Match each term to the best description.
1. Composed of numerous narrowly spaced parallel slits or grooves
2. Having the same wavelength, frequency, and in-phase Interaction of waves where they meet in space
3. The bending of waves near a boundary or as a wave passes through an opening
4. The zeroth order direct reflection fringe
a. Coherent
b. Diffraction
c. Grating
d. Specular dot
e. Interference

Answers

Answer 1

Answer:

1. Grating

2. Interference

3. Diffraction

4. Specular dot

Explanation:

1. Composed of numerous narrowly spaced slits and grooves  ........  Grating

2. Having the same wavelength, frequency, and in-phase Interaction of waves where they meet in space .......   Interference

3. The bending of waves near a boundary or as a wave passes through an opening ...... Diffraction

4. The zeroth order direct reflection fringe  ......  Specular dot


Related Questions

How far apart (in mm) must two point charges of 90.0 nC (typical of static electricity) be to have a force of 3.80 N between them

Answers

Answer:

The distance between the two charges is =4.4mm

A dumbbell-shaped object is composed by two equal masses, m, connected by a rod of negligible mass and length r. If I1 is the moment of inertia of this object with respect to an axis passing through the center of the rod and perpendicular to it and I2 is the moment of inertia with respect to an axis passing through one of the masses, it follows that:

a. I1 > I2
b. I2 > I1.
c. I1 = I2.

Answers

Answer:

B: I2>I1

Explanation:

See attached file

A very large sheet of a conductor carries a uniform charge density of on its surfaces. What is the electric field strength 3.00 mm outside the surface of the conductor?

Answers

Complete Question

A very large sheet of a conductor carries a uniform charge density of [tex]4.00\ pC/mm^2[/tex]  on its surfaces. What is the electric field strength 3.00 mm outside the surface of the conductor?

Answer:

The electric field is  [tex]E = 4.5198 *10^{5} \ N/C[/tex]

Explanation:

From the question we are told that

    The charge density is  [tex]\sigma = 4.00pC /mm^2 = 4.00 * 10^{-12 } * 10^{6} = 4.00 *10^{-6}C/m[/tex]

    The position outside the surface is  [tex]a = 3.00 \ mm = 0.003 \ m[/tex]

   

Generally the electric field is mathematically represented as

          [tex]E = \frac{\sigma}{\epsilon _o }[/tex]

Where  [tex]\epsilon_o[/tex] is  the permitivity of free space with values  [tex]\epsilon _o = 8.85 *10^{-12} F/m[/tex]

substituting values  

           [tex]E = \frac{4.0*10^{-6}}{8.85 *10^{-12} }[/tex]

           [tex]E = 4.5198 *10^{5} \ N/C[/tex]

How did the magnet’s density measurement using the Archimedes’ Principle compare to the density measurement using the calculated volume? Which method might be more accurate? Why?

Answers

Answer:

The two methods will yield different results as one is subject to experimental errors that us the Archimedes method of measurement, the the density measurement method will be more accurate

Explanation:

This is because the density method using the calculated volume will huve room for less errors that's occur in practical method i.e Archimedes method due to human error

How does an atom of rubidium-85 become a rubidium ion with a +1 charge?

Answers

Answer:

C. The atom loses 1 electron to have a total of 36.

Explanation:

Cations have a positive charge. Cations lose electrons.

The number of electrons in a Rubidium atom is 37. If the atom loses 1 electron, then it has 36 left.

mention two similarities of citizen and aliens​

Answers

Answer:

The main points of difference between a citizen and alien are: (a) A citizen is a permanent resident of a state, while an alien is a temporary resident, who comes for a specific duration of time as a tourist or on diplomatic assignment. ... Aliens do not possess such rights in the state where they reside temporarily

Explanation:

A package is dropped from a helicopter moving upward at 1.5 m/s. If it takes 16.0 s before the package strikes the ground, how high above the ground was the package when it was released if air resistance is negligible?

Answers

Well we know acceleration from free fall due to gravity is 9.8m/s^2

Lay out

S = displacement is what we need

U

V = 1.5m/s

A = 9.8m/s2

T = 16.0s

Use the equation s=vt-1/2at^2

Where a = acceleration t= time and v= velocity

Sub in the values to get displacement or height from ground

= -1230.4 metres which would be positive as you’re measuring distance (scalar quantity) so it’s 1230.4 metres

An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straighten his arms. How far apart are the astronaut and the satellite after 1.40 min?

Answers

Answer:

The astronaut and the satellite are 53.718 m apart.

Explanation:

Given;

mass of spacewalking astronaut, = 88 kg

mass of satellite, = 645 kg

force exerts by the satellite, F = 110N

time for this action, t = 0.45 s

Determine the acceleration of the satellite after the push

F = ma

a = F / m

a = 110 / 645

a = 0.171 m/s²

Determine the final velocity of the satellite;

v = u + at

where;

u is the initial velocity of the satellite = 0

v = 0 + 0.171 x 0.45

v = 0.077 m/s

Determine the displacement of the satellite after 1.4 m

d₁ = vt

d₁ = 0.077 x (1.4 x 60)

d₁ = 6.468 m

According to Newton's third law of motion, action and reaction are equal and opposite;

Determine the backward acceleration of the astronaut after the push;

F = ma

a = F / m

a = 110 / 88

a = 1.25 m/s²

Determine the final velocity of the astronaut

v = u + at

The initial velocity of the astronaut = 0

v = 1.25 x 0.45

v = 0.5625 m/s

Determine the displacement of the astronaut after 1.4 min

d₂ = vt

d₂ = 0.5625 x (1.4 x 60)

d₂ = 47.25 m

Finally, determine the total separation between the astronaut and the satellite;

total separation = d₁ + d₂

total separation = 6.468 m + 47.25 m

total separation = 53.718 m

Therefore, the astronaut and the satellite are 53.718 m apart.

An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about _____ years.

Answers

Answer:

An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about  2 years.

Explanation:

Given;

orbital period of 3 years, P = 3 years

To calculate the years of an orbital with a semi-major axis, we apply Kepler's third law.

Kepler's third law;

P² = a³

where;

P is the orbital period

a is the orbital semi-major axis

(3)² = a³

9 = a³

a = [tex]a = \sqrt[3]{9} \\\\a = 2.08 \ years[/tex]

Therefore, An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about  2 years.

Five identical cylinders are each acted on by forces of equal magnitude. Which force exerts the biggest torque about the central axes of the cylinders

Answers

Answer:

From the image, the force as shown in option A will exert the biggest torque on the cylinder about its central axes.

Explanation:

The image is shown below.

Torque is the product of a force about the center of rotation of a body, and the radius through which the force acts. For a given case such as this, in which the cylinders are identical, and the forces are of equal magnitude, the torque at the maximum radius away from the center will exert the maximum torque. Also, the direction of the force also matters. To generate the maximum torque, the force must be directed tangentially away from the circle formed by the radius through which the force acts away from the center. Option A satisfies both condition and hence will exert the most torque on the cylinder.

A 5.0-Ω resistor and a 9.0-Ω resistor are connected in parallel. A 4.0-Ω resistor is then connected in series with this parallel combination. An ideal 6.0-V battery is then connected across the series-parallel combination of the three resistors. What is the current through (a) the 4.0-Ω resistor? (b) the 5.0-Ω resistor? (c) the 9.0-Ω resistor?

Answers

Answer:

Explanation:

The current through the  resistor is 0.83 A

.

Part b

The current through  resistor is 0.53 A

.

Part c

The current through  resistor is 0.30 A

A commuter train passes a passenger platform at a constant speed of 40.0 m/s. The train horn is sounded at its characteristic frequency of 320 Hz.
(a) What overall change in requency is detected by a person on the platform as the train moves from approaching to receding?
(b) What wavelength is detected by a person on the platform as the train approaches?

Answers

Answer:

a) -75 Hz

b) 0.11 [tex]m^{-1}[/tex]

Explanation:

a) Let us first find the frequency detected by the person on the platform.

We have to find the frequency observed by the person when the train was approaching and when the train was receding.

When the train was approaching:

[tex]f_o = \frac{v}{v - v_s} f_s[/tex]

where fo = frequency observed

fs = frequency from the source = 320 Hz

v = speed of sound = 343 m/s

vs = speed of the train = 40 m/s

Therefore:

[tex]f_o = \frac{343}{343 - 40} * 320\\\\f_o = \frac{343}{303} * 320\\\\f_o = 362 Hz[/tex]

The person on the platform heard the sound at a frequency of 362 Hz when the train was approaching.

When the train was receding:

[tex]f_o = \frac{v}{v + v_s} f_s[/tex]

[tex]f_o = \frac{343}{343 + 40} * 320\\\\f_o = \frac{343}{383} * 320\\\\f_o = 287 Hz[/tex]

The person on the platform heard the sound at a frequency of 287 Hz when the train was receding.

Therefore, the frequency change is given as:

Δf = 287 - 362 = -75 Hz

b) We can find the wavelength detected by the person on the platform as the train approaches by using the formula for speed:

[tex]v = \lambda f[/tex]

where λ = wavelength

f = frequency of the train as it approaches = 362 Hz

v = speed of train = 40 m/s

Therefore, the wavelength detected is:

40 = λ * 362

λ = 40 / 362 = 0.11 [tex]m^{-1}[/tex]

Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 25.0 m above water with an initial speed of 20.0 m/s strikes the water with a final speed of what, independent of the direction thrown.

Answers

Complete question is;

Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 25.0 m above water with an initial speed of 20.0 m/s strikes the water with a final speed of 31.1 m/s, independent of the direction thrown

Answer:

It is proved that the final speed is truly 31.1 m/s

Explanation:

From energy - conservation principle;

E_i = Initial potential energy + Initial Kinetic Energy

Or

E_i = U_i + K_i

Similarly, for final energy

E_f = U_f + K_f

So, expressing the formulas for potential and kinetic energies, we now have;

E_i = (m × g × y_i) + (½ × m × v_i²)

Similarly,

E_f = (m × g × y_f) + (½ × m × v_f²)

We are given;

y_i = 25 m

y_f = 0 m

v_i = 20 m/s

v_f = 31.1 m/s

So, plugging in relevant values;

E_i = m((9.8 × 25) + (½ × 20²))

E_i = 485m

Similarly;

E_f = m((9.8 × 0) + (½ × v_f²)

E_f ≈ ½m•v_f²

From energy conservation principle, E_i = E_f.

Thus;

485m = ½m•v_f²

m will cancel out to give;

½v_f² = 485

v_f² = 485 × 2

v_f² = 970

v_f = √970

v_f ≈ 31.1 m/s

A diver running at 2.5 m/s dives out horizontally from the edge of a vertical cliff and 3.0 seconds later reaches the water below. How far from its base did the diver hit the water

Answers

Explanation:

u = 2.5 m/s

v = 0

t = 3sec

s = ?

s = (u+v)/t

s = (0+2.5)/3

s = 2.5/3 = 0.83 m

An X-Ray machine delivers a radiation dose of 5mRem/hr. at 3ft from the machine. How far will the X-Ray technician have to move to reduce his exposure to 2mRem/hr.? I1/I2 = (D2)2/(D1)2 -------> I1(D1)2 = I2(D2)2

Answers

Answer:

4.7ft

Explanation:

Pls see attached file

A hard drive disk rotates at 7200 rpm. The disk has a diameter of 5.1 in (13 cm). What is the speed of a point 6.0 cm from the center axle

Answers

Answer:

The speed will be "3.4×10⁴ m/s²".

Explanation:

The given values are:

Angular speed,

w = 7200 rpm

i.e.,

  = [tex]7200 \times \frac{2 \pi}{60}[/tex]

  = [tex]753.6 \ rad/s[/tex]

Speed from the center,

r = 6.0 cm

As we know,

⇒  Linear speed, [tex]v=wr[/tex]

On putting the estimated values, we get

                               [tex]=753.6\times 0.06[/tex]

                               [tex]=45.216 \ m[/tex]

Now,

Acceleration on disk will be:

⇒  [tex]a=\frac{v^2}{r}[/tex]

       [tex]=34074 \ m/s^2[/tex]

       [tex]=3.4\times 10^4 \ m/s^2[/tex]

The magnitude of the magnetic flux through the surface of a circular plate is 6.80 10-5 T · m2 when it is placed in a region of uniform magnetic field that is oriented at 43.0° to the vertical. The radius of the plate is 8.50 cm. Determine the strength of the magnetic field. mT A circular plate of radius r is lying flat. A field of arrows labeled vector B rising up and to the right pass through the plate.

Answers

Answer:

B = 4.1*10^-3 T = 4.1mT

Explanation:

In order to calculate the strength of the magnetic field, you use the following formula for the magnetic flux trough a surface:

[tex]\Phi_B=S\cdot B=SBcos\alpha[/tex]        (1)

ФB: magnetic flux trough the circular surface = 6.80*10^-5 T.m^2

S: surface area of the circular plate = π.r^2

r: radius of the circular plate = 8.50cm = 0.085m

B: magnitude of the magnetic field = ?

α: angle between the direction of the magnetic field and the normal to the surface area of the circular plate = 43.0°

You solve the equation (1) for B, and replace the values of the other parameters:

[tex]B=\frac{\Phi_B}{Scos\alpha}=\frac{6.80*10^{-5}T.m^2}{(\pi (0.085m)^2)cos(43.0\°)}\\\\B=4.1*10^{-3}T=4.1mT[/tex]

The strength of the magntetic field is 4.1mT

A 30 L electrical radiator containing heating oil is placed in a 50 m3room. Both the roomand the oil in the radiator are initially at 10◦C. The radiator with a rating of 1.8 kW is nowturned on. At the same time, heat is lost from the room at an average rate of 0.35 kJ/s.After some time, the average temperature is measured to be 20◦C for the air in the room,and 50◦C for the oil in the radiator. Taking the density and the specific heat of the oil to be950 kg/m3and 2.2 kJ/kg◦C, respectively, determine how long the heater is kept on. Assumethe room is well sealed so that there are no air leaks.

Answers

Answer:

Explanation:

Heat absorbed by oil

= mass x specific heat x rise in temperature

= 30 x 10⁻³ x 950 x 2.2 x 10³ x ( 50-10 )

= 25.08 x 10⁵ J  

Heat absorbed by air

= 50 x 1.2 x 1.0054 x 10³ x ( 20-10 )

= 6.03 x 10⁵ J

Total heat absorbed = 31.11 x 10⁵ J

If time required = t

heat lost from room

= .35 x 10³ t

Total heat generated in time t

= 1.8 x 10³ t

Heat generated = heat used

1.8 x 10³ t =  .35 x 10³ t  + 31.11 x 10⁵

1.45 x 10³ t = 31.11 x 10⁵

t = 31.11 x 10⁵ / 1.45 x 10³

t = 2145.5 s

A horizontal clothesline is tied between 2 poles, 12 meters apart. When a mass of 1 kilograms is tied to the middle of the clothesline, it sags a distance of 4 meters. What is the magnitude of the tension on the ends of the clothesline

Answers

Answer:

The  tension on the clotheslines is  [tex]T = 8.83 \ N[/tex]

Explanation:

The  diagram illustrating this  question is  shown on the first uploaded image

From the question we are told that  

    The distance between the two poles is  [tex]d = 12 \ m[/tex]

     The mass tie to the middle of the clotheslines [tex]m = 1 \ kg[/tex]

     The length at which the clotheslines sags is  [tex]l = 4 \ m[/tex]

Generally the weight due to gravity at the middle of the  clotheslines is mathematically represented as

          [tex]W = mg[/tex]

let the angle which the tension on the  clotheslines makes with the horizontal be  [tex]\theta[/tex] which mathematically evaluated using the SOHCAHTOA as follows

        [tex]Tan \theta = \frac{ 4}{6}[/tex]

=>     [tex]\theta = tan^{-1}[\frac{4}{6} ][/tex]

=>     [tex]\theta = 33.70^o[/tex]

   So the vertical component of this  tension is  mathematically represented a  

      [tex]T_y = 2* Tsin \theta[/tex]

Now at equilibrium the  net horizontal force is  zero which implies that

          [tex]T_y - mg = 0[/tex]

=>       [tex]T sin \theta - mg = 0[/tex]

substituting values

          [tex]T = \frac{m*g}{sin (\theta )}[/tex]

substituting values

           [tex]T = \frac{1 *9.8}{2 * sin (33.70 )}[/tex]

           [tex]T = 8.83 \ N[/tex]

A projectile is launched with V0 = 7.6 m/s and initial angle = 1.27 radians above the horizontal. What is the initial horizontal component of the projectile velocity in miles per hour?

Answers

Answer:

The horizontal component is  [tex]v_h = 1.7096 \ m/s[/tex]

Explanation:

A diagram illustrating the projection is  shown on the first uploaded image  (from  IB Maths Resources from British international school Phuket )

From the question we are told that  

    The initial velocity is  [tex]v_o = 7.6 \ m/s[/tex]

      The angle of projection is  [tex]\theta = 1.27 \ rad = 72.77^o[/tex]

The  horizontal component of this  projectile  velocity is  mathematically represented as

          [tex]v_h = v_o * cos (\theta )[/tex]

substituting values  

         [tex]v_h = 7.6 * cos (72.77 )[/tex]

        [tex]v_h = 1.7096 \ m/s[/tex]

a car slows down from - 27.7 m/s to -10.9 m/s while undergoing a displacement of -105 m .what is its acceleration?

Answers

Answer:

3.09 m/s²

Explanation:

Given:

Δx = -105 m

v₀ = -27.7 m/s

v = -10.9 m/s

Find: a

v² = v₀² + 2aΔx

(-10.9 m/s)² = (-27.7 m/s)² + 2a (-105 m)

a = 3.09 m/s²

A commercial diffraction grating has 500 lines per mm. Part A When a student shines a 480 nm laser through this grating, how many bright spots could be seen on a screen behind the grating

Answers

Answer:

The number of bright spot is  m =4

Explanation:

From the question we are told that

    The number of lines is  [tex]s = 500 \ lines / mm = 500 \ lines / 10^{-3} m[/tex]

     The wavelength of the laser is  [tex]\lambda = 480 nm = 480 *10^{-9} \ m[/tex]

Now the the slit is mathematically evaluated as

        [tex]d = \frac{1}{s} = \frac{1}{500} * 10^{-3} \ m[/tex]

Generally the diffraction grating is mathematically represented as

        [tex]dsin\theta = m \lambda[/tex]

Here m is the order of fringes (bright fringes) and at maximum m  [tex]\theta = 90^o[/tex]

    So

          [tex]\frac{1}{500} * sin (90) = m * (480 *10^{-3})[/tex]

=>        [tex]m = 4[/tex]

This  implies that the number of bright spot is  m =4

Two beams of coherent light start out at the same point in phase and travel different paths to arrive at point P. If the maximum destructive interference is to occur at point P, the two beams must travel paths that differ by

Answers

Answer:

the two beams must travel paths that differ by one-half of a wavelength.

Which best describes the relationship between heat, internal energy, and thermal energy?
Internal energy is heat that flows, and heat is the part of thermal energy that can be transferred.
Internal energy is thermal energy that flows, and thermal energy is the part of heat that can be transferred.
Thermal energy is heat that flows, and heat is the part of internal energy that can be transferred.
Heat is thermal energy that flows, and thermal energy is the part of internal energy that can be transferred.
Mark this and return
Save and Exit
Next
Submit

Answers

Answer:

I think it is the 4th answer choice

Explanation:

Heat is thermal energy that flows in the direction of high temp to low temp, and internal energy is the "energy contained in a system", and thermal energy is a part of that.

1. In a Millikan type experiment, two horizontal plates are 2.5 cm apart. A latex sphere of
mass 1.5 x 10-15 kg remains stationary when the potential difference between the
plates is 460 V, with the upper plate positive. [2+2+2+2 = 8 marks]
a. Is the sphere charged negatively or positively?
b. What is the magnitude of the electric field intensity between the plates?
C. Calculate the magnitude of the charge on the latex sphere.
d. How many excess or deficit electrons does the sphere have?

Answers

Answer:

Explanation:

a. Is the sphere charged negatively or positively?

The sphere us negatively charged. In a Millikan type experiment, there will be two forces that will be acting on the sphere which are the electric force which acts upward and also the gravity which acts downward.

Because the upper plate is positively charged, there'll what an attractive curve with an upward direction which will be felt by the negatively charged sphere.

b. What is the magnitude of the electric field intensity between the plates?

The magnitude of the electric field intensity between the plates is 18400v/m.

C. Calculate the magnitude of the charge on the latex sphere.

The magnitude of the charge on the latex sphere hae been solved and attached

d. How many excess or deficit electrons does the sphere have?

There are 5 excess electrons that the sphere has.

Check the attachment for further explanation.

1. The uniform purely axial magnetic induction required by the experiment in a volume large enough to accommodate the Lorentz Tube is produced by the Helmholtz Coils. What is the magnetic induction due to a coil current 1.5 Ampere

Answers

Complete Question

The uniform purely axial magnetic induction required by the experiment in a volume large enough to accommodate the Lorentz Tube is produced by the Helmholtz Coils. What is the magnetic induction due to a coil current 1.5 Ampere? Convert the result in the still popular non-SI unit Gauss (1 Tesla = 10^4 Gauss).

B = N*mue*I/(2*r)

# of loops = 140

radius of the coil = 0.14m

Answer:

 The magnetic induction is [tex]B = 2.639 \ Gauss[/tex]

Explanation:

From the question we are told that

     The coil current is  [tex]I = 1.5 \ A[/tex]

     The number of loops is  [tex]N = 140[/tex]

The magnetic field due to the current is mathematically represented as

           [tex]B = \mu_o * N * I[/tex]

[tex]\mu_o[/tex] is the permeability of free space with value  [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

substituting value

           [tex]B = 4\pi * 10^{-7} * 140 * 1.5[/tex]

           [tex]B = 2.639*19^{-4} \ T[/tex]

From question

        (1 Tesla = [tex]10^4 \ Gauss[/tex]).

=>      [tex]B = 2.693 *10^{-4} *10^4 = 2.63 \ Gauss[/tex]

=>      [tex]B = 2.639 \ Gauss[/tex]

         

A gun has a muzzle speed of 90 meters per second. What angle of elevation should be used to hit an object 150 meters away? Neglect air resistance and use g=9.8m/sec2 as the acceleration of gravity.

Answers

Answer:

θ₀ = 84.78° (OR) 5.22°

Explanation:

This situation can be treated as projectile motion. The parameters of this projectile motion are:

R = Range of Projectile = 150 m

V₀ = Launch Speed of Projectile = 90 m/s

g = 9.8 m/s²

θ₀ = Launch angle (OR) Angle of Elevation = ?

The formula for range of a projectile is given as:

R = V₀² Sin 2θ₀/g

Sin 2θ₀ = Rg/V₀²

Sin 2θ₀ = (150 m)(9.8 m/s²)/(90 m/s)²

2θ₀ = Sin⁻¹ (0.18)

θ₀ = 10.45°/2

θ₀ = 5.22°

Also, we know that for the same launch velocity the range will be same for complementary angles. Therefore, another possible value of angle is:

θ₀ = 90° - 5.22°

θ₀ = 84.78°

Please Help!!!! I WILL GIVE BRAINLIEST!!!!!!!!!!!!!

Upon using Thomas Young’s double-slit experiment to obtain measurements, the following data were obtained. Use these data to determine the wavelength of light being used to create the interference pattern. Do this using three different methods.

The angle to the eighth maximum is 1.12°.

The distance from the slits to the screen is 302.0 cm.

The distance from the central maximum to the fifth minimum is 3.33 cm.

The distance between the slits is 0.000250 m.



The 3 equations I used were 1). d sin θ_m =(m)λ 2). delta x =λL/d and 3.) d(x_n)/L=(n-1/2)λ
but all my answers are different.
DID I DO SOMETHING WRONG!!!!!!!

Answers

Given info

d = 0.000250 meters = distance between slits

L = 302 cm = 0.302 meters = distance from slits to screen

[tex]\theta_8 = 1.12^{\circ}[/tex] = angle to 8th max (note how m = 8 since we're comparing this to the form [tex]\theta_m[/tex])

[tex]x_n = x_5 = 3.33 \text{ cm} = 0.0333 \text{ meters}[/tex] (n = 5 as we're dealing with the 5th minimum )

---------------

Method 1

[tex]d\sin(\theta_m) = m\lambda\\\\0.000250\sin(\theta_8) = 8\lambda\\\\8\lambda = 0.000250\sin(1.12^{\circ})\\\\\lambda = \frac{0.000250\sin(1.12^{\circ})}{8}\\\\\lambda \approx 0.000 000 61082633\\\\\lambda \approx 6.1082633 \times 10^{-7} \text{meters}\\\\ \lambda \approx 6.11 \times 10^{-7} \text{ meters}\\\\ \lambda \approx 611 \text{ nm}[/tex]

Make sure your calculator is in degree mode.

-----------------

Method 2

[tex]\Delta x = \frac{\lambda*L*m}{d}\\\\L*\tan(\theta_m) = \frac{\lambda*L*m}{d}\\\\\tan(\theta_m) = \frac{\lambda*m}{d}\\\\\tan(\theta_8) = \frac{\lambda*8}{0.000250}\\\\\tan(1.12^{\circ}) = \frac{\lambda*8}{0.000250}\\\\\lambda = \frac{1}{8}*0.000250*\tan(1.12^{\circ})\\\\\lambda \approx 0.00000061094306 \text{ meters}\\\\\lambda \approx 6.1094306 \times 10^{-7} \text{ meters}\\\\\lambda \approx 611 \text{ nm}\\\\[/tex]

-----------------

Method 3

[tex]\frac{d*x_n}{L} = \left(n-\frac{1}{2}\right)\lambda\\\\\frac{0.000250*3.33}{302.0} = \left(5-\frac{1}{2}\right)\lambda\\\\0.00000275662251 \approx \frac{9}{2}\lambda\\\\\frac{9}{2}\lambda \approx 0.00000275662251\\\\\lambda \approx \frac{2}{9}*0.00000275662251\\\\\lambda \approx 0.00000061258279 \text{ meters}\\\\\lambda \approx 6.1258279 \times 10^{-7} \text{ meters}\\\\\lambda \approx 6.13 \times 10^{-7} \text{ meters}\\\\\lambda \approx 613 \text{ nm}\\\\[/tex]

There is a slight discrepancy (the first two results were 611 nm while this is roughly 613 nm) which could be a result of rounding error, but I'm not entirely sure.

Two identical small charged spheres are a certain distance apart, and each one initially experiences an electrostatic force of magnitude F due to the other. With time, charge gradually leaks off of both spheres. When each of the spheres has lost half its initial charge, the magnitude of the electrostatic force will be

Answers

Answer:

F' = F/4

Thus, the magnitude of electrostatic force will become one-fourth.

Explanation:

The magnitude of force applied by each charge on one another can be given by Coulomb's Law:

F = kq₁q₂/r²   -------------- equation 1

where,

F = Force applied by charges

k = Coulomb's Constant

q₁ = magnitude of first charge

q₂ = magnitude of 2nd charge

r = distance between the charges

Now, in the final state the charges on both spheres are halved. Therefore,

q₁' = q₁/2

q₂' = q₂/2

Hence, the new force will be:

F' = kq₁'q₂'/r²

F' = k(q₁/2)(q₂/2)/r²

F' = (kq₁q₂/r²)(1/4)

using equation 1:

F' = F/4

Thus, the magnitude of electrostatic force will become one-fourth.

The magnitude of the electrostatic force will be F' = F/4

The magnitude of the electrostatic force:

Here we used Coulomb's Law:

F = kq₁q₂/r²   -------------- equation 1

Here

F = Force applied by charges

k = Coulomb's Constant

q₁ = magnitude of first charge

q₂ = magnitude of 2nd charge

r = distance between the charges

Now

q₁' = q₁/2

q₂' = q₂/2

So, the new force should be

F' = kq₁'q₂'/r²

F' = k(q₁/2)(q₂/2)/r²

F' = (kq₁q₂/r²)(1/4)

So,

F' = F/4

Learn more about force here: https://brainly.com/question/14282312

In the child's game of tetherball, a rope attached to the top of a tall pole is tied to a ball. Players hit the ball in opposite directions in an attempt to wrap the ball and rope around the pole. Assume the rope has negligible mass and that resistive forces, such as air resistance and friction, can be neglected. As the ball wraps around the pole between hits, how does the angular speed of the ball change

Answers

Answer:

The angular speed of the ball will increase

Explanation:

the angular speed of the ball will increase because the force of hit by the players will sum up in opposite direction to increase the angular speed

Other Questions
What kinds of illnesses could be effectively treated with a bone marrowtransplant?A. Illnesses where the body has trouble controlling the nervoussystemB. illnesses involving vision problemsC. illnesses where the body has trouble making new blood cellsD. Illnesses where the body has trouble making new hormones how does the argument affext the statment [tex]\frac{d}{7}[/tex] + 59 = 50 d = _______ Which of the following equations have infinitely many solutions? Choose all answers that apply: (Choice A) A 76x+76=-76x+7676x+76=76x+7676, x, plus, 76, equals, minus, 76, x, plus, 76 (Choice B) B 76x+76=76x+7676x+76=76x+7676, x, plus, 76, equals, 76, x, plus, 76 (Choice C) C -76x+76=-76x+7676x+76=76x+76minus, 76, x, plus, 76, equals, minus, 76, x, plus, 76 (Choice D) D -76x+76=76x+7676x+76=76x+76 Hello lovely dudesAnswer this,Who is Abraham Lincoln? Write about him in 20 words How did Judaism differ from other faiths of the same time period? Question 6 Essay Worth 5 points)(05.02) In the figure below, angle y and angle x form vertical angles. Angle x forms a straight line with the 50 angle and the 40 angle.40SOWrite and solve an equation to determine the measure of angle y.I For what types of conditions or problems might veterinary chiropractic treatment be used? Why is it useful? is a process that involves the collection of information and ideas supported by evidence.ScienceSystematicsPseudoscienceHypothesis Where is the white house Alexander Hamilton was among the most important of the Founding Fathers. Which of the following is he responsible for? Select all that apply. as Secretary of the Treasury, starting a central federal bank and printing the first federal currency for the United States master-minding and writing the majority of Federalist Papers, arguing for a strong Federal government set out in the Constitution establishing our free-market economy that significantly encouraged manufacturing and trade serving as aide-de camp for General Washington during the Revolutionary war and henceforth maintained and promoted our country's honor Consider a heat engine that inputs 10 kJ of heat and outputs 5 kJ of work. What are the signs on the total heat transfer and total work transfer Calculate the combustion of gaseous dimethyl ether CH 3 OCH 3 (g)+3O 2 (g) 2CO 2 (g)+3H 2 O(l) using standard molar enthalpies of formation Molecule AH H l ^ 0 (k)/mol) CH 3 OCH 3 (g) - 184.1 How does white privilege create a sense of entitlement? Which of the following people might enjoy working as a pharmacist? A. Joseph enjoys art, working alone, and having a schedule he can control. B. Linda enjoys learning how the body works, working out, and wants an exciting occupation. C. April enjoys science classes, likes to work with others, and finds medicine fascinating. D. Frank enjoys learning about history, working with children, and having a consistent schedule. Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = ln 5x, y = 2, y = 3, x = 0; about the y-axis 2.Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y2 = 2x, x = 2y; about the y-axis 3.Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = x, y = 0, x = 2, x = 7; about x = 1 pls pls help me help me help me You go to the movies after a long day and you begin to nod off as soon as the movie starts. Your head starts to lower a little, but a reflex causes your head to rise. This is called the ________ reflex. In golf, a square stance is when both feet are even with the line of direction.TrueFalse the denominator of a fraction is 2 more than its numerator.when both the numerator and the denominator are increased by 3,the fraction is increased by 3/20.Find the original fraction given that both the numerator and denominator are positive integers