Luis worked 3hours less than 4times the number of hours Carlos worked. Which algebraic expression represents the number of hours that Luis worked? Use h to represent the number of hours Carlos worked.​

Answers

Answer 1
This is the expression:
4h-3

Related Questions

what is the equation of the line that is parallel to the given line and passes through the point (2, 3) ? a. x + 2y = 4 b. x + 2y = 8 c. 2x + y =4 d. 2x + y = 8

Answers

Answer:

see explanations

Step-by-step explanation:

The given blue line has a slope of m = -1/2.

The line parallel to the given line passing through point (x0,y0)=(2,3) is given by the point-slope form:

(y-y0)=m(x-x0)

substitute values

(y-3) = (-1/2)(x-2)

Expand and transpose

y = (-1/2)x + 1 + 3

y = (-1/2)x + 4  ....................(1)

We choose the second equation b. x+2y=8 and convert to slope-intercept form:

2y=-x+8

y = (-1/2)x + 4, which is exactly equation (1)

So

b. x+2y=8 is the correct answer.

Answer:

b. x + 2y = 8

Step-by-step explanation:

4.48 Same observation, difference sample size: Suppose you conduct a hypothesis test based on a sample where the sample size is n = 50, and arrive at a p-value of 0.08. You then refer back to your notes and discover that you made a careless mistake, the sample size should have been n = 500. Will your p-value increase, decrease, or stay the same?

Answers

Answer:

P-value is lesser in the case when n = 500.

Step-by-step explanation:

The formula for z-test statistic can be written as

[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n} } } =\frac{(x-\mu)\sqrt{n}}{\sigma}[/tex]

here, μ = mean

σ= standard deviation, n= sample size, x= variable.

From the relation we can clearly observe that n is directly proportional to test statistic. Thus, as the value of n increases the corresponding test statistic value also increases.

We can also observe that as the test statistic's numerical value increases it is more likely to go into rejection region or in other words its P-value decreases.

Now, for  first case when our n is 50 we will have a relatively low chance of accurately representing the population compared to the case when n= 500. Therefore,  the P-value will be lesser in the case when n = 500.

I NEED HELP PLEASE, THANKS! :)
A rock is tossed from a height of 2 meters at an initial velocity of 30 m/s at an angle of 20° with the ground. Write parametric equations to represent the path of the rock. (Show work)

Answers

Answer:

x = 28.01t,

y = 10.26t - 4.9t^2 + 2

Step-by-step explanation:

If we are given that an object is thrown with an initial velocity of say, v1 m / s at a height of h meters, at an angle of theta ( θ ), these parametric equations would be in the following format -

x = ( 30 cos 20° )( time ),

y = - 4.9t^2 + ( 30 cos 20° )( time ) + 2

To determine " ( 30 cos 20° )( time ) " you would do the following calculations -

( x = 30 * 0.93... = ( About ) 28.01t

This represents our horizontal distance, respectively the vertical distance should be the following -

y = 30 * 0.34 - 4.9t^2,

( y = ( About ) 10.26t - 4.9t^2 + 2

In other words, our solution should be,

x = 28.01t,

y = 10.26t - 4.9t^2 + 2

These are are parametric equations

Conde Nast Traveler publishes a Gold List of the top hotels all over the world. The Broadmoor Hotel in Colorado Springs contains 700 rooms and is on the 2004 Gold List (Conde Nast Traveler, January 2004). Suppose Broadmoor's marketing group forecasts a demand of 670 rooms for the coming weekend. Assume that demand for the upcoming weekend is normally distributed with a standard deviation of 30.

a.What is the probability all the hotel's rooms will be rented (to 4 decimals)?

b. What is the probability 50 or more rooms will not be rented (to 4 decimals)?

Answers

Answer:

(a) The probability that all the hotel's rooms will be rented is 0.1587.

(b) The probability that 50 or more rooms will not be rented is 0.2514.

Step-by-step explanation:

We are given that the Broadmoor Hotel in Colorado Springs contains 700 rooms and is on the 2004 Gold List.

Suppose Broadmoor's marketing group forecasts a mean demand of 670 rooms for the coming weekend. Assume that demand for the upcoming weekend is normally distributed with a standard deviation of 30.

Let X = demand for rooms in the hotel

So, X ~ Normal([tex]\mu=670,\sigma^{2} =30^{2}[/tex])

The z-score probability distribution for the normal distribution is given by;

                           Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean demand for the rooms = 670

            [tex]\sigma[/tex] = standard deviation = 30

(a) The probability that all the hotel's rooms will be rented means that the demand is at least 700 = P(X [tex]\geq[/tex] 700)

          P(X [tex]\geq[/tex] 700) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\geq[/tex] [tex]\frac{700-670}{30}[/tex] ) = P(Z [tex]\geq[/tex] 1) = 1 - P(Z < 1)

                                                             = 1 - 0.8413 = 0.1587

The above probability is calculated by looking at the value of x = 1 in the z table which has an area of 0.8413.

(b) The probability that 50 or more rooms will not be rented is given by = P(X [tex]\leq[/tex] 650)

         P(X [tex]\leq[/tex] 650) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{650-670}{30}[/tex] ) = P(Z [tex]\leq[/tex] -0.67) = 1 - P(Z < 0.67)

                                                             = 1 - 0.7486 = 0.2514

The above probability is calculated by looking at the value of x = 0.67 in the z table which has an area of 0.7486.

Finding angle measures between intersecting lines

Answers

Answer: 60° angle

Step-by-step explanation: AGD is a 90° angle, therefore, subtracting 30 from the 90 degrees gives you 60. As x is vertical to the 60 degree angle and verticals have the same degree measurement, x=60°.

The angle measures between intersecting lines is,

⇒ x = 60°

We have to given that,

There are three lines are intersect at point G.

Now, To find the value of x we can apply the definition of vertically opposite angle and linear pair angles, as,

⇒ 30° + 90° + x = 180°

Solve for x,

⇒ 120° + x = 180°

Divide by 120;

⇒ x = 180° - 120°

⇒ x = 60°

Therefore, The angle measures between intersecting lines is,

⇒ x = 60°

Learn more about the angle visit:;

https://brainly.com/question/25716982

#SPJ2

Mr. Herman's class is selling candy for a school fundraiser. The class has a goal of raising \$500$500dollar sign, 500 by selling ccc boxes of candy. For every box they sell, they make \$2.75$2.75dollar sign, 2, point, 75. Write an equation that the students could solve to figure out how many boxes of candy they need to sell.

Answers

━━━━━━━☆☆━━━━━━━

▹ Answer

182 boxes

▹ Step-by-Step Explanation

$500 ÷ $2.75

= 181.81 ... → 182 boxes

Hope this helps!

CloutAnswers ❁

Brainliest is greatly appreciated!

━━━━━━━☆☆━━━━━━━

Answer:

182

Step-by-step explanation:

500/2.75  = 181.81

181.81 = 182

What value of x makes this equation true?

Answers

Answer:

1/11

Step-by-step explanation:

simply because 12 power 1/11 means 11 times the root

A regular hexagonal prism has a height of 7 cm and base edge length of 4 cm. Identify its lateral area and surface area. HELP ASAP

Answers

Answer:

Lateral Surface Area = 168 [tex]cm^2[/tex]

Total Surface Area = 209.57 [tex]cm^2[/tex]

Step-by-step explanation:

Given:

There is a regular hexagonal prism with

Height, h = 7 cm

Base edge length, a = 4 cm

To find:

Lateral surface area and total surface area = ?

Solution:

Formula for lateral surface area is given as:

[tex]LSA = \text{Perimeter of Base}\times Height[/tex]

Perimeter of a hexagon is given as:

[tex]P = 6 \times Edge\ Length\\\Rightarrow P = 6\times 4=24\ cm[/tex]

Now, LSA = 24 [tex]\times[/tex] 7 = 168 [tex]cm^2[/tex]

Total Surface area of prism is given by the formula:

[tex]TSA = LSA + B[/tex]

where B is the area of base.

Base is a regular hexagon, formula for area of a regular hexagon is given by:

[tex]B =6\times \dfrac{\sqrt3}4\times Edge^2\\\Rightarrow B =6\times \dfrac{\sqrt3}4\times 4^2 = 24\sqrt3\ cm^2\\\Rightarrow B = 41.57 cm^2[/tex]

So, Total Surface Area = 168 + 41.57 = 209.57[tex]cm^2[/tex]

So, answer is :

Lateral Surface Area = 168 [tex]cm^2[/tex]

Total Surface Area = 209.57 [tex]cm^2[/tex]

Answer: It' actually:

Lateral Area: 168cm²
Surface Area: 251.1cm²

Hope this helps ya!

A small regional carrier accepted 16 reservations for a particular flight with 12 seats. 8 reservations went to regular customers who will arrive for the flight. Each of the remaining passengers will arrive for the flight with a 48% chance, independently of each other.
A) Find the probability that overbooking occurs.
B) Find the probability that the flight has empty seats.

Answers

Answer:

a) 32.04% probability that overbooking occurs.

b) 40.79% probability that the flight has empty seats.

Step-by-step explanation:

For each booked passenger, there are only two possible outcomes. Either they arrive for the flight, or they do not arrive. The probability of a passenger arriving is independent of other passengers. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

Our variable of interest are the 8 reservations that went for the passengers with a 48% probability of arriving.

This means that [tex]n = 8, p = 0.48[/tex]

A) Find the probability that overbooking occurs.

12 seats, 8 of which are already occupied. So overbooking occurs if more than 4 of the reservated arrive.

[tex]P(X > 4) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)[/tex]

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 5) = C_{8,5}.(0.48)^{5}.(0.52)^{3} = 0.2006[/tex]

[tex]P(X = 6) = C_{8,6}.(0.48)^{6}.(0.52)^{2} = 0.0926[/tex]

[tex]P(X = 7) = C_{8,7}.(0.48)^{7}.(0.52)^{7} = 0.0244[/tex]

[tex]P(X = 8) = C_{8,5}.(0.48)^{8}.(0.52)^{0} = 0.0028[/tex]

[tex]P(X > 4) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) = 0.2006 + 0.0926 + 0.0244 + 0.0028 = 0.3204[/tex]

32.04% probability that overbooking occurs.

B) Find the probability that the flight has empty seats.

Less than 4 of the booked passengers arrive.

To make it easier, i will use

[tex]P(X < 4) = 1 - (P(X = 4) + P(X > 4))[/tex]

From a), P(X > 4) = 0.3204

[tex]P(X = 4) = C_{8,4}.(0.48)^{4}.(0.52)^{4} = 0.2717[/tex]

[tex]P(X < 4) = 1 - (P(X = 4) + P(X > 4)) = 1 - (0.2717 + 0.3204) = 1 - 0.5921 = 0.4079[/tex]

40.79% probability that the flight has empty seats.

The width of a casing for a door is normally distributed with a mean of 24 inches and a standard deviation of 1/8 inch. The width of a door is normally distributed with a mean of 23 7/8 inches and a standard deviation of 1/16 inch. Assume independence. a. Determine the mean and standard deviation of the difference between the width of the casing and the width of the door. b. What is the probability that the width of the casing minus the width of the door exceeds 1/4 inch? c. What is the probability that the door does not fit in the casing?

Answers

Answer:

a) Mean = 0.125 inch

Standard deviation = 0.13975 inch

b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25) = 0.18673

c) Probability that the door does not fit in the casing = P(X < 0) = 0.18673

Step-by-step explanation:

Let the distribution of the width of the casing be X₁ (μ₁, σ₁²)

Let the distribution of the width of the door be X₂ (μ₂, σ₂²)

The distribution of the difference between the width of the casing and the width of the door = X = X₁ - X₂

when two independent normal distributions are combined in any manner, the resulting distribution is also a normal distribution with

Mean = Σλᵢμᵢ

λᵢ = coefficient of each disteibution in the manner that they are combined

μᵢ = Mean of each distribution

Combined variance = σ² = Σλᵢ²σᵢ²

λ₁ = 1, λ₂ = -1

μ₁ = 24 inches

μ₂ = 23 7/8 inches = 23.875 inches

σ₁² = (1/8)² = (1/64) = 0.015625

σ₂ ² = (1/16)² = (1/256) = 0.00390625

Combined mean = μ = 24 - 23.875 = 0.125 inch

Combined variance = σ² = (1² × 0.015625) + [(-1)² × 0.00390625] = 0.01953125

Standard deviation = √(Variance) = √(0.01953125) = 0.1397542486 = 0.13975 inch

b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25)

This is a normal distribution problem

Mean = μ = 0.125 inch

Standard deviation = σ = 0.13975 inch

We first normalize/standardize 0.25 inch

The standardized score of any value is that value minus the mean divided by the standard deviation.

z = (x - μ)/σ = (0.25 - 0.125)/0.13975 = 0.89

P(X > 0.25) = P(z > 0.89)

Checking the tables

P(x > 0.25) = P(z > 0.89) = 1 - P(z ≤ 0.89) = 1 - 0.81327 = 0.18673

c) Probability that the door does not fit in the casing

If X₂ > X₁, X < 0

P(X < 0)

We first normalize/standardize 0 inch

z = (x - μ)/σ = (0 - 0.125)/0.13975 = -0.89

P(X < 0) = P(z < -0.89)

Checking the tables

P(X < 0) = P(z < -0.89) = 0.18673

Hope this Helps!!!

The average life a manufacturer's blender is 5 years, with a standard deviation of 1 year. Assuming that the lives of these blenders follow approximately a normal distribution, find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

Answers

Answer:

55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question:

[tex]\mu = 5, \sigma = 1, n = 9, s = \frac{1}{\sqrt{9}} = 0.3333[/tex]

Find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

This is the pvalue of Z when X = 5.1 subtracted by the pvalue of Z when X = 4.5. So

X = 5.1

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{5.1 - 5}{0.3333}[/tex]

[tex]Z = 0.3[/tex]

[tex]Z = 0.3[/tex] has a pvalue of 0.6179

X = 4.5

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{4.5 - 5}{0.3333}[/tex]

[tex]Z = -1.5[/tex]

[tex]Z = -1.5[/tex] has a pvalue of 0.0668

0.6179 - 0.0668 = 0.5511

55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

Five thousand tickets are sold at​ $1 each for a charity raffle. Tickets are to be drawn at random and monetary prizes awarded as​ follows: 1 prize of ​$800​, 3 prizes of ​$200​, 5 prizes of ​$50​, and 20 prizes of​ $5. What is the expected value of this raffle if you buy 1​ ticket?

Answers

Answer:

The expected value of this raffle if you buy 1​ ticket is $0.41.

Step-by-step explanation:

The expected value of the raffle if we buy one ticket is the sum of the prizes multiplied by each of its probabilities.

This can be written as:

[tex]E(X)=\sum p_iX_i[/tex]

For example, the first prize is $800 and we have only 1 prize, that divided by the number of tickets gives us a probability of 1/5000.

If we do this with all the prizes, we can calculate the expected value of a ticket.

[tex]E(X)=\sum p_iX_i\\\\\\E(X)=\dfrac{1\cdot800+3\cdot200+5\cdot50+20\cdot20}{5000}\\\\\\E(X)=\dfrac{800+600+250+400}{5000}=\dfrac{2050}{5000}=0.41[/tex]

In order to study the color preferences of people in his town, Andrew samples the population by dividing the residents by regions and randomly selecting 7 of the regions. He collects data from all residents in the selected regions. Which type of sampling is used?

Answers

Answer:

Cluster sampling

Step-by-step explanation:

Cluster sampling refers to the sampling that is used in market analysis. It is used when a researcher can not obtain information as a whole for the population but may obtain information through the groups or clusters

In the given case since andrew divides the residents through regions so this reflected the cluster sampling method

6a - 3c + a + 2b = what the answer

Answers

Answer:

7a+2b-3c

Step-by-step explanation:

6a+a = 7a

2b stays the same

-3c stays the same

Answer:

Hey mate, here is your answer. Hope it helps you.

7a-3c+2b

Step-by-step explanation:

6a+a-3c+2b

=7a-3c+2b

3c and 2b will be the same because the variables are different. They are not like terms.

What is the simplest form of this expression?
7(n-2) + 6

Answers

Answer:

7n - 8

Step-by-step explanation:

Simplify each term

7n − 14 + 6

Add −14 and 6

Hope this helps

Answer:

7n - 8

Explanation:

step 1 - expand the expression by distributing the terms

7(n - 2) + 6

7n - 14 + 6

step 2 - combine like terms

7n - 14 + 6

7n - 8

therefore, the simpilest form of the given equation is 7n - 8.

According to insurance records, a car with a certain protection system will be recovered 87% of the time. If 600 stolen cars are randomly selected, what is the mean and standard deviation of the number of cars recovered after being stolen?

Answers

Answer:

The mean and standard deviation of the number of cars recovered after being stolen is 522 and 8.24 respectively.

Step-by-step explanation:

We are given that according to insurance records, a car with a certain protection system will be recovered 87% of the time.

Also, 600 stolen cars are randomly selected.

Let X = Number of cars recovered after being stolen

The above situation can be represented through binomial distribution;

[tex]P(X=r)=\binom{n}{r}\times p^{r} \times (1-p)^{n-r} ;x=01,2,3,......[/tex]

where, n = number of trials = 600 cars

            r = number of success

            p = probability of success which in our question is the probability

                    that car with a certain protection system will be recovered,

                     i.e. p = 87%.

So, X ~ Binom(n = 600, p = 0.87)

Now, the mean of X, E(X) =  [tex]n \times p[/tex]

                                          =  [tex]600 \times 0.87[/tex] = 522

Also, the standard deviation of X, S.D.(X)  =  [tex]\sqrt{n \times p \times (1-p)}[/tex]

                                                                     =  [tex]\sqrt{600 \times 0.87 \times (1-0.87)}[/tex]

                                                                     =  8.24

I need help pls pls pls pls​

Answers

Answer:

D.  4

Step-by-step explanation:

If he leaves the science assignments for the next day, he will spend zero hours on science assignments.  This means that y is equal to 0.  Plug this into the given equation and solve for x.

2x + y = 8

2x + 0 = 8

2x = 8

x = 4

Gerald can complete 4 math assignments.

Suppose 180 randomly selected people are surveyed to determine whether or not they plan on reelecting the current president. Of the 180 surveyed, 36 reported they will not vote to reelect the current president. What is the correct interpretation of the 99% confidence interval? Select the correct answer below: We estimate with 99% confidence that the sample proportion of people who will not vote to reelect the current president is between 0.123 and 0.277. We estimate with 99% confidence that the true population proportion of people who will not vote to reelect the current president is between 0.123 and 0.277. We estimate that 99% of the time a survey is taken, the proportion of people who will not vote to reelect the current president is between 0.123 and 0.277.

Answers

Answer:

b)

we estimate with 99% confidence that the true population proportion of people who will not vote to reelect the current president

(0.1236 , 0.2764)

Step-by-step explanation:

Step(i):-

Given sample size 'n' = 180

Given data  the 180 surveyed, 36 reported they will not vote to reelect the current president.

Sample proportion

[tex]p = \frac{x}{n} = \frac{36}{180} = 0.2[/tex]

level of significance ∝=0.99 or 0.01

The 99% confidence for the true population proportion is determined by

[tex](p^{-} - Z_{0.01} \sqrt{\frac{p(1-p)}{n} } , p^{-} + Z_{0.01} \sqrt{\frac{p^{-} (1-p^{-} )}{n} } )[/tex]

Z₀.₀₁ = 2.576

The 99% confidence for the true population proportion is determined by

[tex](0.2 - 2.576 \sqrt{\frac{0.2(1-0.2)}{180} } , 0.2+ 2.576 \sqrt{\frac{0.2 (1-0.2 )}{180} } )[/tex]

(0.2 - 0.0764 , 0.2 +0.0764)

(0.1236 , 0.2764)

Conclusion:-

The 99% confidence for the true population proportion of people who will not vote to reelect the current president

(0.1236 , 0.2764)

Find the missing side. Round your answer to the nearest tenth.

Answers

Use sin cos or tan
Please also mark brainliest

A cardboard box without a lid is to have a volume of 8,788 cm3. Find the dimensions that minimize the amount of cardboard used.

Answers

Answer:

x = y = 26 cm; z = 13 cm

Step-by-step explanation:

We can calculate the dimensions of the square base as

∛(2·8788) = 26 cm

the height of the box will be half of 26/2 which is 13 cm.

x = y = 26 cm; z = 13 cm

then the minimum area for the given volume can be calculated using what we call Lagrange multipliers, this makes it easier

area = xy +2(xz +yz)

But we were given the volume as 8788

Now we will make the partial derivatives of L to be in respect to the cordinates x, y, z, as well as λ to be equal to zero, then

L = xy +2(xz +yz) +λ(xyz -8788)

For x: we have

y+2z +λyz=0

For y we have

y: x +2z +λxz=0

For z we have 2x+2y +λxy=0............eqn(*)

For we have xyz -8788=0

If we simplify the partial derivative equation of y and x above then we have

λ = (y +2z)/(yz).

= 1/z +2/y............eqn(1)

λ = (x +2z)/(xz)

= 1/z +2/x.............eqn(2)

Set eqn(1 and 2) to equate we have

1/z +2/y = 1/z +2/x

x = y

From eqn(*) we can get z

λ = (2x +2y)/(xy) = 2/y +2/x

If we simplify we have

1/z +2y = 2/x +2/y

Then z = x/2

26/2 =13

Therefore,

x = y = 2z = ∛(2·8788)

X= 26

y = 26 cm

z = 13 cm

Consider the function represented by 9x + 3y = 12 with x as the independent variable. How can this function be
written using function notation?
Of) = -
O F(x) = - 3x + 4
Of(x) = -x +
O fb) = - 3y+ 4

Answers

Answer:

f(x) = -3x + 4

Step-by-step explanation:

Step 1: Move the 9x over

3y = 12 - 9x

Step 2: Divide everything by 3

y = 4 - 3x

Step 3: Rearrange

y = -3x + 4

Step 4: Change y to f(x)

f(x) = -3x + 4

Which of the following statements about feasible solutions to a linear programming problem is true?A. Min 4x + 3y + (2/3)z
B. Max 5x2 + 6y2
C. Max 5xy
D. Min (x1+x2)/3

Answers

Answer:

The answer is "Option A"

Step-by-step explanation:

The valid linear programming language equation can be defined as follows:

Equation:

[tex]\Rightarrow \ Min\ 4x + 3y + (\frac{2}{3})z[/tex]

The description of a linear equation can be defined as follows:

It is an algebraic expression whereby each term contains a single exponent, and a single direction consists in the linear interpolation of the equation.

Formula:

[tex]\to \boxed{y= mx+c}[/tex]

Joe hypothesizes that the students of an elite school will score higher than the general population. He records a sample mean equal to 568 and states the hypothesis as μ = 568 vs μ > 568. What type of test should Joe do?

Answers

Answer:

The test to be used is the right tailed test.

Step-by-step explanation:

The type of test joe should do would be a right tailed test. This is because;

A right tailed test which we sometimes call an upper test is where the hypothesis statement contains the greater than (>) symbol. This means that, the inequality points to the right. For example, we want to compare the the life of batteries before and after a manufacturing change.

If we want to know if the battery life of maybe 90 hours would be greater than the original, then our hypothesis statements might be:

Null hypothesis: (H0 = 90).

Alternative hypothesis: (H1) > 90.

In the null hypothesis, there are no changes, but in the alternative hypothesis, the battery life in hours has increased.

So, the most important factor here is that the alternative hypothesis (H1) is what determines if we have a right tailed test, not the null hypothesis.

Thus, the test to be used is the right tailed test.

Answer:

right tailed test.

Step-by-step explanation:

Mia, Maya, and Maria are sisters. Mia's age is twice Maya's age and Maria is seven years younger than Mia. If Maria is 3 years old, how old are Mia and Maya?

Answers

Answer:

Mia:10 Maya:5 Maria:3

Step-by-step explanation:

3+7= 10= Mia's age

10÷2=5= Maya's age

Answer:

Mia - 10

Maya - 5

Maria - 3

how many solution does this equation have LOOK AT SCREENSHOT ATTACHED

Answers

Answer:

One solution

Step-by-step explanation:

99% of the time, linear equations (equations that have the first degree) have only one solution. However, it's always good to check.

6 - 3x = 12 - 6x

6 = 12 - 3x

-3x = -6

x = 2

As you can see, only one solution. Hope this helps!

The number of people arriving for treatment at an emergency room can be modeled by a Poisson process with a rate parameter of six per hour.
(a) What is the probability that exactly three arrivals occur during a particular hour? (Round your answer to three decimal places.)
(b) What Is the probability that at least three people arrive during a particular hour? (Round your answer to three decimal places.)
(c) How many people do you expect to arrive during a 15-min period?

Answers

Answer:

a) P(x=3)=0.089

b) P(x≥3)=0.938

c) 1.5 arrivals

Step-by-step explanation:

Let t be the time (in hours), then random variable X is the number of people arriving for treatment at an emergency room.

The variable X is modeled by a Poisson process with a rate parameter of λ=6.

The probability of exactly k arrivals in a particular hour can be written as:

[tex]P(x=k)=\lambda^{k} \cdot e^{-\lambda}/k!\\\\P(x=k)=6^k\cdot e^{-6}/k![/tex]

a) The probability that exactly 3 arrivals occur during a particular hour is:

[tex]P(x=3)=6^{3} \cdot e^{-6}/3!=216*0.0025/6=0.089\\\\[/tex]

b) The probability that at least 3 people arrive during a particular hour is:

[tex]P(x\geq3)=1-[P(x=0)+P(x=1)+P(x=2)]\\\\\\P(0)=6^{0} \cdot e^{-6}/0!=1*0.0025/1=0.002\\\\P(1)=6^{1} \cdot e^{-6}/1!=6*0.0025/1=0.015\\\\P(2)=6^{2} \cdot e^{-6}/2!=36*0.0025/2=0.045\\\\\\P(x\geq3)=1-[0.002+0.015+0.045]=1-0.062=0.938[/tex]

c) In this case, t=0.25, so we recalculate the parameter as:

[tex]\lambda =r\cdot t=6\;h^{-1}\cdot 0.25 h=1.5[/tex]

The expected value for a Poisson distribution is equal to its parameter λ, so in this case we expect 1.5 arrivals in a period of 15 minutes.

[tex]E(x)=\lambda=1.5[/tex]

The weekly salaries of sociologists in the United States are normally distributed and have a known population standard deviation of 425 dollars and an unknown population mean. A random sample of 22 sociologists is taken and gives a sample mean of 1520 dollars. Find the margin of error for the confidence interval for the population mean with a 98% confidence level.

Answers

THIS IS THE COMPLETE QUESTION BELOW;

The weekly salaries of sociologists in the United States are normally distributed and have a known population standard deviation of 425 dollars and an unknown population mean. A random sample of 22 sociologists is taken and gives a sample mean of 1520 dollars.

Find the margin of error for the confidence interval for the population mean with a 98% confidence level.

z0.10 z0.05 z0.025 z0.01 z0.005

1.282 1.645 1.960 2.326 2.576

You may use a calculator or the common z values above. Round the final answer to two decimal places.

Answer

Margin error =210.8

Given:

standard deviation of 425

sample mean x=1520 dollars.

random sample n= 22

From the question We need to to calculate the margin of error for the confidence interval for the population mean .

CHECK THE ATTACHMENT FOR DETAILED EXPLANATION

confused on question in screenshot

Answers

Answer:

right triangle

Step-by-step explanation:

We can use the Pythagorean theorem to determine if this is a right triangle

a^2 + b^2 = c^2

13^2 + ( 8 sqrt(13)) ^2 = (sqrt(1001))^2

169 + 8^2 * 13 = 1001

169+64*13 = 1001

169+832=1001

1001 = 1001

Since this is true, this is a right triangle

Please answer this correctly without making mistakes

Answers

Answer:

Question 2

Step-by-step explanation:

2) The time when she woke up was -  3° C

During nature walk, temperature got 3° C warmer than when she woke up.

So, temperature during nature walk = - 3 + 3 = 0° C

The base of a triangle is three times
the height. If the area is 150msquare,find the height.

Answers

Answer:

10m

Step-by-step explanation:

area = 1/2 base times height

x=height

3x=base

so

150=1/2(3x^2)

300=3x^2

100=x^2

10=x

so the height is 10 and the base is 30

Answer:

h = 10

Step-by-step explanation:

Hiiiiiii

Other Questions
How many moles of Al would be produced from 12.85 moles of Al2O3?Al2O3 AL + O2Select one:O a. 25.7O b. 6.43O c. 19.3d. 8.61PLEASE HELP ME Its easy to use clichs because they just roll off the tongue. Whats wrong with tried-and-true expressions such as it is what it is and at the end of the day? If 16 ounces of bulk rice costs $2.50, how much would 24 ounces cost?Also, could you tell me how much it costs per ounce? A researcher records the amount of time (in minutes) that parent child pairs spend on social networking sites to test whether they show any generational differences. From the following findings in APA format, interpret these results by stating the research design used (repeated measures or matched pairs), the sample size, the decision, and the effect size. Parents spend significantly less time on social networking sites compared their children (MD = -42 minutes),t(29)=4.021,p i have a question what is 2 plus 2 i will really live it if you respond help with spanish asap thanks Choose the word that has the same connotation as the word smolder in line 34.A. existB. seetheC. explodeD. boil PLEASE!!! HELP!!! Question: If you have points on a graph that plot (1,7), (2,8), (3,5) and (4,6) what would be the slope? According to Erikson, development that encompasses changes both in the understandings individuals have of themselves as members of society, and in their comprehension of the meaning of others' behavior is known as ___________ development Why did Southern and Northern delegates disagree over whether the new Congress should have the commerce power? Southerners feared it would lead to the end of slavery. Northerners feared it would lead to the expansion of slavery. Northerners feared it would lead to the end of slavery. Southerners feared it would lead to slavery in the North. Under the Articles of Confederation, how was the federal government structured? why do we apply paint on an articles Help me please !!!!!!!!!!!! Differentiate... How to solve this type of problem? y = cos^2(x^2 + x^3) Is the area of this shape approximately 24 cm* ? If not give the correct area.311101TrueFalse A totalitarian ideology requires its citizens to You throw a Frisbee of mass m and radius r so that it is spinning about a horizontal axis perpendicular to the plane of the Frisbee. Ignoring air resistance, the torque exerted about its center of mass by gravity is The pressure in an automobile tire is 2.0 atm at 27C. At the end of a journey on a hot summer day the pressure has risen to 2.2 atm. What is the temperature of the air in the tire? a. 272.72 K b. 330 K c. 0.014 K d. 175 K the concept of separation of powers A company is designing a new container to package and market theircoffee. The final design decision is between the two cylindricalcontainers shown below.Which polynomialmodels the difference in volume between the two containers?