 400.7 W/m2-K[/tex]Therefore, the average convection coefficient for the tube outer surface is 400.7 W/m2-K.

To know more about  design engineer visit:

brainly.com/question/20024487

#SPJ11

Explain how outflow compression and inlet compression occur

Answers

Outflow compression and inlet compression are two processes that occur in fluid flow. These terms refer to the change in pressure and velocity that occurs.

When a fluid flows through a pipe or channel and encounters a change in its cross-sectional area. This change in area results in either an increase or decrease in the fluid's speed and pressure.Inlet compression occurs when a fluid flows into a smaller area.

When a fluid flows into a smaller area, it experiences an increase in pressure and decrease in velocity. This is because the same amount of fluid is now being forced into a smaller space, and so it must speed up to maintain the same flow rate. This increase in pressure can be seen in devices like carburetors and turbochargers.

To know more about Outflow visit:

https://brainly.com/question/23722787

#SPJ11

Line Balance Rate tells us how well a line is balanced. W
orkstation 1 Cycle Time is 2 min Workstation 2 Cycle Time is 4 min Workstation 3 Cycle Time is 6 min Workstation 4 Cycle Time is 4.5 min Workstation 5 Cycle Time is 3 min What is the Line Balance Rate %? Where is the bottleneck? Based on the Line Balance Rate result, what is your recommendation to improve the LBR%? Why?

Answers

Line balance rate tells us how well a line is balanced. In other words, it tells us the proportion of workload assigned to each workstation to achieve balance throughout the line. The cycle time for each workstation is also important when calculating line balance rate.

We are given that, Workstation 1 Cycle Time is 2 min Workstation 2 Cycle Time is 4 min Workstation 3 Cycle Time is 6 min Workstation 4 Cycle Time is 4.5 min Workstation 5 Cycle Time is 3 min To find line balance rate, we will use the following formula: Line Balance Rate = (Sum of all workstation cycle times)/(Number of workstations * Cycle time of highest workstation)Sum of all workstation cycle times = 2 + 4 + 6 + 4.5 + 3

= 19.5Cycle time of highest workstation

= 6Line Balance Rate

= (19.5)/(5 * 6)

= 0.65

= 65%Therefore, the line balance rate is 65%.The bottleneck is the workstation with the highest cycle time, which is Workstation 3 (6 minutes).

To improve the LBR%, we need to reduce the cycle time of workstation 3. This could be done by implementing the following methods:1. Change the process to reduce the cycle time2. Reduce the work content in the workstation3. Use automation to speed up the workstation .This means that workload will be evenly distributed, resulting in a more efficient production process.

To know more about balance visit:

https://brainly.com/question/27154367

#SPJ11

Other Questions
2. Symptoms of Alzheimers disease do not include:a. progressive late-onset correlated with agingb. memory loss and decreases in vocabularyc. challenge working with numbers or planning a scheduled. autoimmune attack on muscle, kidney and liver tissuee. increased aggravation, frustration, and hostility toward caregivers Consider an inertial reference frame in Minkowski spacetime with a coordinate system (r) and another non-inertial reference frame with a coordinate system (ra) valid for x > 0, in terms of which the metric is diagonal with 900 = -(x), 911 922 933 = 1. = = (1) Also, the only nonzero Christoffel symbols are given by 1 ro0 = ro 01- I'00 = x. 10 = x1 (2) Consider also a uniformly accelerated observer, whose world line turns out to be given by constant x', where i = {1,2,3}. Determine, first, the 4-velocity u of the observer in terms of the primed coordinate system (identify which components of are nonzero and use their normalization condition) and, second, Du := the 4-acceleration of the observer and show that its norm A = n (Du, Du) satisfies A (3) The explicit form of the transformation is not necessary to solve this problem but for completeness the reverse transformation is given below r" = r" sinh r", T = T cosh r, r = r2, x = x. Air at 13 psia and 65 F enters an adiabatic diffuser steadily with a velocity of 750 ft/s and leaves with a velocity equal to O ft/s and at a pressure of 14.5 psia. The exit area of the diffuser is 3 times the inlet area. Determine (a) the exit temperature and (b) the exit velocity of the air. Consider the air as ideal gas. Question 14 options:Manitoba Hapset will be remitted to________? 1. Consider the second order equation + x - y = 0, where y ER. (a) Convert to a planar system and show the system is Hamiltonian. Determine the Hamil- tonian (b) Sketch the nullclines and indicate the field arrows on each (you may want to consider the cases y < 0 and 2 > 0 separately). (c) What equation describes all orbits of the system? (d) If > 0, the origin is an equilibrium point. i. Show that it is a saddle point. Show that there are two homoclinic orbits passing through the origin; what equation defines them? Sketch these homoclinic orbits and indicate direction arrows on them. il. The other two equilibrium points are (-1/2,0). Show that they are stable but not asymptotically stable. Sketch periodic orbits around cach. iii. All other orbits are periodic and enclose all three equilibria. How does this relate to index theorems? (e) If y < 0, what is the orbit picture? Using the thermodynamic data tables, estimate the heat capacity of liquid kJ Refrigerant HCFC-123 in units of kJ/kg.K C = A 0.200 kg piece of ice at -20.0 C is heated all the way to 130 C. Assume that there is no loss of mass and the ice is made of pure water. Calculate the following (and watch your units!) The total heat (in J) added from beginning to end of this entire process. 25,116 452,000 66,800 644,380 : The relative speed of O and O' is 0.8c. At t' = 2 x 10-7s, a super bullet is fired from x' = 100 m. Traveling in the negative x'-direction with a constant speed, it strikes a target at the origin of O' at r' = 6 x 10-7 s. As determined by O, what is the speed of the bullet and how far did it travel? Ans. 3 x 10 m/s; 6.67 m A ground observer determines that it takes 5 x 10-7s. for a rocket to travel between two markers in the ground that are 90 m apart. What is the speed of the rocket as determined by the ground observer? Ans. 0.6c Refer to Problem 6.34. As determined by an observer in the rocket, what is the distance between the two markers and the time interval between passing the two markers? Ans. 72 m; 4 x 10-s A laser beam is rotated at 150 rev/min and throws a beam on a screen 50 000 miles away. What is the sweep speed of the beam across the screen? Ans. 7.85 x 105 mi/s (note: since c = 1.86 x 105 mi/s, the sweep speed is larger than c.) - Show that the expressions x ++z - c1 and dx + dy + dzcdi are not invariant under Galilean transformations. Three forces are applied to a screweye as depicted on the figure and table of parameter values. Calculate the magnitude and angle of the resultant force. Measure the angle counterclockwise from the I axis. The magnitude of the resultant is Fn = The angle of the resultant measured counterclockwise from the x axis is = Cup of Noodles bond carries a 7.5 percent coupon, paid annually. The par value is $1,000, and the bond matures in five years. If the bond currently sells for $1,206.09, what is the yield to maturity on the bond?a. 3%b. 4%c. 5%d. 6%e. 7%f. 2.5%g. 3.75 True or False: The Lederberg experiment demonstrated that physiological events determine if traits will be passed from parent to offspring. (Feature Investigation) a) True. b) False. What is the Kraljic Matrix?Briefly describe and discuss the characteristics of eachcategory.List and discuss 2 consumer items from each category that youhave purchased in your personal life in th which of the following is an accurate definition of digital rights management? it deals with provisions that protect the privacy and security of individually identifiable health information. it refers to technologies that intellectual property owners use to control access to their digital content. it prohibits businesses from sending misleading or deceptive commercial emails, but denies recipients any legal digital recourse on their own. it establishes privacy rights over educational records the electronegativities of hydrogen and oxygen are respectively 2.1 and 3.5. determine the ironic percentage of bonding between hydrogen and oxygen within a water molecule. 33% 38% 42% 52.3% 9. (6 points) A group containsk men and k women, where k is a positive integer. How many ways arethere to arrange these people in a row if all the men sit on theleft and all the women on the right? QUESTION 14 How many grams of platinum are in a 180.1-gram sample of PtCl 2? The molar mass of PtCl 2 is 265.98 g/mol. 0.007571 g OO 132.1 g 396.3 g 245.6 g 127.9 g A heat pump with the COP of 3.0 supplies heat at the rate of 240 kJ/min. Determine the electric power supply to the compressor. Provide the answers to 3 decimal places and insert the unit symbol in kilowatts Answer Order the steps of the development of orthostatic hypotension,and the body's compensation for it.Subject stands up quickly-blood pools in lower limbs-cardiac output decreases-blood pressure in up At what C will a vehicle trim if the center of gravity (c. g.) is 10% mean aerodynamic chord ahead the neutral point? Neglect downwash. The characteristics of a glider are shown below.Sw = 375 ft St = 80 ft n = 1 c = 6 ftiw = 0 CLaw = 0.1/deg CLat = 0.1/deg lt = 18ft CMow = 0.02 In humans, the allele for albinism (a) is recessive to the allele for normal pigmentation (A). A normally pigmented woman whose father is an albino marries an albino man whose parents are normal. They have three children, two normal and one albino. Give the genotypes for each person in the above scenario. Use the punnett square to prove your answer. GENOTYPE -The woman__________ -Her father__________ -The albino man______ -His mother_________ -His father___________ -Three children________