Answer:
He could put the first card he removed into his pocket
Step-by-step explanation:
With regards to the above, he could put the first card he removed into his pocket so that the amount of card he has to draw the second time will be affected hence make it dependent.
Take for instance, there are 52 cards in total, if he picks the first card and did not replace it, then the probability of taking second card will be 50/51 since the total cards left in the deck is now 51.
Keeping the card out of the deck can be done to ensure that the events are dependent.
What is Probability ?Probability is a measure of the likeliness of an event to occur and it is measured between 0 to 1 , where 0 represents unlikeliness of the event and 1 represents certainty.
It is given in the question that he would have to keep the first card out of the deck before removing the second card.
Two events are dependent if the probability of one event changes based on the result of the other.
To be clear, an action on its own (like drawing a card) is not an event. An event is a possible outcome (or set of outcomes) we could observe.
Since we assume all 52 cards have an equal chance of being drawn on the first pick (that being 152), the only way to change this probability for the second pick is to keep the first card out of the deck.
This reduces the size of the deck to 51, meaning each remaining card has a 51 chance of being picked—except for the card he drew first, which now has a 0% chance of being drawn again.
Therefore keeping the card out of the deck can be done to ensure that the events are dependent.
To know more about Probability
https://brainly.com/question/11234923
#SPJ5
John couldn't recall the Serial number on his expensive bicycle. He remembered that
there were 6 different digits, none used more than once, but couldn't remember what
digits were used. He decided to write down all of the possible 6 digit numbers from 0 to 9. How many different possibilities will he have to create?
Answer:
151,200
Step-by-step explanation:
The possible set of numbers will be 151200
What is permutation?A permutation is an arrangement of objects in a definite order.
Given that, John want to find his bicycle's number, so he decided to write down all the possible 6-digit numbers from 0 to 9.
Here, we will use permutation to find the possible numbers,
Formula =
ⁿPₓ = n! / (n-x)!
Therefore,
¹⁰P₆ = 10! / (10-6)!
= 10! / 4!
= 10 × 9 × 8 × 7 × 6 × 5 = 151200
Hence, the possible set of numbers will be 151200
Learn more about permutation, click;
https://brainly.com/question/1216161
#SPJ2
show that the straight line x+y does not intersect the curve x^2-8x+y^2-12y+6=0 if k^2-20k+8>0
Which relation is not a function?
a) y = 1x + 7
by=- 4(x + 3)2 + 10
c) -2y = - 3x + 9
d) x2 + y2 = 25
Answer:
x^2+y^2=25
Step-by-step explanation:
x^2+y^2=25 graphs a circle. A relation is a function if every x only has one y value. This is not true in a circle.
Answer:
d) x^2 + y^2 = 25.
Step-by-step explanation:
D is the equation of a circle so it fails the vertical line test for a function. If a relation is a function then any vertical line passing through it's graph will only intersect it once. This is not true of a circle.
y = 5x + 2 3x = –y + 10 What is the solution to the system of equations
Answer:
x = 1 , y = 7
Step-by-step explanation:
Solve the following system:
{y = 5 x + 2 | (equation 1)
3 x = 10 - y | (equation 2)
Express the system in standard form:
{-(5 x) + y = 2 | (equation 1)
3 x + y = 10 | (equation 2)
Add 3/5 × (equation 1) to equation 2:
{-(5 x) + y = 2 | (equation 1)
0 x+(8 y)/5 = 56/5 | (equation 2)
Multiply equation 2 by 5/8:
{-(5 x) + y = 2 | (equation 1)
0 x+y = 7 | (equation 2)
Subtract equation 2 from equation 1:
{-(5 x)+0 y = -5 | (equation 1)
0 x+y = 7 | (equation 2)
Divide equation 1 by -5:
{x+0 y = 1 | (equation 1)
0 x+y = 7 | (equation 2)
Collect results:
Answer: {x = 1 , y = 7
Answer:
D) (1,7)
Step-by-step explanation:
just took the test
Simplify the following expression. 3 – 2(–6x + 3)
Answer:
-3 + 12x
Step-by-step explanation:
3 - 2(-6x + 3)
3 + 12x - 6
-3 + 12 x
Hope this helped! :)
By first calculating the angle of LMN, calculate the area of triangle MNL. You must show all your working.
Answer:
16.66cm²
Step-by-step Explanation:
Given:
∆LMN with m<N = 38°
Length of side NL = 7.2cm
Length of side ML = 4.8cm
Required:
Area of ∆MNL
Solution:
Step 1: Find Angle LMN using the sine rule sin(A)/a = sin(B)/b
Where sin(A) = Sin(M) = ?
a = NL = 7.2cm
sin(B) = sin(N) = 38°
b = ML = 4.8cm
Thus,
Sin(M)/7.2 = sin(38)/4.8
Cross multiply
4.8*sin(M) = 7.2*sin(38)
4.8*sin(M) = 7.2*0.6157
4.8*sin(M) = 4.43304
Divide both sides by 4.8
sin(M) = 4.43304/4.8
sin(M) = 0.92355
M = sin-¹(0.92355) ≈ 67.45°
Step 2: Find m<L
angle M + angle N + angle L = 180 (sum of angles in a triangle)
67.45 + 38 + angle L = 180
105.45 + angle L = 180
Subtract 105.45 from both sides
Angle L = 180 - 105.45
Angle L = 74.55°
Step 3: Find the area of ∆MNL using the formula ½*a*b*sin(C)
Where,
a = NL = 7.2 cm
b = ML = 4.8 cm
sin(C) = sin(L) = sin(74.55)
Thus,
Area of ∆MNL = ½*7.2*4.8*0.9639
= ½*33.31
= 16.655
Area of ∆MNL ≈ 16.66cm²
convert 4 1/3 feet to inches
Answer:
52 inches
Step-by-step explanation:
Answer:
we have, 1 feet =12 inches
13/3 foot =12×13/3 inches
=52 inches.
thereforethe , the answer is 52 inches.
two cars are traveling down the highway with the same speed if the first car increases its speed by 1km/hr and the other car decreases its speed by 10km/hr,then the first car will cover the same distance in 2hrs as the second car in 3 hrs, what is the speed of the cars
Answer:
Their speed is 32 km/h.
Step-by-step explanation:
Since they're at the same speed, we can assign a variable to their speed called "x". When the first car increases its speed by 1 km/h, its new speed is "x + 1", while the other car decreases its speed by 10 km/h, so its new speed is "x - 10". The distance's formula can be expressed as below:
[tex]\text{distance} = \text{speed}*\text{time}\\[/tex]
With the modifications to their speed, the distance the first car covers in 2 h and the distance the second car covers in 3 h is shown below:
[tex]\text{distance}_{car1} = (x + 1)*2 \\\text{distance}_{car1} = 2*x + 2[/tex]
[tex]\text{distance}_{car2} = \text{speed}*\text{time}\\\text{distance}_{car2} = (x - 10)*3\\\text{distance}_{car2} = 3*x - 30[/tex]
Since the distance covered by them must be the same, we can find the value of x that makes the expressions equal.
[tex]2*x + 2 = 3*x - 30\\2*x - 3*x = -30 -2\\-x = -32\\x = 32[/tex]
Their speed is 32 km/h.
The perimeter of a rectangular field that measures 2 feet by 18 inches is _________ ft. A. 40 B. 7 C. 84 D. 6
Answer:
B. 7
Step-by-step explanation:
i need the answer right now
describe the solution to the system of equations graphed below.
Answer:
Step-by-step explanation:
The answer is B, the solution to your equation is at (2,1). Your solution is where the two lines meet.
Answer:
The second option.
Step-by-step explanation:
When two lines intersect, they usually intersect at just one point (unless they are parallel, where they never intersect; or no solutions when they infinitely intersect).
According to the graph provided, the lines are intersecting at one point: (2, 1).
So, your answer will be the second option!
Hope this helps!
(42) A school only provides bus service
to students who live a distance greater
than 2 miles away from the school. On a
coordinate plane, the school is located at
the origin, and Michael lives at the closest
point to the school on Maple Street,
which can be represented by the line
y = 2x – 4. If each unit on the coordinate
plane represents 1 mile, does Michael
live far enough from the school for bus
service?
Answer:
~1.8 mile
Step-by-step explanation:
Michael lives at the closest point to the school (the origin) on Maple Street, which can be represented by the line y = 2x – 4.
This means Michael's house will be the intersection point of line y1 (y = 2x - 4) and line y2 that is perpendicular to y1 and passes the origin.
Denote equation of y2 is y = ax + b,
with a is equal to negative reciprocal of 2 => a = -1/2
y2 pass the origin (0, 0) => b = 0
=> Equation of y2:
y = (-1/2)x
To find location of Michael's house, we get y1 = y2 or:
2x - 4 = (-1/2)x
<=> 4x - 8 = -x
<=> 5x = 8
<=> x = 8/5
=> y = (-1/2)x = (-1/2)(8/5) = -4/5
=> Location of Michael' house: (x, y) = (8/5, -4/5)
Distance from Michael's house to school is:
D = sqrt(x^2 + y^2) = sqrt[(8/5)^2 + (-4/5)^2) = ~1.8 (mile)
Bacteria in a petri dish doubles every 10 minutes.
a) If there are 10 bacteria initially, how many are there after 120 minutes?
b) If there are 10 bacteria initially, when would there be a million bacteria?
(Show step by step)
Answer:
Step-by-step explanation:
Givens
Petri Dish A sees a double ever 10 minutes
Petri Dish B sees a double ever 6 minutes
Consequences
A doubles 60 / 10 = 6 times.
B doubles 60 / 6 = 10 times.SolutionIf you work best with numbers then suppose there are 100 bacteria in both dishes at the beginningA = 100 * 2^6B = 100 * 2^10A will have 100 * 64 = 6400 bacteria growing inside AB will have 100 * 1024 = 102400 bacteria growing inside BB/A = 102400 / 6400 = 16There are 16 times as many in B than in A
The mean per capita income is 19,292 dollars per annum with a variance of 540,225. What is the probability that the sample mean would be less than 19269 dollars if a sample of 499 persons is randomly selected? Round your answer to four decimal places.
Answer:
The probability is 0.2423.
Step-by-step explanation:
Given mean per capita = 19292 dollars
Given the variance = 540225
Now find the probability that the sample mean will be less than 19269 dollar when the sample is 499.
Below is the calculation:
[tex]\bar{X} \sim N(\mu =19292, \ \sigma = \frac{\sqrt{540225}}{\sqrt{499}}) \\\bar{X} \sim N(\mu =19292, \ \sigma = 32.90) \\\text{therefore the probability is:} \\P (\bar{X}< 19269) \\\text{Convert it to standard normal variable.} \\P(Z< \frac{19269-19292}{32.90}) \\P(Z< - 0.6990) \\\text{Now getting the probability from standard normal table}\\P(Z< -0.6990) = 0.2423[/tex]
Help me asap i really need this
Answer:
3
Step-by-step explanation:
6/2
I hope this is right :)
Which of these systems of linear equations has no solution?
2 x + 8 y = 15. 4 x + 16 y = 30.
2 x minus y = 18. 4 x + 2 y = 38.
4 x + 7 y = 17. 8 x minus 14 y = 36.
4 x minus 3 y = 16. 8 x minus 6 y = 34.
Answer:
4 x minus 3 y = 16. 8 x minus 6 y = 34 has no solution
Step-by-step explanation:
Examine the system
2 x + 8 y = 15
4 x + 16 y = 30
We see that these equations are identical except for a factor of 2, and thus recognize that this system has infinitely many solutions.
Next, look at the system
2 x minus y = 18
4 x + 2 y = 38
If we divide the second equation by 2, we get the system
2x - y = 18
2x + y = 19
Combining these two equations, we get 4x = 37, which has a solution.
Third, analyze the system
4 x + 7 y = 17 => 8x + 14y = 34
8 x minus 14 y = 36 => 8x - 14y = 36, or 16x = 70, which has a solution
Finally, analyze the system
4 x minus 3 y = 16 => -8x + 6y = -32
8 x minus 6 y = 34 => 8x - 6y = 34
If we combine these two equations, we get 0 + 0 = 2, which is, of course, impossible. This system has no solution.
Answer:
4 x minus 3 y = 16. 8 x minus 6 y = 34 has no solution. the 4th option.
Step-by-step explanation:
Find the coefficient of x^2 in the expression of (x - 7)^5. a. -3430 b. -3034 c. 3034 d. 3430
Answer:
let me know when you have the anwser
Step-by-step explanation:
3. Write an exponential equation for each coin that will give the coin's value, V, at any time, t. Use
the formula:
Vt) = P(1 + r) where V(t) is the value of the coin in t years, Please HELP! help on number three
Answer:
Coin A : [tex]V(t)=25(1.07)^t[/tex]
Coin B : [tex]V(t)=40(1.05)^t[/tex]
Step-by-step explanation:
Consider the given formula is
[tex]V(t)=P(1+r)^t[/tex]
where, P is current value, V(t) is the value of the coin in t years, and r is annual appreciation rate.
For coin A, current value is 25 dollars and annual appreciation rate is 7%.
[tex]V(t)=25(1+0.07)^t[/tex]
[tex]V(t)=25(1.07)^t[/tex]
For coin B, current value is 40 dollars and annual appreciation rate is 5%.
[tex]V(t)=40(1+0.05)^t[/tex]
[tex]V(t)=40(1.05)^t[/tex]
Therefore, the required equations for coin A and B are [tex]V(t)=25(1.07)^t[/tex] and [tex]V(t)=40(1.05)^t[/tex] respectively.
1,305 divided by 31,828 x100
Answer:
[tex]4 \frac{1}{10}[/tex]
Step-by-step explanation:
=> [tex]\frac{1305}{31828} * 100[/tex]
=> 0.041 * 100
=> 4.1
=> [tex]4 \frac{1}{10}[/tex]
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar. Penelope has $1,459.75 in her bank account. To pay her bills, she writes 4 checks in the amounts of $200.25, $359.45, $125, and $299.35. Then she deposits $375 into her account. Penelope’s account balance after she pays her bills and makes the deposit is $ .
Answer:
$850.7
Step-by-step explanation:
Penelope has $1459.75 in her account.
She pays different amount that are given above.
i.e.
=1459.75-200.25-359.45-125-299.35
=475.7
Then she deposit $375
Now,
=475.7+375
=850.7
So, She has $850.7 in her account after she pays her bills and makes deposits.
Answer:
$805.7 OwO
Step-by-step explanation:
A: What are the solutions to the quadratic equation 9x2 + 64 = 0?
B: What is the factored form of the quadratic expression 9x2 +64?
Select one answer for question A, and select one answer for question B.
B: (3x + 81)(x - 1)
B: (x-8)(3x-8)
B:(3x8)(3x + 8)
B: (3x - 81)(3x + 81)
Ax = or x = -1
A:x =
A: x = i orx = -
O A x = 1
Answer:
B: (3x + 81)(x - 1)
Step-by-step explanation:
What is the equation for a straight line that would allow you to predict the value of Y from a given value of X. That is, calculate the value of "a" and the value of "b" and then substitute the 2 values into the generic equation (Y = a + bX) for a straight line. (Hint: calculate "b" first)
Answer:
[tex]m=-\frac{13}{20.8}=-0.625[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{16}{5}=3.2[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{35}{5}=7[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=7-(-0.625*3.2)=9[/tex]
So the line would be given by:
[tex]y=-0.625 x +9[/tex]
Step-by-step explanation:
We have the following data:
X: 3,3,2,1,7
Y:6,7,8,9,5
We want to find an equationinf the following form:
[tex] y= bX +a[/tex]
[tex]a=m=\frac{S_{xy}}{S_{xx}}[/tex]
Where:
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]
So we can find the sums like this:
[tex]\sum_{i=1}^n x_i = 3+3+2+1+7=16[/tex]
[tex]\sum_{i=1}^n y_i =6+7+8+9+5=35[/tex]
[tex]\sum_{i=1}^n x^2_i =72[/tex]
[tex]\sum_{i=1}^n y^2_i =255[/tex]
[tex]\sum_{i=1}^n x_i y_i =99[/tex]
With these we can find the sums:
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=72-\frac{16^2}{5}=20.8[/tex]
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=99-\frac{16*35}{5}=-13[/tex]
And the slope would be:
[tex]m=-\frac{13}{20.8}=-0.625[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{16}{5}=3.2[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{35}{5}=7[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=7-(-0.625*3.2)=9[/tex]
So the line would be given by:
[tex]y=-0.625 x +9[/tex]
Jim & Gavin share a lottery win of £4750 in the ratio 1 : 4. Jim then shares his part between himself, his wife & their son in the ratio 2 : 6 : 2. How much more does his wife get over their son?
Answer:
£380
Step-by-step explanation:
Consider the initial win of £4750
Sum the parts of the ratio, 1 + 4 = 5 parts
Divide the win by 5 to find the value of one part of the ratio.
£4750 ÷ 5 = £950 ← value of 1 part of the ratio
Thus Jim's share is £950
Sum the parts of the ratio shared in his family, 2 + 6 + 2 = 10 parts
Divide his share by 10 to find the value of one part
£950 ÷ 10 = £95 , thus
2 parts = 2 × £95 = £190 ← sons share
6 parts = 6 × £95 = £570 ← wife's share
£570 - £190 = £380
Wife gets £380 more than the son
HELP PLEASEEE ASAAAAPPPPPPPPPPPP I WILL GIVE BRAINLY TO THE FIRST ONE!!!!!!!!
Answer:
the total amount is £ 756.
hope it helps..
1/5 of a chocolate chip cookie has 30 cal how many calories are in a whole cookie
Answer:
150 cal
Step-by-step explanation:
5x30=150
Answer:
150 calories.
Step-by-step explanation:
Assuming there is the same amount of chocolate as well as cookie dough throughout the whole cookie.
You know that 1/5 of a chocolate chip cookie has 30 calories.
Find one cookie, by multiply 5 to both numbers. Set the equation:
1/5x = 30
Isolate the variable. Multiply 5 to both sides:
(1/5x) * 5 = (30) * 5
x = 30 * 5
x = 150
150 calories is your answer.
identify an equation in slope intercept form for the line parellel to y=-3x+7 that passes through (2,-4)
Answer:
y= -3x+2
Step-by-step explanation:
Parallel lines have the same slope. We can form an incomplete equation:
y= -3x+b
(make sure to see why the slope is -3)
We can plug in the coordinates of (2, -4):
-4= -3(2)+b
-4= -6+b
2=b
b is 2! We can form an equation: y= -3x+2
Find the equation of the given parabola in vertex and standard form. Describe in words all transformations that have been applied to the graph of y=x^2 to obtain the given graph of the transformed function
Answer: [tex]a)\ \text{Vertex}:y=-\dfrac{3}{2}(x+1)^2+6[/tex]
[tex]b)\ \text{Standard}:y=-\dfrac{3}{2}x^2-3x=\dfrac{9}{2}[/tex]
c) Transformations: reflection over the x-axis,
vertical stretch by a factor of 3/2,
horizontal shift 1 unit to the left,
vertical shift 6 units up
Step-by-step explanation:
Intercept form: y = a(x - p)(x - q)
Vertex form: y = a(x - h)² + k
Standard form: y = ax² + bx + c
We can see that the new vertex is (-1, 6). Use the Intercept form to find the vertical stretch: y = a(x - p)(x - q) where p, q are the intercepts.
p = -3, q = 1, (x, y) = (-1, 6)
a(-1 + 3)(-1 -1) = 6
a (2)(-2) = 6
a = -6/4
a = -3/2
a) Input a = -3/2 and vertex (h, k) = (-1, 6) into the Vertex form to get:
[tex]y=-\dfrac{3}{2}(x+1)^2+6[/tex]
b) Input a = -3/2 into the Intercept form and expand to get the Standard form:
[tex]y=-\dfrac{3}{2}(x+3)(x-1)\\\\\\y=-\dfrac{3}{2}(x^2+2x-3)\\\\\\y=-\dfrac{3}{2}x^2-3x+\dfrac{9}{2}[/tex]
c) Use the Vertex form to identify the transformations:
[tex]y=-\dfrac{3}{2}(x+1)^2+6[/tex]
a is negative: reflection over the x-axis|a| = 3/2: vertical stretch by a factor of 3/2h = -1: horizontal shift left 1 unitk = +6: vertical shift up 6 unitsSolve the equation x^2 – 16x + 25 = 0 to the nearest tenth.
Answer:
1.8 and 14.3
Step-by-step explanation:
Our equation is a quadratic equation so we will use the dicriminant method
Let Δ be our dicriminant a=1b= -16c= 25Δ= (-16)²-4*25*1=156≥0 so we have two solutions : x and y x= (16-[tex]\sqrt{156}[/tex])/2= 1.7555≈ 1.8y=(16+[tex]\sqrt{156}[/tex])/2=14.244≈ 14.3Written Response! Please help!
Evelyn believes that if she flips a coin 480 times, it will land tails up exactly 240 times. What would you tell Evelyn about her prediction?
Based on Evelyn's response, it can be said that she predicts that there is a 50% chance of the coin landing on tails and a 50% chance of the coin landing on heads.
What is the probability?Probability determines the chances that an event would happen. The probability the event occurs is 1 and the probability that the event does not occur is 0.
The probability that the coin lands on tails is half of the number of times the coin is tossed. This means she belives that there is an equal chance that the coin would land on either heads or tails.
To learn more about probability, please check: https://brainly.com/question/13234031
Bettina is measuring the food for her farm animals. She has 265 grams of corn, 500 grams of hay, and 495 grams of oats. What is the total weight in kilograms?
Answer
260 kilograms
Step-by-step explanation:
the correct answer is 260 kg
Answer: 12.6 kg
Step-by-step explanation: add the amounts of food for her farm, and just search for how many kg are in 1,260 grams