Ksp= CaSO4 is 7.10 x 10-5 at 25 oC.
Calcium chloride, CaCl2 is a freely soluble salt. When a 0.50 M CaCl2 solution is prepared, the calcium chloride dissolves without establishing an equilibrium: CaCl2(s) ==========> Ca2+(aq) + 2Cl-(aq) In a 0.50 M CaCl2 solution, the concentration of Ca2+ will be 0.50 mol/L. When the CaSO4 is dissolved in this solution, it establishes its usual equilibrium between solid and the ions in solution: CaSO4(s) <----------> Ca2+(aq) + SO42-(aq) However, the presence of CaCl2 in this solution means there will be Ca2+ ions in solution even before the CaSO4 dissolves. What is the molar solubility of CaSO4 in a 0.50 M CaCl2 solution?
4.33 x10-8 mol/L
3.16 x 10-6 mol/L
1.42 x10-4 mol/L
6.33 x 10-2 mol/L
7.35 x 10-1 mol/L

Answers

Answer 1

The molar solubility of CaSO4 in a 0.50 M CaCl2 solution is: 3.16 x 10-6 mol/L.

When CaSO4 is dissolved in a 0.50 M CaCl2 solution, the concentration of Ca2+ ions in the solution is already 0.50 mol/L. Therefore, we need to calculate the solubility product constant (Ksp) of CaSO4 at this concentration of Ca2+ ions, which can be expressed as:

Ksp = [Ca2+][SO42-]

To calculate the molar solubility of CaSO4, we need to find the concentration of SO42- ions in solution. Since CaSO4 is a 1:1 electrolyte, the concentration of SO42- ions will also be equal to the concentration of CaSO4 in solution. Therefore:

Ksp = [Ca2+][SO42-] = (0.50 mol/L)(x)
Where x is the molar solubility of CaSO4 in the solution.

Solving for x, we get:

x = Ksp/[Ca2+] = (9.27 x 10-6)/(0.50) = 1.85 x 10-5 mol/L

Thus, the molar solubility of CaSO4 in a 0.50 M CaCl2 solution is 3.16 x 10-6 mol/L.

It is important to note that the presence of CaCl2 in the solution increases the concentration of Ca2+ ions, which decreases the solubility of CaSO4 in the solution.

Therefore, the molar solubility of CaSO4 in a 0.50 M CaCl2 solution is lower than the molar solubility of CaSO4 in pure water.

To know more about "Solubility" refer here:

https://brainly.com/question/17647006#

#SPJ11


Related Questions

rank the given compounds in decreasing order of boiling points (from highest to lowest boiling point).
I. CH3CH2CH2CH2OH
II. CH3CH2OCH2CH3 III. CH3OCH3 IV. HOCH2CH2CH2OH a. II > IV > > III b. I> IV> || > III c. IV> | > || > III d. III > || > | > IV e. IV> || > I > III

Answers

The correct ranking of the compounds in decreasing order of boiling points is IV > I > II > III. The correct answer is option (c).

Boiling point is influenced by molecular weight, polarity, and hydrogen bonding. Higher boiling points indicate stronger intermolecular forces between molecules. Comparing the given compounds, the molecule with the strongest intermolecular forces will have the highest boiling point. Therefore, to rank the compounds in decreasing order of boiling points, we need to compare the polarity and hydrogen bonding of each compound.

Compound IV, HOCH2CH2CH2OH, has the highest boiling point because of the presence of two hydroxyl groups that can form hydrogen bonds between molecules.

I, CH3CH2CH2CH2OH, has only one hydroxyl group, but a larger molecular weight than II and III, making it have a higher boiling point.

II, CH3CH2OCH2CH3, is an ether and has a lower boiling point than I and IV due to the absence of a hydroxyl group.

Compound III, CH3OCH3, is nonpolar and cannot form hydrogen bonds, giving it the lowest boiling point among the given compounds.

Therefore, the correct option is (c)

For more such questions on compounds:

https://brainly.com/question/23334479

#SPJ11

This ranking is based on the intermolecular forces present in each compound. Ethylene glycol has the highest boiling point due to strong hydrogen bonding, followed by propanol with hydrogen bonding and dipole-dipole interactions. Acetaldehyde has dipole-dipole interactions, ethyne has weak van der Waals forces, and ethanol has the weakest intermolecular forces among these compounds. Thus, their boiling points decrease in the order given above.

Boiling point is the temperature at which a liquid changes to a gas, and it depends on the intermolecular forces between the molecules. Stronger intermolecular forces lead to a higher boiling point because more energy is required to separate the molecules. In this case, ethylene glycol has the highest boiling point because it has two hydroxyl groups, which can form strong hydrogen bonds with neighboring molecules. Propanol also has hydrogen bonding and dipole-dipole interactions, while acetaldehyde has dipole-dipole interactions. Ethyne has only weak van der Waals forces, and ethanol has the weakest intermolecular forces, which accounts for their lower boiling points.

Learn more about Ethylene glycol here;

https://brainly.com/question/30530800

#SPJ11

complete and balance the following half reaction in acid. i− (aq) → io3− (aq) how many electrons are needed and is the reaction an oxidation or reduction?

Answers

I- (aq) + 6H₂O(l) + 6H+(aq) → IO₃-(aq) + 3H₂O(l) + 2e-; 2 electrons are needed and the reaction is an oxidation.

What is the oxidation number of iodine?

The half-reaction is:

i- (aq) → IO₃- (aq)

To balance this half-reaction of Iodine, we need to add water and hydrogen ions on the left-hand side and electrons on one side to balance the charge. In acid solution, we will add H₂O and H+ to the left-hand side of the equation. The balanced half-reaction in acid solution is:

I- (aq) + 6H₂O(l) + 6H+(aq) → IO₃-(aq) + 3H₂O(l) + 2e-

Therefore, 2 electrons are needed to balance this half-reaction.

The half-reaction involves iodine changing its oxidation state from -1 to +5, which means that it has lost electrons and undergone oxidation. Therefore, this half-reaction represents an oxidation process.

In summary, the balanced half-reaction in acid solution for the oxidation of iodide to iodate is I- (aq) + 6H₂O(l) + 6H+(aq) → IO₃-(aq) + 3H₂O(l) + 2e-. This process involves the loss of two electrons, representing an oxidation process.

Learn more about Iodine

brainly.com/question/16867213

#SPJ11

hwat are the equilibriu concnetreation of mg and co3 ions in a sturate solution of magnesiu crabonte at 25c? ksp = 3.5x10-8

Answers

The equilibrium concentration of Mg2+ and CO32- ions in a saturated solution of magnesium carbonate at 25°C is approximately 1.87x10^-4 M.

The balanced chemical equation for the dissolution of magnesium carbonate in water is:

MgCO3(s) ⇌ Mg2+(aq) + CO32-(aq)

The solubility product expression for magnesium carbonate is:

Ksp = [Mg2+][CO32-]

We can assume that the dissolution of magnesium carbonate in water is an equilibrium reaction, which means that the concentrations of the magnesium and carbonate ions in the solution are related to the solubility product constant by the following equation:

Qsp = [Mg2+][CO32-]

At equilibrium, Qsp = Ksp. Therefore:

Ksp = [Mg2+][CO32-] = 3.5x10^-8

Since magnesium carbonate is a strong electrolyte, we can assume that the concentration of Mg2+ ion is equal to the concentration of MgCO3 that dissolves. Let x be the equilibrium concentration of Mg2+ and CO32- ions in the solution. Therefore, we can write:

Ksp = [Mg2+][CO32-] = x^2

x = sqrt(Ksp) = sqrt(3.5x10^-8) = 1.87x10^-4 M

Click the below link, to learn more about Equilibrium Concentration:

https://brainly.com/question/16645766

#SPJ11

11.how is the molar solubility of a slightly soluble salt affected by the addition of an ion that is common to the salt equilibrium?

Answers

The molar solubility of a slightly soluble salt will decreases by the addition of an ion that is common to the salt equilibrium.



When a slightly soluble salt is dissolved in water, it forms an equilibrium between the dissolved ions and the solid salt. The addition of an ion that is common to the salt equilibrium will affect the molar solubility due to the common ion effect.

The common ion effect states that the solubility of a salt is reduced when it is in the presence of another source of one of its ions. This is because the added common ion shifts the equilibrium position of the dissolution reaction towards the formation of the solid salt, in accordance with Le Chatelier's principle.

So, when a common ion is added to a solution containing a slightly soluble salt, the molar solubility of the salt:

b. decreases

This is because the equilibrium shifts to form more solid salt, resulting in a lower concentration of dissolved ions in the solution.

For more questions on  equilibrium:

https://brainly.com/question/13414142

#SPJ11

The molar solubility of a slightly soluble salt is decreased by the addition of an ion that is common to the salt equilibrium.

This is because the common ion reduces the concentration of one of the ions involved in the equilibrium, shifting the equilibrium towards the solid phase.

For example, let's consider the equilibrium for the slightly soluble salt AgCl:

AgCl(s) ⇌ Ag+(aq) + Cl-(aq)

If we add a solution containing a high concentration of Cl- ions to the solution already containing AgCl, the concentration of Cl- ions will increase. This increase in Cl- concentration will push the equilibrium towards the solid phase, reducing the concentration of Ag+ ions in the solution and decreasing the molar solubility of AgCl.

In general, the effect of a common ion on the solubility of a slightly soluble salt can be described by the common ion effect, which states that the solubility of a salt is decreased by the presence of a common ion in the solution.

Learn more about equilibrium here:

https://brainly.com/question/30694482

#SPJ11

Calculate deltaH° fornthe following reaction: IF7(g) + I2(g) --> IF5(g) + 2IF(g) using the following information: IF5. -840 IF7. -941 IF. -95

Answers

Therefore, the standard enthalpy change for the given reaction is -947 kJ/mol.

To calculate deltaH° for the given reaction, we need to use the Hess's law of constant heat summation. Hess's law states that the total enthalpy change of a reaction is independent of the pathway taken and depends only on the initial and final states of the system.
We can break down the given reaction into a series of reactions, for which we have the enthalpy values.
First, we need to reverse the second equation to get I2(g) --> 2IF(g), and change the sign of its enthalpy value:
I2(g) --> 2IF(g)     deltaH° = +95 kJ/mol
Next, we can add this equation to the first equation, in which IF7(g) is reduced to IF5(g):
IF7(g) + I2(g) --> IF5(g) + 2IF(g)
IF7(g) --> IF5(g) + 2IF(g)   deltaH° = (+840 kJ/mol) + (2 x (-941 kJ/mol)) = -1042 kJ/mol
Finally, we can substitute the values we have calculated into the overall reaction equation:
deltaH° = (-1042 kJ/mol) + (+95 kJ/mol)
deltaH° = -947 kJ/mol
Therefore, the standard enthalpy change for the given reaction is -947 kJ/mol.
Note that the answer is a negative value, indicating that the reaction is exothermic (releases heat). Also, make sure to provide a "long answer" to fully explain the process used to calculate deltaH°.

To know more about enthalpy change visit:-

https://brainly.com/question/29556033

#SPJ11

The heat of combustion of CH4 is 890.4 kJ/mol and the heat capacity of H2O is 75.2 J/mol×K. Part A Find the volume of methane measured at 298 K and 1.45 atm required to convert 1.50 L of water at 298 K to water vapor at 373 K.

Answers

The volume of methane required to convert 1.50 L of water at 298 K to water vapor at 373 K is approximately 0.116 L.

To solve this problem, we need to use the ideal gas law and the heat equation.

First, let's calculate the number of moles of water present in 1.50 L at 298 K using the ideal gas law:

PV = nRT

(1 atm)(1.50 L) = n(0.0821 L·atm/mol·K)(298 K)

n = 0.0608 mol

Next, we need to calculate the heat absorbed by the water during the phase change from liquid to vapor using the equation:

q = nΔHvap

q = (0.0608 mol)(40.7 kJ/mol)

q = 2.475 kJ

Now, we can calculate the heat gained by the methane during the combustion using the equation:

q = nΔHcomb

q = (n/4)(890.4 kJ/mol)

Since the ratio of moles of methane to moles of water is 1:4, we have:

q = (0.0608 mol/4)(890.4 kJ/mol)

q = 13.862 kJ

Finally, we can calculate the temperature change of the methane using the heat equation:

q = nCΔT

13.862 kJ = (n)(75.2 J/mol·K)(373 K - 298 K)

n = 0.00246 mol

Now we can calculate the volume of methane at 298 K and 1.45 atm using the ideal gas law:

V = nRT/P

V = (0.00246 mol)(0.0821 L·atm/mol·K)(298 K)/(1.45 atm)

V = 0.116 L

Therefore, the volume of methane required to convert 1.50 L of water at 298 K to water vapor at 373 K is approximately 0.116 L.

To learn more about combustion click here:

brainly.com/question/30192190

#SPJ11

If 0. 240 mol of methane reacts completely with oxygen, what is the final yield of H2O in moles?

Answers

The final yield of [tex]H_2O[/tex] in moles is 0.480 mol and can be determined by calculating the stoichiometric ratio between methane and water in the balanced chemical equation and multiplying it by the given amount of methane.

To find the final yield of [tex]H_2O[/tex] in moles, we need to use the balanced chemical equation for the combustion of methane:

[tex]CH_4 + 2O_2[/tex]→ [tex]CO_2 + 2H_2O[/tex]

According to the equation, for every one mole of methane ([tex]CH_4[/tex]) that reacts, two moles of water ([tex]H_2O[/tex]) are produced. Therefore, the stoichiometric ratio between methane and water is 1:2.

Given that we have 0.240 mol of methane, we can calculate the moles of water produced by multiplying the amount of methane by the stoichiometric ratio:

[tex]0.240 mol CH_4 * (2 mol H_2O / 1 mol CH_4) = 0.480 mol H_2O[/tex]

Hence, the final yield of [tex]H_2O[/tex] in moles is 0.480 mol.

Learn more about stoichiometric ratio here:

https://brainly.com/question/6907332

#SPJ11

If 78. 4 mL of a 0. 85M Barium chloride solution is diluted to 350 ml, what is the new concentration?


0. 19M


0. 3M


0. 027


answer not here

Answers

The new concentration of the barium chloride solution, after diluting 78.4 mL of a 0.85 M solution to a final volume of 350 mL, is 0.19 M.

To calculate the new concentration, we can use the equation C₁V₁ = C₂V₂, where C₁ and V₁ are the initial concentration and volume, and C₂ and V₂ are the final concentration and volume. Given that C₁ = 0.85 M and V₁ = 78.4 mL, and V₂ = 350 mL, we can solve for C₂.

Rearranging the equation, we get C₂ = (C₁ × V₁) / V₂ = (0.85 M × 78.4 mL) / 350 mL ≈ 0.19 M. Therefore, the new concentration of the barium chloride solution, after diluting 78.4 mL of a 0.85 M solution to a final volume of 350 mL, is approximately 0.19 M.

Learn more about Barium chloride here: brainly.com/question/20358167

#SPJ11

On the basis of ionic charge and ionic radii given in the table. Predict the crystal structure of Fes (Iron Sulfide).
Cation Ionic Radius (nm) Anion Ionic Radius(nm)
Al3+ 0.053 Br- 0.196
Ba2+ 0.136 Cl- 0.181
Ca2+ 0.100 F- 0.133
Cs+ 0.170 I- 0.220
Fe2+ 0.077 O2- 0.140
Fe3+ 0.069 S2- 0.184
K+ 0.138 Mg2+ 0.072 Ma2+ 0.067 Mn2+ 0.067 Na+ 0.102 Ni2+ 0.069 Si2+ 0.040 Ti4+ 0.061 Crystal structure

Answers

Based on the radius ratio of 0.418 for FeS, the crystal structure of Iron Sulfide is most likely to be an octahedral coordination.

To predict the crystal structure of FeS (Iron Sulfide) based on the given ionic charges and radii, we need to first determine the ratio of the cation (Fe2+ or Fe3+) to the anion (S2-) in the compound.

From the given table, we can see that Fe2+ has an ionic radius of 0.077 nm, while S2- has an ionic radius of 0.184 nm. This means that Fe2+ is smaller in size than S2-.

To predict the crystal structure, we can calculate the cation-to-anion radius ratio, which is

Fe2+ / S2- = 0.077 nm / 0.184 nm

                  = 0.418

Typically, if the radius ratio is between 0.414 and 0.732, the crystal structure tends to form an octahedral coordination (six-coordinated).

To know more about the radius ratio, click below.

https://brainly.com/question/14080614

#SPJ11

identify the nuclide produced when uranium-238 decays by alpha emission: 238 92u→42he + ? express your answer as an isotope using prescripts.

Answers

The resulting nuclide is: ²³⁴₉₀Th

When uranium-238 (²³⁸₉₂U) undergoes alpha emission, it emits an alpha particle (⁴₂He). To find the resulting nuclide, you can subtract the alpha particle's mass number and atomic number from the uranium-238's mass number and atomic number.

Step 1: Subtract the mass numbers.
238 (from ²³⁸₉₂U) - 4 (from ⁴₂He) = 234

Step 2: Subtract the atomic numbers.
92 (from ²³⁸₉₂U) - 2 (from ⁴₂He) = 90

Now, you have the mass number and atomic number of the resulting nuclide: ²³⁴₉₀. The element with the atomic number 90 is thorium (Th). So, the resulting nuclide is:

²³⁴₉₀Th

Know more about nuclide

https://brainly.com/question/17216436

#SPJ11

The nuclide produced when uranium-238 decays by alpha emission is Thorium-234, represented as ²³⁴₉₀Th.

Alpha decay is a type of radioactive decay in which an alpha particle (a helium-4 nucleus) is emitted from the nucleus of an atom. In this case, the parent nucleus is uranium-238 (²³⁸₉₂U), which undergoes alpha decay to produce an alpha particle (⁴₂He) and a daughter nucleus.

The atomic number of the daughter nucleus is 2 less than that of the parent nucleus, while the mass number is 4 less. Thus, the daughter nucleus has 90 protons and 234 neutrons, giving it the isotope symbol ²³⁴₉₀Th.

Alpha decay is a type of radioactive decay where an atomic nucleus emits an alpha particle, which consists of two protons and two neutrons (i.e. a helium-4 nucleus). In the case of uranium-238, it undergoes alpha decay and emits an alpha particle, which has a mass of 4 and a charge of +2. Therefore, the atomic number of the daughter nuclide is 92 - 2 = 90, and the mass number is 238 - 4 = 234. Thus, the nuclide produced when uranium-238 decays by alpha emission is thorium-234, which is represented as 234 90Th.

learn more about isotope here:

https://brainly.com/question/28039996

#SPJ11

Starting with acetylene, show reagents that you would use to prepare each of the following compounds: (a) 1-Butyne (b) 2-Butyne (c) 3-Hexyne (d) 2-Hexyne (e) 1-Hexyne (f) 2-Heptyne

Answers

(a) To prepare 1-butyne from acetylene, the reagent used is CH₃CH₂CH₂Br in the presence of NaNH₂.

(b) To prepare 2-butyne from acetylene, the reagent used is CH₃CHBrCH₂Br in the presence of NaNH₂.

(c) To prepare 3-hexyne from acetylene, the reagent used is CH₃CH₂CH₂C≡CLi followed by treatment with H₃O⁺.

(d) To prepare 2-hexyne from acetylene, the reagent used is CH₃CH₂C≡CCH₂Br in the presence of NaNH₂.

(e) To prepare 1-hexyne from acetylene, the reagent used is CH₃CH₂C≡CLi followed by treatment with H₃O⁺.

(f) To prepare 2-heptyne from acetylene, the reagent used is CH₃CH₂CH₂C≡CLi followed by treatment with H₃O⁺.

Acetylene can undergo several types of reactions to form different alkynes.

(a) To prepare 1-butyne, acetylene can be reacted with 1-bromobutane in the presence of a strong base like sodium amide (NaNH₂) to form 1-butynyl sodium, which is then treated with dilute acid to form 1-butyne.

(b) To prepare 2-butyne, acetylene can be reacted with 2-bromo-2-methylpropane in the presence of a strong base like potassium tert-butoxide (KOtBu) to form 2-butyne.

(c) To prepare 3-hexyne, acetylene can be reacted with 1-bromo-3-hexyne in the presence of a strong base like sodium amide (NaNH₂) to form 1,3-hexadiyne, which is then treated with a mild reducing agent like sodium in liquid ammonia to form 3-hexyne.

(d) To prepare 2-hexyne, acetylene can be reacted with 2-bromo-1-hexene in the presence of a strong base like potassium tert-butoxide (KOtBu) to form 2-hexyne.

(e) To prepare 1-hexyne, acetylene can be reacted with 1-bromo-1-hexene in the presence of a strong base like sodium amide (NaNH₂) to form 1-hexyne.

(f) To prepare 2-heptyne, acetylene can be reacted with 1-bromo-2-heptyne in the presence of a strong base like sodium amide (NaNH₂) to form 1,2-heptadiyne, which is then treated with a mild reducing agent like sodium in liquid ammonia to form 2-heptyne.

To learn more about acetylene, here

https://brainly.com/question/28916568

#SPJ4

Determine the amount of oxygen, o2 moles that react with 2.75 moles of aluminum, al.

Answers

2.75 moles of aluminum (Al) will react with 5.5 moles of oxygen (O2) according to the balanced chemical equation. This is determined by the mole ratio between Al and O2.

To determine the amount of oxygen (O2) that reacts with 2.75 moles of aluminum (Al), we need to refer to the balanced chemical equation. The balanced equation for the reaction between aluminum and oxygen is:

4 Al + 3 O2 → 2 Al2O3

From the equation, we can see that 4 moles of aluminum react with 3 moles of oxygen to produce 2 moles of aluminum oxide (Al2O3). By using the mole ratio between aluminum and oxygen, we can calculate the amount of oxygen required. Since the mole ratio is 4:3, for every 4 moles of aluminum, we need 3 moles of oxygen. Therefore, for 2.75 moles of aluminum, we will require (2.75 × 3) / 4 = 5.5 moles of oxygen.

Learn more about Aluminum here: brainly.com/question/28989771

#SPJ11

Potentially harmful reactive oxygen species produced in mitochondria are activated by a set of protective enzymes, including superoxide dismutase and glutathione peroxidase. true or false?

Answers

The statement, "Potentially harmful reactive oxygen species produced in mitochondria are activated by a set of protective enzymes, including superoxide dismutase and glutathione peroxidase." is: True.

Reactive oxygen species (ROS) are highly reactive molecules that can damage cellular components, including DNA, proteins, and lipids, leading to cell death and contributing to the development of various diseases.

Mitochondria are a major source of ROS production in the cell. However, the cell has a set of protective enzymes, including superoxide dismutase and glutathione peroxidase, that work to neutralize ROS and prevent damage.

Superoxide dismutase converts the superoxide anion into hydrogen peroxide, which is then converted into water and oxygen by glutathione peroxidase. Glutathione peroxidase also converts lipid peroxides into less reactive molecules.

These enzymes act as a defense system against ROS, keeping their levels in check and protecting the cell from damage. However, if ROS levels become too high, the protective enzymes may become overwhelmed, leading to oxidative stress and cellular damage.

To know more about "Reactive oxygen" refer here:

https://brainly.com/question/24243780#

#SPJ11

Balanced chemical reaction
2Ferrocene + 2Acetyl Chloride -----AlCl3---> Monoacetyl ferrocene + Diacetyl ferrocene.
Assuming that your reaction has produced both monoacetyl and diacetyl ferrocene, calculate the theoretical yield and percent yield for the pure monoacetyl ferrocene product. Indicate the limiting reagent in this reaction. Show all stoichiometric calculations including the number of moles, theoretical yield and percent yield
Mass of monoacetylated ferrocene = 0.0384 g
Mass of diacetylated ferrocene = 0.568 g
Mass of dried product(crude)= 0.1072 g

Answers

Limiting reagent: Ferrocene. Theoretical yield: 0.0476 g. Percent yield: 80.7% (0.0384 g of monoacetyl ferrocene).


In this reaction, the limiting reagent is Ferrocene, as it has a smaller mole ratio (2:1) compared to Acetyl Chloride (2:2). To find the theoretical yield of monoacetyl ferrocene, we first need to calculate the number of moles of Ferrocene.
(0.1072 g crude product - 0.568 g diacetyl ferrocene) / 228.08 g/mol (molar mass of Ferrocene) = 0.000203 mol Ferrocene
Using stoichiometry, we can find the theoretical yield of monoacetyl ferrocene:
0.000203 mol Ferrocene * (1 mol monoacetyl ferrocene / 2 mol Ferrocene) * 228.08 g/mol (molar mass of monoacetyl ferrocene) = 0.0476 g
Percent yield is calculated as follows:
(0.0384 g actual yield / 0.0476 g theoretical yield) * 100 = 80.7%

For more such questions on Ferrocene, click on:

https://brainly.com/question/13566015

#SPJ11

Ferrocene is the limiting agent. Yield in theory: 0.0476 g. yield of 0.0384 g of monoacetyl ferrocene, or 80.7%.

Ferrocene is the limiting agent in this reaction because its mole ratio is lower (2:1) than that of Acetyl Chloride (2:2) in this reaction. We must first determine the theoretical yield of monoacetyl ferrocene by counting the moles of the compound.

0.000203 mol Ferrocene is equal to (0.1072 g crude product - 0.568 g diacetyl ferrocene) / 228.08 g/mol (molar mass of Ferrocene).

We may calculate the theoretical yield of monoacetyl ferrocene using stoichiometry:

1 mole of monoacetyl ferrocene divided by 2 moles of ferrocyanide results in 0.000203 mol ferrocyanide, which is equal to 0.0476 g.

These steps are used to calculate percent yield:

(0.0476 g predicted yield divided by 0.0384 g actual yield) multiplied by 100 = 80.7%

learn more about Ferrocene here:

https://brainly.com/question/17084447

#SPJ11

The mass spectrum of 2-bromopentane shows many fragments. (a) One fragment appears at M-79. Would you expect a signal at M-77 that is equal in height to the M-79 peak? Explain. (b) A fragment appears at M-15. Would you expect a signal at M-13 that is equal in height to the M-15 peak? Explain. (c) One fragment appears at M-29. Would you expect a signal at M-27 that is equal in height to the M-29 peak? Explain.

Answers

a) Yes, you would expect a signal at M-77 equal in height to the M-79 peak.

b) No, you wouldn't expect a signal at M-13 equal in height to the M-15 peak.

c) No, you wouldn't expect a signal at M-27 equal in height to the M-29 peak.



(a) This is because bromine has two naturally occurring isotopes, 79Br and 81Br, in a 1:1 ratio, causing the two peaks to have equal heights.

(b) The M-15 peak represents the loss of a methyl group (CH3), while M-13 would represent the loss of a CH3 group with a lighter isotope of carbon (C-12). The natural abundance of C-13 is only around 1%, so the M-13 peak would be significantly smaller than the M-15 peak.

(c) The M-29 peak is due to the loss of an ethyl group (C2H5). The M-27 peak would represent the loss of a C2H5 group with a lighter isotope of carbon (C-12), but the natural abundance of C-13 is very low (1%). Therefore, the M-27 peak would be much smaller than the M-29 peak.

To know more about isotopes click on below link:

https://brainly.com/question/11680817#

#SPJ11

2. why is it necessary to remove tert-butylcatechol from commercially available styrene before preparing polystyrene?

Answers

It is necessary to remove tert-butylcatechol from commercially available styrene before preparing polystyrene because it acts as a polymerization inhibitor, which can impede the formation of the polymer.

Tert-butylcatechol is commonly added to styrene as a stabilizer to prevent it from undergoing unwanted polymerization during storage and transportation. However, when styrene is used to make polystyrene, the presence of tert-butylcatechol can interfere with the polymerization process and hinder the formation of the desired polymer. This can result in a decrease in the quality of the polystyrene produced, as well as issues with processing and manufacturing. Therefore, it is necessary to remove tert-butylcatechol from commercially available styrene before using it to prepare polystyrene. This is typically done through a purification process, such as distillation or adsorption, to ensure that the styrene is free of inhibitors and suitable for use in polymerization reactions.

Learn more about butylcatechol here:

https://brainly.com/question/31060008

#SPJ11

determine the oxidation state of the metal species in the complex. [co(nh3)5cl]cl

Answers

The oxidation state of the metal species (Co) in the complex [Co(NH3)5Cl]Cl is +2.

In the complex [Co(NH3)5Cl]Cl, the oxidation state of the metal species (Co) can be determined as follows:

To determine the oxidation state of the metal species in the complex [Co(NH3)5Cl]Cl, we need to first identify the overall charge of the complex. Since there is one chloride ion outside the coordination sphere, the overall charge of the complex is 0.
First, consider the charges of the ligands: NH3 is neutral (0 charge) and Cl has a charge of -1. There are five NH3 ligands and one Cl ligand within the coordination sphere.
Now, let's assign a variable (x) to the oxidation state of Co. The net charge of the complex ion is +1 since it is balanced by one Cl- ion outside the coordination sphere.
Using the formula, x + (5 x 0) + (-1) = +1, we can calculate the oxidation state of Co:
x - 1 = +1
x = +2

To know more about oxidation visit :-

https://brainly.com/question/30281969

#SPJ11

a 0.25 g sample of a pretzel is burned. the heat it gives off is used to heat 50. g of water from 18 °c to 42 °c. what is the energy value of the pretzel, in kcal/g?

Answers

If a 0.25 g sample of a pretzel is burned. the heat it gives off is used to heat 50. g of water from 18 °c to 42 °c. The energy value of the pretzel is approximately 4.8 kcal/g.

To calculate the energy value of the pretzel in kcal/g, we will use the given information and the specific heat formula. The specific heat formula is Q = mcΔT, where Q represents the heat absorbed or released, m is the mass of the substance, c is the specific heat capacity, and ΔT is the change in temperature.

For this problem, the mass of water (m) is 50 g, the specific heat capacity of water (c) is 4.18 J/g°C, and the change in temperature (ΔT) is 42 °C - 18 °C = 24 °C.

First, we calculate the heat absorbed by the water (Q) using the formula:
Q = (50 g) × (4.18 J/g°C) × (24 °C) = 5020.8 J.

Next, we need to convert this energy from joules to kilocalories (kcal). There are 4.184 J in 1 calorie and 1 kcal equals 1000 calories. So, we have:

5020.8 J × (1 cal / 4.184 J) × (1 kcal / 1000 cal) ≈ 1.2 kcal.

Now, we can find the energy value of the pretzel by dividing the total energy (1.2 kcal) by the mass of the pretzel sample (0.25 g):

Energy value = (1.2 kcal) / (0.25 g) ≈ 4.8 kcal/g.

You can learn more about specific heat at: brainly.com/question/30403247

#SPJ11

What is the goal or the question trying to be answered while completing the Viscosity lab?



Question 1 options:



a. Why is honey sticky?




b. How does temperature influence viscosity?




c. How fast does honey flow down a pan?

Answers

The goal of the Viscosity lab is to investigate how temperature influences viscosity.

Viscosity is a measure of a fluid's resistance to flow. In this lab, the main question being addressed is how temperature affects viscosity. By conducting experiments and analyzing the results, the goal is to understand the relationship between temperature and the flow properties of a fluid.

The lab may involve measuring the viscosity of different liquids at various temperatures and observing how the viscosity changes as the temperature is manipulated. The focus is on examining how the internal structure and intermolecular forces within the fluid are affected by temperature, leading to changes in viscosity.

By answering this question, the lab aims to provide insights into the fundamental properties of fluids and their behavior under different temperature conditions, contributing to a better understanding of the concept of viscosity.

To learn more about viscosity click here : brainly.com/question/13087865

#SPJ11

The base protonation constant Kb of 1-H-imidazole (C3H4N2) 9.0 * 10 ^ - 8. Calculate the pH of a 1.1 M solution of 1-H-imidazole at 25 °C. Round your answer to 1 decimal place

Answers

The reaction of 1-H-imidazole with water can be represented as follows:

C3H4N2 + H2O ⇌ C3H4N2H+ + OH-

The base protonation constant Kb for this reaction is given as 9.0 × 10^-8.

The equilibrium constant expression for this reaction is:

Kb = [C3H4N2H+][OH-] / [C3H4N2][H2O]

Assuming that the concentration of water remains essentially constant (55.5 M), we can simplify the expression to:

Kb = [C3H4N2H+][OH-] / [C3H4N2]

Since the solution is dilute, we can assume that the dissociation of water is negligible, and the concentration of OH- is equal to Kb/[C3H4N2H+].

Substituting this into the above expression, we get:

Kb = [C3H4N2H+]^2 * Kb / [C3H4N2]

Solving for [C3H4N2H+], we get:

[C3H4N2H+] = sqrt(Kb * [C3H4N2]) = sqrt(9.0 × 10^-8 * 1.1) = 2.81 × 10^-5 M

The pH of the solution can be calculated as follows:

pH = -log[H+]

Since [H+] = [C3H4N2H+], we get:

pH = -log(2.81 × 10^-5) = 4.55

Therefore, the pH of a 1.1 M solution of 1-H-imidazole at 25 °C is 4.6 (rounded to 1 decimal place).

To know more about imidazole refer here

https://brainly.com/question/29652188#

#SPJ11

As you are walking across your laboratory, you notice a 5.25 L flask containing a gaseous mixture of 0.0205 mole NO2 (9) and 0.750 mol N204() at 25°C. Is this mixture at equilibrium? If not, will the reaction proceed towards forming more products, or more reactants? N204(0) 2NO2 (g) Kc = 4.61 x 10-3 at 25°C A. The answer cannot be determined with the given information. B. The mixture is not at equilibrium and will proceed towards forming more product C. The mixture is not at equilibrium and will proceed towards forming more reactants. D. The mixture is at equilibrium.

Answers

Therefore, the answer is B

The answer can be determined using the given information and the reaction equation. The reaction equation is:

N2O4(g) ⇌ 2NO2(g)

The equilibrium constant for this reaction at 25°C is given as Kc = 4.61 x 10^-3. The initial moles of NO2 and N2O4 in the mixture are given as 0.0205 and 0.750 moles, respectively.

The total volume of the mixture is 5.25 L.

To determine whether the mixture is at equilibrium, we can calculate the reaction quotient (Qc) and compare it to the equilibrium constant (Kc). If Qc is less than Kc,

the reaction will proceed towards forming more products, and if Qc is greater than Kc, the reaction will proceed towards forming more reactants. If Qc is equal to Kc, the reaction is at equilibrium.

The expression for Qc is:

[tex]Qc = [NO2]^2/[N2O4][/tex]

Substituting the given values:

Qc = (0.0205/5.25)^2 / (0.750/5.25) = [tex]1.41 x 10^-4[/tex]

Comparing Qc to Kc, we see that Qc is much smaller than Kc. This means that the mixture is not at equilibrium and the reaction will proceed towards forming more products (i.e., more NO2 and less N2O4) until the system reaches equilibrium.

The mixture is not at equilibrium and will proceed towards forming more products.

To know more about equilibrium constant refer here

https://brainly.com/question/10038290#

#SPJ11

In order for materials to not affect the atmosphere by light, they must?

Answers

In order for materials to not affect the atmosphere by light, they must exhibit properties that minimize their interaction with light. This can be achieved through various means.

1. Transparency: Materials should allow light to pass through them without significant absorption or scattering. Transparent materials transmit light without altering its properties.

2. Low reflectivity: Materials should have low reflectance, meaning they reflect minimal amounts of incident light. This prevents light from being redirected or bounced back into the atmosphere.

3. Low emissivity: Materials should have low emissivity, meaning they emit minimal amounts of light when heated. This reduces the contribution of materials to radiative heat transfer and energy loss.

By minimizing absorption, scattering, reflectivity, and emissivity, materials can have a minimal impact on the atmosphere by light.

To learn more about light click here:

brainly.com/question/20113876

#SPJ11

the total number of valence electrons in the compound nh4no3 is group of answer choices 34 80 52 42 32

Answers

The total number of valence electrons in the compound NH4NO3 is 32.

NH4NO3 is an ionic compound made up of ammonium ions (NH4+) and nitrate ions (NO3-). To calculate the total number of valence electrons, we need to add up the valence electrons of each atom and then subtract the electrons involved in the ionic bond.

The nitrogen atom in NH4NO3 has 5 valence electrons, while each oxygen atom has 6 valence electrons. Each hydrogen atom in the ammonium ion has 1 valence electron. So, the total number of valence electrons in NH4NO3 is:

5 (for N) + 4x1 (for H) + 3x6 (for O) = 5 + 4 + 18 = 27

However, NH4NO3 is an ionic compound, so one electron is lost from each ammonium ion and gained by the nitrate ion, leading to the formation of ionic bonds. Thus, we need to subtract 4 valence electrons (from the 4 hydrogen atoms in NH4+) and add 1 electron (for the nitrate ion) to get the total number of valence electrons involved in the ionic bond:

27 - 4 + 1 = 24 + 1 = 25

Finally, since there are two ions in NH4NO3, we need to multiply by 2 to get the total number of valence electrons in the compound:

25 x 2 = 50

However, this counts each electron twice (once for each ion), so we need to divide by 2 to get the actual number of valence electrons:

50 / 2 = 25

Therefore, the total number of valence electrons in NH4NO3 is 32.

To know more about  ionic compound, click here:

https://brainly.com/question/3222171

#SPJ11

rank the following elements in order of increasing ionization energy for cs be k

Answers

The order of increasing ionization energy for Cs, Be, and K is Be < K < Cs. This means that Be has the lowest ionization energy, followed by K, and then Cs has the highest ionization energy.

This is because ionization energy generally increases from left to right across a period and decreases from top to bottom within a group on the periodic table.
You rank the following elements in order of increasing ionization energy: Cs, Be, and K.

Your answer: The order of increasing ionization energy for the elements Cs, Be, and K is Cs < K < Be.

Explanation:
1. Ionization energy is the energy required to remove an electron from an atom or ion.
2. Ionization energy generally increases across a period (left to right) in the periodic table and decreases down a group (top to bottom).
3. Cs is in Group 1 and Period 6, K is in Group 1 and Period 4, and Be is in Group 2 and Period 2.
4. Comparing Cs and K, both are in Group 1 but Cs is below K, so Cs has lower ionization energy.
5. Be is in Group 2 and is to the right of Group 1 elements, so Be has higher ionization energy than both Cs and K.
6. Therefore, the order of increasing ionization energy is Cs < K < Be.

To know more about ionization visit:

https://brainly.com/question/28385102

#SPJ11

Given 76. 4 g of C2H3Br3 and 49. 1 g of O2, determine which compound is the


limiting reactant given the following balanced chemical equation:


4 C2H3Br3 + 11 O2 → 8 CO2 + 6 H2O + 6 Br2

Answers

The limiting reactant in the given chemical equation between 76.4 g of [tex]C_2H_3Br_3[/tex] and 49.1 g of [tex]O_2[/tex] needs to be determined.

To calculate the limiting reactant, we need to compare the amount of each reactant to their respective stoichiometric coefficients in the balanced equation. The molar masses of [tex]C_2H_3Br_3[/tex] and [tex]O_2[/tex]are 269.8 g/mol and 32.0 g/mol, respectively.

First, we convert the given masses of [tex]C_2H_3Br_3[/tex] and [tex]O_2[/tex] to moles by dividing each mass by its molar mass:

Moles of [tex]C_2H_3Br_3[/tex]= 76.4 g / 269.8 g/mol = 0.2833 mol

Moles of [tex]O_2[/tex]= 49.1 g / 32.0 g/mol = 1.5344 mol

Next, we compare the moles of each reactant to their stoichiometric coefficients:

For [tex]C_2H_3Br_3[/tex], the coefficient is 4. The ratio of moles to coefficient is 0.2833 mol / 4 = 0.0708 mol.

For [tex]O_2[/tex], the coefficient is 11. The ratio of moles to coefficient is 1.5344 mol / 11 = 0.1395 mol.

Since the ratio for [tex]C_2H_3Br_3[/tex] is lower than the ratio for [tex]O_2[/tex], it is the limiting reactant. Therefore, [tex]C_2H_3Br_3[/tex] is the compound that will be consumed completely in the reaction, and [tex]O_2[/tex] will be in excess.

Learn more about limiting reactant here:

https://brainly.com/question/28938721

#SPJ11

how would data be impacted if the first few ml from the calcium hydroxide are not discarded

Answers

Contamination of the solution could occur and lead to inaccurate experimental data if the first few milliliters of calcium hydroxide are not discarded.

In experiments involving calcium hydroxide, it is often recommended to discard the first few milliliters of the solution due to potential contamination from airborne carbon dioxide that can react with the calcium hydroxide and form calcium carbonate.

If these first few milliliters are not discarded, it can significantly impact the quality and accuracy of the data obtained.

Calcium hydroxide is often used in various laboratory experiments and analytical procedures as an alkaline solution. The carbon dioxide in the air can react with calcium hydroxide to form a white precipitate of calcium carbonate, which can contaminate the solution.

This can lead to a reduction in the concentration of the calcium hydroxide, which can significantly affect the accuracy of the experimental data.

If the first few milliliters are not discarded, the resulting data may be inconsistent or inaccurate, leading to incorrect conclusions and outcomes.

For example, if the concentration of the calcium hydroxide is not accurately measured, it can lead to erroneous calculations of the acidity or alkalinity of a solution, as well as the incorrect determination of other parameters such as solubility, reactivity, or complexation.

In summary, not discarding the first few milliliters of calcium hydroxide can introduce contamination and significantly impact the quality and accuracy of the data obtained.

Therefore, it is important to carefully follow the recommended procedures and protocols to ensure that the experimental data is reliable and consistent.

For more question on Contamination visit:

https://brainly.com/question/24959325

#SPJ11

true/false. an electron remains in an excited state of an atom for typically 10−8s.

Answers

Answer:

this statement is true

Explanation:

given the following reaction at equilibrium, if kc = 6.24 x 105 at 230.0 °c, kp = ________. 2 no (g) o2 (g) (g)

Answers

At equilibrium, the ratio of the product concentrations to reactant concentrations is constant, and this is given by the equilibrium constant, Kc. value of Kp for the given reaction at 230.0°C is 2.57 x 10^7 atm.

The equilibrium constant, Kp, is related to Kc by the equation:[tex]Kp = Kc(RT)^(∆n)[/tex] where R is the gas constant, T is the temperature in Kelvin, and ∆n is the difference in the number of moles of gas molecules between the products and reactants.

In this case, the value of Kc is given as C at 230.0°C. To calculate Kp, we need to know the value of ∆n. From the balanced chemical equation, we can see that there are two moles of gas molecules on the reactant side and two moles of gas molecules on the product side. Therefore, ∆n = 2 - 2 = 0.

At 230.0°C, the value of the gas constant, R, is 0.08206 L⋅atm/mol⋅K. Converting the temperature to Kelvin, we get: T = 230.0°C + 273.15 = 503.15 K

Substituting the values into the equation, we get:

[tex]Kp = Kc(RT)^(∆n) = 6.24 x 10^5 (0.08206 L⋅atm/mol⋅K × 503.15 K)^0Kp = 6.24 x 10^5 × 41.15[/tex]

[tex]Kp = 2.57 x 10^7 atm[/tex]

Therefore, the value of Kp for the given reaction at 230.0°C is 2.57 x 10^7 atm. This value indicates that the reaction strongly favors the formation of NO2 at this temperature and pressure.

Know more about  equilibrium constant here:

https://brainly.com/question/31321186

#SPJ11

What mass of n2 is formed when 18.1 g nh3 is reacted with 90.4 g cuo? (the other products are copper metal and water.)

Answers

29.77 grams of N2 will be formed when 18.1 grams of NH3 reacts with 90.4 grams of CuO.

To find the mass of N2 formed when NH3 reacts with CuO, we need to determine the limiting reactant first. The limiting reactant is the reactant that is completely consumed in the reaction and determines the maximum amount of product that can be formed.

Step 1: Convert the given masses of NH3 and CuO to moles.

Using the molar masses of NH3 (17.03 g/mol) and CuO (79.55 g/mol), we can calculate the number of moles of each reactant.

Moles of NH3 = 18.1 g NH3 / 17.03 g/mol = 1.063 mol NH3

Moles of CuO = 90.4 g CuO / 79.55 g/mol = 1.137 mol CuO

Step 2: Determine the stoichiometry of the balanced equation.

From the balanced equation of the reaction, we know that the mole ratio of NH3 to N2 is 1:1. Therefore, the moles of N2 formed will be equal to the moles of NH3.

Moles of N2 formed = 1.063 mol NH3

Step 3: Convert moles of N2 to grams.

Using the molar mass of N2 (28.01 g/mol), we can calculate the mass of N2 formed.

Mass of N2 formed = 1.063 mol N2 × 28.01 g/mol = 29.77 g N2

Therefore, approximately 29.77 grams of N2 will be formed when 18.1 grams of NH3 reacts with 90.4 grams of CuO.

To learn more about moles, refer below:

https://brainly.com/question/31597231

#SPJ11

You are given a white substance that melts at 100 °C. The substance is soluble in water. Neither the solid nor the solution is a conductor of electricity. Which type of solid (molecular, metallic, covalent-network, or ionic) might this substance be?

Answers

The given substance is a white solid that melts at 100°C, is soluble in water, and does not conduct electricity in either solid or dissolved forms. Based on these properties, it is most likely a molecular solid.

Molecular solids consist of individual molecules held together by intermolecular forces, such as van der Waals forces, dipole-dipole interactions, or hydrogen bonding. These forces are generally weaker than the bonds in metallic, covalent-network, or ionic solids, which often results in relatively low melting points. The 100°C melting point of the given substance suggests that it might be a molecular solid.
Additionally, molecular solids tend to be soluble in water, especially if they have polar molecules or can form hydrogen bonds with water. The solubility of the substance in question further supports the classification as a molecular solid.
Finally, molecular solids typically do not conduct electricity in either solid or dissolved forms. This is because they do not contain mobile electrons or ions that can move and carry an electric charge. Since the given substance does not conduct electricity, this characteristic also points to it being a molecular solid.
In summary, based on its melting point, solubility in water, and lack of electrical conductivity, the white substance is most likely a molecular solid.

To learn more about molecular solid, refer:-

https://brainly.com/question/15241125

#SPJ11

Other Questions
a culture where people prefer team sports like basketball and baseball over sports like golf and running is likely low on the ______ dimension of cultural diversity.A) power distance B) uncertainty avoidance C) individualism D) assertiveness Which one of the following is a method of control that was used by totalitarian dictators? A. Free elections B. Equality between the races C. Uncensored media and Free speech D. Secret police who used fear and violence PLEASE HELP16. Pace, volume, tone, repetition, and imagery are key elements to persuasion. In Martin Luther King Jr's "I Have a Dream" speech, he uses repetition by repeating "I Have aDream" throughout the speech. What is he trying to persuade the audience to think about byrepeating this? Do you think it is effective in making them think this way, why or why not?3-5 sentences. (5 points) identify whether each of the following items increases or decreases cash flow. assume the firm pays taxes. Increases/Decreases Cash Flovw Increase in accounts receivable Increase in notes payable Depreciation expense Increase in investments Decrease in accounts payable Decrease in prepaid expenses Increase in inventory Dividend payment Increase in accrued expenses Label the cranial nerves (VII. VIII, IX X XI,XII) attached to the base of the human brain by clicking and dragging the labels to the correct location ANTERIOR Facial nerve (VI) Glossopharyngeal nerve (IX) Hypoglossal nerve (XII) Vestibulocochlear nerve (VI) Cerebellum Spinal cord Accessory nerve (XI) Pons Vagusix) a $485,000 bond issue on which there is an unamortized discount of $35,000 is redeemed for $471,000. journalize the redemption of the bonds. in hash table, we usually use a simple mod function to calculate the location of the item in the table. what is the name of this function? a thin wire is bent into the shape of a semicircle x2 y2 = 81, x 0. if the linear density is a constant k, find the mass and center of mass of the wire. determine whether the sequence converges or diverges. if it converges, find the limit. (if an answer does not exist, enter dne.) an = tan 5n 3 20n during a physics experiment, helium gas is cooled to a temperature of 13.0 k at a pressure of 9.00102 atm.] What are (a) the mean free path in the gas, (b) the rms speed of the atoms, and (c) the average energy per atom? The maximum height a typical human can jump from a crouched start is about 60 cm. By how much does the gravitational potential energy increase for a 72-kg person in such a jump? Where does this energy come from? 2. During which phase would the cell undergo anaphase? *A. Phase AB. Phase BC Phase CD. Phase D describe all unit vectors orthogonal to both of the given vectors. 2i 6j -3k, 6i+ 18j 9k Sara is filing as head of household and has 2021 taxable income of $59,000, which includes $3,000 of net long-term capital gain. The net long-term capital gain is made up of $1,000 25% gain and $2,000 0%/15%/20% gain. What is the tax on her taxable income using the alternative tax method Select the correct answer from each drop-down menu. A jewelry artisan has determined that her revenue, y, each day at a craft fair is at most -0. 532 + 30. 5, where x represents the numberof necklaces she sells during the day. To make a profit, her revenue must be greater than her costs, 25 + 150. Write a system of inequalities to represent the values of x and y where the artisan makes a profit. Then complete the statements. The point (30,230) isThe point (10,300) isof this systemof this systemSubmitReset how many grams of water are needed to prepare 255g of 4.25 lcl3 solution What is the volume of a regular hexagonal pyramid with base side length of 6 cm, apothem of 5. 2 cm, and height of 15 cm You will use video store tables and data for this lab. Please insert your SQL statement and add a result table/output as a screenshot. 1. List names of films with types 2. List the customer who rented movies most frequently 3. List all information about customers 4. List all information about films 5. List films that is horror or action 6. List customers who live in London 7. List movies that were rented after 11-01-2014 8. List films that is horror and price is greater than $5 9. Add 3 more movies that are comedy and price with $9 (you can add any movie names) 10. Add 3 more customers who live in Towson (you can add any names) 11. Update the price of all action movies to $10.00 12. Add 3 more movie rental records. 13. Delete a record of the customer who lives in Columbia Wreate table film FID varchar2(4), find an expression for the kinetic energy of the car at the top of the loop. express the kinetic energy in terms of mmm , ggg , hhh , and rrr . A 5.25 kg block starts at the top of a 16.1 m long incline that has an angle of 10 to the horizontal. the block then slides out on a horizontal frictionless surface and collides with a 7.11 kg block in an inelastic collision in which the blocks stick together. the blocks then slide to the right onto a frictional section of track as a result of the collision.a)what was the velocity of the 5.25kg block at the bottom of the ramp? v = ___ m/sb)how much kinetic energy was lost in the collision? ke = ___ m/sc) how far do the blocks slide to the right on the frictional surface before stopping if the coefficient of kinetic friction is k = 0.18. d = ___ m/s