KEVIN HAS TWO PART-TIME JOBS. HE DELIVERS PIZZA FOR PEDRO'S PIZZERIA
AND MAKES $8 AN HOUR, PLUS $20 FOR DRIVING EXPENSES EACH WEEK. HE
ALSO DOES ODD JOBS FOR A LOCAL HARDWARE STORE, WHERE HE IS PAID $10
AN HOUR.
A. WRITE A SYSTEM OF EQUATIONS TO DESCRIBE THE SCENARIO WHERE H
REPRESENTS THE NUMBER OF HOURS KEVIN WORKS, AND A
REPRESENTS THE AMOUNT HE EARNS AT EACH JOB IN A WEEK. B. HOW MANY HOURS MUST KEVIN WORK AT EACH JOB SO THAT HIS EARNINGS FROM BOTH SIDES ARE THE SAME? C. WHAT WOULD HIS INCOME FROM EACH JOB BE IN THAT CASE?

Answers

Answer 1

Answer:

A.  A = 8h + 10

     A = 10h

B.  5 hours

C.  $50

Step-by-step explanation:

A.  https://brainly.com/question/17036764

Pizza Place:  A = 8h + 10

Hardware Store:  A = 10h

Since you had made a separate question for part A, I answered that.

B.  Kevin's earnings is represented by A.  Because we want the earnings for each job to be equal, set the two equations equal to each other.  Solve for h.

8h + 10 = 10h

10 = 2h

5 = h

Kevin has to work 5 hours.

C.  Plug 5 into each equation.

A = 8h + 10

A = 8(5) + 10

A = 40 + 10

A = 50

A = 10h

A = 10(5)

A = 50

Kevin will make 50 from each job.


Related Questions

The first card selected from a standard 52-card deck was a king. If it is returned to the deck, what is the probability that a king will be drawn on the second selection

Answers

Answer:

[tex]\frac{1}{13}[/tex]

Step-by-step explanation:

The probability P(A) that an event A will occur is given by;

P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]

From the question,

=>The event A is selecting a king the second time from a 52-card deck.

=> In the card deck, there are 4 king cards. After the first selection which was a king, the king was returned. This makes the number of king cards return back to 4. Therefore,

number-of-possible-outcomes-of-event-A = 4

=> Since there are 52 cards in total,

total-number-of-sample-space = 52

Substitute these values into equation above;

P(Selecting a king the second time) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]

The U.S. Department of Agriculture guarantees dairy producers that they will receive at least $1.00 per pound of butter they supply to the market. Below is the current monthly demand and supply schedule for wholesale butter (in millions of pounds per month). Wholesale Butter Market
Price (dollars per pound) Quantity of Butter Demanded Quantity of Butter Supplied
(millions of pounds) (millions of pounds)
$0.80 107 63 0
.90 104 71
1.00 101 79
1.10 98 87
1.20 95 95
1.30 92 103
1.40 89 111
1.50 86 119
1.60 83 127
1.70 80 135
1.80 77 143
a. In the butter market, the monthly equilibrium quantity is million pounds and the equilibrium price is $ per pound.
b. What is the monthly surplus created in the wholesale butter market due to the price support (price floor) program? 22 million pounds 79 million pounds Zero 11 million pounds Suppose that a decrease in the cost of feeding cows shifts the supply schedule to the right by 40 million pounds at every price.

Answers

Answer:

a. In the butter market, the monthly equilibrium quantity is 95 million pounds and the equilibrium price is $1.2 per pound.

b. The correct option is zero.

c. See the attached excel file for the new supply schedule.

d. The monthly surplus created by the price support program is 18 million pounds given the new supply of butter.

Step-by-step explanation:

Note: This question is not complete. A complete question is therefore provided in the attached Microsoft word file.

a. In the butter market, the monthly equilibrium quantity is million pounds and the equilibrium price is $ per pound.

At equilibrium, quantity demanded must be equal with the quantity supplied.

In this question, equilibrium occurs at the price of $1.20 per pound and quantity of 95 million pounds.

Therefore, in the butter market, the monthly equilibrium quantity is 95 million pounds and the equilibrium price is $1.2 per pound.

b. What is the monthly surplus created in the wholesale butter market due to the price support (price floor) program?

Price floor refers to a government price control on the lowest price that can be charged for a commodity.

It should be noted that for a price floor to be binding, it has to be fixed above the equilibrium price.

Since the price floor of $1 per pound is lower than the equilibrium price of $1.2 per pound, the price floor will therefore not be binding. As a result, the market will still be at the equilibrium point and the monthly surplus created in the wholesale butter market due to the price support (price floor) program will be zero.

Therefore, the correct option is zero.

c. Fill in the new supply schedule given the change in the cost of feeding cows.

Since a decrease in the cost of feeding cows shifts the supply schedule to the right by 40 million pounds at every price, this implies that there will be an increase in supply by 40 million at each price.

Note: Find attached the excel file for the new supply schedule.

d. Given the new supply of butter, what is the monthly surplus of butter created by the price support program?

Since the price floor has been fixed at $1 per pound by the price support program, we can observe that the quantity demanded is 101 million pounds and quantity supplied is 119 million pounds at this price floor of $1. The surplus created is then the difference between the quantity demanded and quantity supplied as follows:

Surplus created = Quantity supplied - Quantity demanded = 119 - 101 = 18 million pounds

Therefore, the monthly surplus created by the price support program is 18 million pounds given the new supply of butter.

The straight line L has equation y = 1/2x+7 The straight line M is parallel to L and passes through the point (0, 3). Write down an equation for the line M.

Answers

Answer:

y = [tex]\frac{1}{2}[/tex] x + 3

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

y = [tex]\frac{1}{2}[/tex] x + 7 ← is in slope- intercept form

with slope m = [tex]\frac{1}{2}[/tex]

Parallel lines have equal slopes

line M crosses the y- axis at (0, 3) ⇒ c = 3

y = [tex]\frac{1}{2}[/tex] x + 3 ← equation of line M

CAN SOMEONE HELP ME ASAP







A. 5
B. 53‾√53
C. 10
D. 103√3

Answers

Answer:

n = 5

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

tan theta = opp/ adj

tan 30 = n/ 5 sqrt(3)

5 sqrt(3) tan 30 = n

5 sqrt(3) * 1/ sqrt(3) = n

5 = n

Select the correct answer from each drop-down menu.
The given equation has been solved in the table.

Answers

Answer: a) additive inverse (addition)

              b) multiplicative inverse (division)

Step-by-step explanation:

Step 2: 6 is being added to both sides

Step 4: (3/4) is being divided from both sides

It is difficult to know what options are provided in the drop-down menu without seeing them. If I was to complete a proof and justify each step, then the following justifications would be used:

Step 2: Addition Property of Equality

Step 4: Division Property of Equality

PLEASE ANSWER FAST, THANKS! :)

Answers

Answer:

Step-by-step explanation:

k = 3 ; 2k + 2 = 2*3 + 2 = 6 + 2 = 8

k = 4;  2k + 2 = 2*4 + 2 = 8 +2 = 10

k =5; 2k + 2 = 2*5 +2 = 10+2 = 12

k=6;  2k +2 = 2*6 + 2 = 12+2 = 14

k = 7 ; 2k + 2 = 2*7 +2 = 14 +2 = 16

k = 8 ; 2k + 2 = 2*8 + 2 = 16 +2 = 18

∑ (2k + 2) = 8 + 10 + 12 + 14 + 16 + 18 = 78

PLEASE HELP!!!! Find the common difference

Answers

Answer:

The common difference is 1/2

Step-by-step explanation:

Data obtained from the question include:

3rd term (a3) = 0

Common difference (d) =.?

From the question given, we were told that the 7th term (a7) and the 4th term (a4) are related by the following equation:

a7 – 2a4 = 1

Recall:

a7 = a + 6d

a4 = a + 3d

a3 = a + 2d

Note: 'a' is the first term, 'd' is the common difference. a3, a4 and a7 are the 3rd, 4th and 7th term respectively.

But, a3 = 0

a3 = a + 2d

0 = a + 2d

Rearrange

a = – 2d

Now:

a7 – 2a4 = 1

Substituting the value of a7 and a4, we have

a + 6d – 2(a + 3d) = 1

Sustitute the value of 'a' i.e –2d into the above equation, we have:

–2d + 6d – 2(–2d + 3d) = 1

4d –2(d) = 1

4d –2d = 1

2d = 1

Divide both side by 2

d = 1/2

Therefore, the common difference is 1/2

***Check:

d = 1/2

a = –2d = –2 x 1/2 = –1

a3 = 0

a3 = a + 2d

0 = –1 + 2(1/2)

0 = –1 + 1

0 = 0

a7 = a + 6d = –1 + 6(1/2) = –1 + 3 = 2

a4 = a + 3d = –1 + 3(1/2) = –1 + 3/2

= (–2 + 3)/2 = 1/2

a7 – 2a4 = 1

2 – 2(1/2 = 1

2 – 1 = 1

1 = 1

Explain the importance of factoring.

Answers

Answer:

Factoring is a useful skill in real life. Common applications include: dividing something into equal pieces, exchanging money, comparing prices, understanding time, and making calculations during travel.

Sorry if this is a little wordy, I can get carried away with this sort of thing

anyway, hope this helped and answered your question :)

Please answer this correctly

Answers

Step-by-step explanation:

pnotgrt8rthan4 = 3 ÷ 7 × 100

= 42.8571428571 / 43%

List price is 45$ if the sales tax rate is 7% how much is the sales tax in dollars

Answers

$3.15 tax $48.15 all together

Answer:

3.15 dollars

Step-by-step explanation:

The sales tax rate is 7% = 0.07

So, we need to multiply the listed price and the sales tax rate.

= 45 * 0.07 = 3.150 (3.15)

Hope this helps and please mark as the brainliest

11. If 4 < x < 14, what is the range for -x - 4?

Answers

Answer:

-18 < -x-4 < -8

Step-by-step explanation:

We start with the initial range as:

4 < x < 14

we multiplicate the inequation by -1, as:

-4 > -x > -14

if we multiply by a negative number, we need to change the symbols < to >.

Then, we sum the number -4, as:

-4-4> -x-4 > -14-4

-8 > -x-4 > -18

Finally, the range for -x-4 is:

-18 < -x-4 < -8

What is the measure of

Answers

Answer:

C. 35

55 degrees + 35 degrees= 90 degrees

Question 15 A party rental company has chairs and tables for rent. The total cost to rent 8 chairs and 3 tables is $38 . The total cost to rent 2 chairs and 5 tables is $35 . What is the cost to rent each chair and each table?

Answers

Answer:

Each table is $6 and each chair is $2.50

Step-by-step explanation:

The curvature of a plane parametric curve x = f(t), y = g(t) is $ \kappa = \dfrac{|\dot{x} \ddot{y} - \dot{y} \ddot{x}|}{[\dot{x}^2 + \dot{y}^2]^{3/2}}$ where the dots indicate derivatives with respect to t. Use the above formula to find the curvature. x = 6et cos(t), y = 6et sin(t)

Answers

Answer:

The curvature is modelled by [tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex].

Step-by-step explanation:

The equation of the curvature is:

[tex]\kappa = \frac{|\dot {x}\cdot \ddot {y}-\dot{y}\cdot \ddot{x}|}{[\dot{x}^{2}+\dot{y}^{2}]^{\frac{3}{2} }}[/tex]

The parametric componentes of the curve are:

[tex]x = 6\cdot e^{t} \cdot \cos t[/tex] and [tex]y = 6\cdot e^{t}\cdot \sin t[/tex]

The first and second derivative associated to each component are determined by differentiation rules:

First derivative

[tex]\dot{x} = 6\cdot e^{t}\cdot \cos t - 6\cdot e^{t}\cdot \sin t[/tex] and [tex]\dot {y} = 6\cdot e^{t}\cdot \sin t + 6\cdot e^{t} \cdot \cos t[/tex]

[tex]\dot x = 6\cdot e^{t} \cdot (\cos t - \sin t)[/tex] and [tex]\dot {y} = 6\cdot e^{t}\cdot (\sin t + \cos t)[/tex]

Second derivative

[tex]\ddot{x} = 6\cdot e^{t}\cdot (\cos t-\sin t)+6\cdot e^{t} \cdot (-\sin t -\cos t)[/tex]

[tex]\ddot x = -12\cdot e^{t}\cdot \sin t[/tex]

[tex]\ddot {y} = 6\cdot e^{t}\cdot (\sin t + \cos t) + 6\cdot e^{t}\cdot (\cos t - \sin t)[/tex]

[tex]\ddot{y} = 12\cdot e^{t}\cdot \cos t[/tex]

Now, each term is replaced in the the curvature equation:

[tex]\kappa = \frac{|6\cdot e^{t}\cdot (\cos t - \sin t)\cdot 12\cdot e^{t}\cdot \cos t-6\cdot e^{t}\cdot (\sin t + \cos t)\cdot (-12\cdot e^{t}\cdot \sin t)|}{\left\{\left[6\cdot e^{t}\cdot (\cos t - \sin t)\right]^{2}+\right[6\cdot e^{t}\cdot (\sin t + \cos t)\left]^{2}\right\}^{\frac{3}{2}}} }[/tex]

And the resulting expression is simplified by algebraic and trigonometric means:

[tex]\kappa = \frac{72\cdot e^{2\cdot t}\cdot \cos^{2}t-72\cdot e^{2\cdot t}\cdot \sin t\cdot \cos t + 72\cdot e^{2\cdot t}\cdot \sin^{2}t+72\cdot e^{2\cdot t}\cdot \sin t \cdot \cos t}{[36\cdot e^{2\cdot t}\cdot (\cos^{2}t -2\cdot \cos t \cdot \sin t +\sin^{2}t)+36\cdot e^{2\cdot t}\cdot (\sin^{2}t+2\cdot \cos t \cdot \sin t +\cos^{2} t)]^{\frac{3}{2} }}[/tex]

[tex]\kappa = \frac{72\cdot e^{2\cdot t}}{[72\cdot e^{2\cdot t}]^{\frac{3}{2} } }[/tex]

[tex]\kappa = [72\cdot e^{2\cdot t}]^{-\frac{1}{2} }[/tex]

[tex]\kappa = 72^{-\frac{1}{2} }\cdot e^{-t}[/tex]

[tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex]

The curvature is modelled by [tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex].

Which of the following statements must be true about this diagram? Check all that apply.

Answers

Answer:

Options (D), (E) and (F) are the correct options.

Step-by-step explanation:

From the figure attached,

1). Angle 4 is the exterior angle of the given triangle having interior angles 1, 2 and 3.

Therefore, by the property of exterior angle,

∠4 = ∠1 + ∠2

2). Since ∠4 = ∠1 + ∠2,

Therefore, ∠4 will be greater than ∠1

 Similarly, ∠4 will be greater than ∠2

Therefore, Options (D), (E) and (F) are the correct options.

If x is a binomial random variable with n trials and success probability p , then as n gets smaller, the distribution of x becomes

Answers

Answer:

If the value of n gests smaller then the distribution of X would be more skewed, that's a property of the binomial distribution

Step-by-step explanation:

For this problem we are assumeing that the random variable X is :

[tex] X \sim Bin(n,p)[/tex]

If the value of n gests smaller then the distribution of X would be more skewed, that's a property of the binomial distribution and if we don't satisfy this two conditions:

[tex] n p>10[/tex]

[tex]n(1-p) >10[/tex]

Then we can't use the normal approximation

An athletics coach states that the distribution of player run times (in seconds) for a 100-meter dash is normally distributed with a mean equal to 13.00 and a standard deviation equal to 0.2 seconds. What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster

Answers

Answer:

96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 13, \sigma = 0.2[/tex]

What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster

We have to find the pvalue of Z when X = 13.36.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{13.36 - 13}{0.2}[/tex]

[tex]Z = 1.8[/tex]

[tex]Z = 1.8[/tex] has a pvalue of 0.9641

96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster

The Ball Corporation's beverage can manufacturing plant in Fort Atkinson, Wisconsin, uses a metal supplier that provides metal with a known thickness standard deviation σ = .000586 mm. Assume a random sample of 59 sheets of metal resulted in an x¯ = .2905 mm. Calculate the 95 percent confidence interval for the true mean metal thickness.

Answers

Answer:

The 95 percent confidence interval for the true mean metal thickness is between 0.2903 mm and 0.2907 mm

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.95}{2} = 0.025[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.025 = 0.975[/tex], so [tex]z = 1.96[/tex]

Now, find the margin of error M as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

[tex]M = 1.96\frac{0.000586}{\sqrt{59}} = 0.0002[/tex]

The lower end of the interval is the sample mean subtracted by M. So it is 0.2905 - 0.0002 = 0.2903 mm

The upper end of the interval is the sample mean added to M. So it is 0.2905 + 0.0002 = 0.2907 mm

The 95 percent confidence interval for the true mean metal thickness is between 0.2903 mm and 0.2907 mm

Perform the indicated operation.

Answers

Answer:

√75 = 5√3 and √12 = 2√3 so √75 + √12 = 5√3 + 2√3 = 7√3.

Answer:

[tex] 7\sqrt{3} [/tex]

Step-by-step explanation:

[tex] \sqrt{12} \: can \: be \: simplified \: as \: 2 \sqrt{3} \: and \: \sqrt{75} \: canbe \: simplified \: as \: 5 \sqrt{3} \\ after \: simplifying \: we \: can \: add \: them \: up \\ 2 \sqrt{3} + 5 \sqrt{3} = 7 \sqrt{3} [/tex]

Write 0000 using the am/pm clock.​

Answers

Answer:

12am

Step-by-step explanation:

Answer:

12:00 am or midnight

Step-by-step explanation:

00 00 hrs in 12-hours clock is 12:00 am or 12:00 o'clock midnight.

Will give brainliest answer

Answers

Answer:

[tex]153.86 \: {units}^{2} [/tex]

Step-by-step explanation:

[tex]area = \pi {r}^{2} \\ = 3.14 \times 7 \times 7 \\ = 3.14 \times 49 \\ = 153.86 \: {units}^{2} [/tex]

Answer:

153.86 [tex]units^{2}[/tex]

Step-by-step explanation:

Areaof a circle = πr^2

[tex]\pi = 3.14[/tex](in this case)

[tex]r^{2} =7[/tex]

A = πr^2

= 49(3.14)

= 153.86


I need help on a question real quick

Answers

Answer:

4x-3y

Step-by-step explanation:

A boat that can travel 18 mph in still water can travel 21 miles downstream in the same amount of time that it can travel 15 miles upstream. Find the speed (in mph) of the current in the river.

Answers

Hey there! I'm happy to help!

We see that if the river isn't moving at all the boat can move at 18 mph (most likely because it has an engine propelling it.)

We want to set up a proportion where our 21 miles downstream time is equal to our 15 miles upstream time so we can find the speed. A proportion is basically showing that two ratios are equal. Since our downstream distance and upstream distance can be done in the same amount of time, we will write it as a proportion.

We want to find the speed of the river. We will use r to represent the speed of the river. When going downstream, the boat will go faster, so it will have a higher mph. So, our speed going down is 18+r. When you are going upstream, it's the opposite, so it will be 18-r.

[tex]\frac{distance}{speed} =\frac{21}{18+r} = \frac{15}{18-r}[/tex]

So, how do we figure out what r is now? Well, one nice thing to know about proportions is that the product of the items diagonal from each other equals the product of the other items. Basically, that means that 15(18+r) is equal to 21(18-r). This is a very nice trick to solve proportions quickly. We see that we have made an equation and now we can solve it!

15(18+r)=21(18-r)

We use the distributive property to undo the parentheses.

270+15r=378-21r

We subtract 270 from both sides.

15r=108-21

We add 21 to both sides.

36r=108

We divide both sides by 36.

r=3

Therefore, the speed of the river is 3 mph.

You also could have noticed that 18mph to 21 mph is +3, and 18mph to 15 mph -3 in -3 mph, so the speed of the river is 3 mph. That would have been a quicker way to solve it XD!

Have a wonderful day!

We are standing on the top of a 320 foot tall building and launch a small object upward. The object's vertical altitude, measured in feet, after t seconds is h ( t ) = − 16 t 2 + 128 t + 320 . What is the highest altitude that the object reaches?

Answers

Answer:

The highest altitude that the object reaches is 576 feet.

Step-by-step explanation:

The maximum altitude reached by the object can be found by using the first and second derivatives of the given function. (First and Second Derivative Tests). Let be [tex]h(t) = -16\cdot t^{2} + 128\cdot t + 320[/tex], the first and second derivatives are, respectively:

First Derivative

[tex]h'(t) = -32\cdot t +128[/tex]

Second Derivative

[tex]h''(t) = -32[/tex]

Then, the First and Second Derivative Test can be performed as follows. Let equalize the first derivative to zero and solve the resultant expression:

[tex]-32\cdot t +128 = 0[/tex]

[tex]t = \frac{128}{32}\,s[/tex]

[tex]t = 4\,s[/tex] (Critical value)

The second derivative of the second-order polynomial presented above is a constant function and a negative number, which means that critical values leads to an absolute maximum, that is, the highest altitude reached by the object. Then, let is evaluate the function at the critical value:

[tex]h(4\,s) = -16\cdot (4\,s)^{2}+128\cdot (4\,s) +320[/tex]

[tex]h(4\,s) = 576\,ft[/tex]

The highest altitude that the object reaches is 576 feet.

A 12 sided die is rolled the set of equally likely outcomes is 123 456-789-10 11 and 12 find the probability of rolling a number greater than three

Answers

Answer:

6

Step-by-step explanation:

nerd physics

When individuals in a sample of 150 were asked whether or not they supported capital punishment, the following information was obtained. Do you support capital punishment? Number of individuals Yes 40 No 60 No Opinion 50 We are interested in determining whether or not the opinions of the individuals (as to Yes, No, and No Opinion) are uniformly distributed. The calculated value for the test statistic equals a. 20. b. 4. c. 2. d. -2.

Answers

Answer:

[tex]\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}[/tex]

The expected values for all the categories is :

[tex] E_i =\frac{150}{3}=50[/tex]

And then the statistic would be given by:

[tex]\chi^2 = \frac{(40-50)^2}{50}+\frac{(60-50)^2}{50}+\frac{(50-50)^2}{50}=4[/tex]

And the best option would be:

b. 4

Step-by-step explanation:

For this problem we have the following observed values:

Yes 40 No 60 No Opinion 50

And we want to test the following hypothesis:

Null hypothesis: All the opinions are uniformly distributed

Alternative hypothesis: Not All the opinions are uniformly distributed

And for this case the statistic would be given by:

[tex]\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}[/tex]

The expected values for all the categories is :

[tex] E_i =\frac{150}{3}=50[/tex]

And then the statistic would be given by:

[tex]\chi^2 = \frac{(40-50)^2}{50}+\frac{(60-50)^2}{50}+\frac{(50-50)^2}{50}=4[/tex]

And the best option would be:

b. 4

I paid twice as much by not waiting for a sale and not ordering on line. Which ofthe following statements is also true?
(a) I paid 200% more than I could have online and on sale.
(b) I paid 100% of what I could have online and on sale.
(c) I paid 200% of what I could have online and on sale.
(d) I paid 3 times what I could have online and on sale.

Answers

Answer:

Option (c).

Step-by-step explanation:

It is given that, I paid twice as much by not waiting for a sale and not ordering online.

Let the cost of items ordering online be x.

So, now i am paying twice of x = 2x

Now, we have find 2x is what percent of x.

[tex]Percent =\dfrac{2x}{x}\times 100=200\%[/tex]

It means, I paid 200% of what I could have online and on sale.

Therefore, the correct option is (c).

The vector matrix[ 27 ]is dilated by a factor of 1.5 and then reflected across the X axis if the resulting matrix is a B then a equals an VE

Answers

Correct question:

The vector matrix [ [tex] \left[\begin{array}{ccc}2\\7\end{array}\right] [/tex] is dilated by a factor of 1.5 and then reflected across the x axis. If the resulting matrix is [a/b] then a=??? and b=???

Answer:

a = 3

b = 10.5

Step-by-step explanation:

Given:

Vector matrix = [tex] \left[\begin{array}{ccc}2\\7\end{array}\right] [/tex]

Dilation factor = 1.5

Since the vector matrix is dilated by 1.5, we have:

[tex] \left[\begin{array}{ccc}1.5 * 2\\1.5 * 7\end{array}\right] [/tex]

= [tex] \left[\begin{array}{ccc}3\\10.5\end{array}\right] [/tex]

Here, we are told the vector is reflected on the x axis.

Therefore,

a = 3

b = 10.5

Answer:

a = 3

b = -10.5

Step-by-step explanation:

got a 100% on PLATO

16. How much money will I need to have at retirement so I can withdraw $60,000 a year for 20 years from an account earning 8% compounded annually? a. How much do you need in your account at the beginning b. How much total money will you pull out of the account? c. How much of that money is interest?

Answers

Answer:

starting balance: $636,215.95total withdrawals: $1,200,000interest withdrawn: $563,784.05

Step-by-step explanation:

a) If we assume the annual withdrawals are at the beginning of the year, we can use the formula for an annuity due to compute the necessary savings.

The principal P that must be invested at rate r for n annual withdrawals of amount A is ...

  P = A(1+r)(1 -(1 +r)^-n)/r

  P = $60,000(1.08)(1 -1.08^-20)/0.08 = $636,215.95

__

b) 20 withdrawals of $60,000 each total ...

  20×$60,000 = $1,200,000

__

c) The excess over the amount deposited is interest:

  $1,200,000 -636,215.95 = $563,784.05

Assume that the random variable X is normally distributed, with mean 60 and standard deviation 16. Compute the probability P(X < 80). Group of answer choices

Answers

Answer:

P(X < 80) = 0.89435.

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 60, \sigma = 16[/tex]

P(X < 80)

This is the pvalue of Z when X = 80. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{80 - 60}{16}[/tex]

[tex]Z = 1.25[/tex]

[tex]Z = 1.25[/tex] has a pvalue of 0.89435.

So

P(X < 80) = 0.89435.

Other Questions
Please someone help me on these questions can you plz help me??? Gwen wants to create a congruent shape to the one she made. Her regular pentagon has a perimeter of 24.2 cm. What is going to be the length of the sides in the shape that she creates? A. 4.84 cm B. 5.84 cm C. 9.68 cm D. 121 cm A 4-ft-high and 7-ft-wide rectangular plate is submerged vertically in water so that the top is 1 ft below the surface. Express the hydrostatic force against one side of the plate as an integral and evaluate it. (Recall that the weight density of water is 62.5 lb/ft3). III) Letter Writing a) You are the sports secretary of ABC School, Adarsh Nagar, New Delhi. Write a letter to M/s Omega Sports House, Raj Nagar, New Delhi placing an order for sports goods for your school. Sign yourself as Subodh. Cheryl bought 3.4 pounds of coffee that cost $6.95 per pound . How many did she spend on coffee Question 21 (5 points)Which of the following terms describes a collection of hollow cells that implants onthe uterus wall after fertilization, but is not yet differentiated (in other words, all cellsare the same type of cell still)?FetusHaploidMitosisBlastocyst what is the main idea of this paragraph A stock just paid a dividend of $3. The stock is expected to increase its dividend payment by 30% per year for the next 3 years. After that, dividends will grow at a rate of 8% forever. If the required rate of return is 10%, what is the price of the stock today? n what part of China did the population increase the most? the northeast the northwest the southeast the southwest Please answer this correctly Assume that demand increases from D1to D2; in the new long run equilibrium, price settles at a level between P1and P2This means that the industry in question is a(n) __________-cost industry.a. decreasingb. increasingc. constantd. marginale. low Magic Realm, Inc., has developed a new fantasy board game. The company sold 48,500 games last year at a selling price of $61 per game. Fixed expenses associated with the game total $873,000 per year, and variable expenses are $41 per game. Production of the game is entrusted to a printing contractor. Variable expenses consist mostly of payments to this contractor. Required: 1-a. Prepare a contribution format income statement for the game last year. 1-b. Compute the degree of operating leverage. 2. Management is confident that the company can sell 60,625 games next year (an increase of 12,125 games, or 25%, over last year). Given this assumption: a. What is the expected percentage increase in net operating income for next year? b. What is the expected amount of net operating income for next year? (Do not prepare an income statement; use the degree of operating leverage to compute your answer.) Skin by Roald Dahl Who is Soutine? Where is he from? What is his role in the story? 6x + 7y + x-8y = 7x - yWrite down three other expressions that are equal to 7x - y At the beginning of the year, Ann and Becky own equally all of the stock of Whitman, Inc., an S corporation. Whitman generates a $120,000 loss for the year. On the 189th day of the year, Ann sells her half of the Whitman stock to her son, Scott. Becky's stock basis is $41,300. How much of the Whitman loss belongs to Ann and Becky helppppppp pleassssseeeeee Add. Answer as a fraction. Do not include spaces in your answer. Do not include spaces in your answer. Enter values to complete the table below. A script sets up user accounts and installs software for a machine. Which stage of the hardware lifecycle does this scenario belong to? After the last ice age began, the number of animal species in Australia changed rapidly. The relationship between the elapsed time, t, in years, since the ice age began, and the total number of animal species, S year(t), is modeled by the following function: S year(t)=25,000,000(0.78)t Complete the following sentence about the rate of change in the number of species in decades. Round your answer to two decimal places. Every decade, the number of species decays by a factor of