Answer:
22 feet
Step-by-step explanation:
Change 15 feet into inches using the conversion
1 foot = 12 inches, thus
15 ft = 15 × 12 = 180 inches
scale factor = 180 ÷ 3.75 = 48
Thus the actual dimensions of the boat are 48 times the model.
actual length = 48 × 5.5 = 264 inches = 264 ÷ 12 = 22 feet
Suppose that the function g is defined, for all real numbers, as follows.
What is the process of comparing data with a set of rules or values to determine if the data meets certain criteria
Answer:
Validation
Step-by-step explanation: Validation is a term used to describe the processes involved when we compare a set of values and observations against a set standard or rules to ensure that they meet certain expectations or criteria.
Validation is meant to prove that something, a data set etc are acceptable based on known rules, the rules or standards which is used to evaluate what can be described as valid.
Shaun's tent (shown below) is a triangular prism. Find the surface area, including the floor, of his tent.
Answer: 52.8
Step-by-step explanation: it’s on khan ,
Choose the smallest fraction? 3/4 1/5 3/10 1/7
Answer:
Hey there!
3/4= 0.75
1/5=0.2
3/10=0.3
1/7=0.14
Thus, 1/7 is the smallest fraction.
Hope this helps :)
What are the solutions to the system of equations graphed below?
Answer:
Hey there!
The solutions to a system are where the lines, or graphs intersect each other.
We see that the graphs intersect at (0, -4) and (2, 0).
Thus, the solutions are (0, -4) and (2, 0).
Hope this helps :)
A clinical trial tests a method designed to increase the probability of conceiving a girl. In the study 290 babies were born, and 261 of them were girls. Use the sample data to construct a 99% confidence interval estimate of the percentage of girls born. Based on the result, does the method appear to be effective?
Answer:
The 99% confidence interval estimate of the percentage of girls born is between 85.46% and 94.54%.
Usually, babies are equally as likely to be boys or girls. Here, it is desired to increase the probability of conceiving a girl, which is achieved, considering the lower bound of the confidence interval is considerably above 50%.
Step-by-step explanation:
Confidence interval for the proportion:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 290, \pi = \frac{261}{290} = 0.9[/tex]
99% confidence level
So [tex]\alpha = 0.01[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.9 - 2.575\sqrt{\frac{0.9*0.1}{290}} = 0.8546[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.9 + 2.575\sqrt{\frac{0.9*0.1}{290}} = 0.9454[/tex]
Percentage:
Proportion multplied by 100.
0.8546*100 = 85.46%
0.9454*100 = 94.54%
The 99% confidence interval estimate of the percentage of girls born is between 85.46% and 94.54%.
Based on the result, does the method appear to be effective?
Usually, babies are equally as likely to be boys or girls. Here, it is desired to increase the probability of conceiving a girl, which is achieved, considering the lower bound of the confidence interval is considerably above 50%.
The accompanying data represent the total travel tax (in dollars) for a 3-day business trip in 8 randomly selected cities. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers.
67.85 78.62 70.28 84.03 79.28 87.72 101.54 97.28
1. Determine a point estimate for the population mean travel tax.
2. Construct and interpret a 95% confidence interval for the mean tax paid for a three-day business trip.
Filling the missing boxes.
The lower bound is $_______and the upper bound is $_______. One can be______% confident that all cities have a travel tax between these values.
The lower bound is $______and the upper bound is $______. The travel tax is between these values for______% of all cities.
The lower bound is $_____and the upper bound is $______. There is a_______% probability that the mean travel tax for all cities is between these values.
The lower bound is $_______and the upper bound is______. One can be______% confident that the mean travel tax for all cities is between these values.
3. What would you recommend to a researcher who wants to increase the precision of the interval, but does not have access to additional data?
A. The researcher could decrease the level of confidence.
B. The researcher could decrease the sample standard deviation.
C. The researcher could increase the level of confidence.
D. The researcher could increase the sample mean.
Answer:
1. Point estimate M (sample mean): 83.33
2. The lower bound is $73.36 and the upper bound is $93.30. One can be______% confident that the mean travel tax for all cities is between these values.
3. A. The researcher could decrease the level of confidence.
Step-by-step explanation:
A point esimate for the population mean travel tax can be done with the sample mean.
We can calculate the sample mean as:
[tex]M=\dfrac{1}{n}\sum_{i=1}^n\,x_i\\\\\\M=\dfrac{1}{8}(67.85+78.62+70.28+84.03+79.28+87.72+101.54+97.28)\\\\\\M=\dfrac{666.6}{8}\\\\\\M=83.33\\\\\\[/tex]
2. We have to calculate a 95% confidence interval for the mean.
The sample mean is M=83.33.
The sample size is N=8.
The population standard deviation is not known, so we have to estimate it from the sample standard deviation and use a t-students distribution to calculate the critical value.
We calculate the sample standard deviation as:
[tex]s=\sqrt{\dfrac{1}{n-1}\sum_{i=1}^n\,(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{7}((67.85-83.33)^2+(78.62-83.33)^2+(70.28-83.33)^2+. . . +(97.28-83.33)^2)}\\\\\\s=\sqrt{\dfrac{994.49}{7}}\\\\\\s=\sqrt{142.07}=11.92\\\\\\[/tex]
The standard error is:
[tex]s_M=\dfrac{s}{\sqrt{N}}=\dfrac{11.92}{\sqrt{8}}=\dfrac{11.92}{2.828}=4.214[/tex]
The degrees of freedom for this sample size are:
[tex]df=n-1=8-1=7[/tex]
The t-value for a 95% confidence interval and 7 degrees of freedom is t=2.36.
The margin of error (MOE) can be calculated as:
[tex]MOE=t\cdot s_M=2.36 \cdot 4.214=9.97[/tex]
Then, the lower and upper bounds of the confidence interval are:
[tex]LL=M-t \cdot s_M = 83.33-9.97=73.36\\\\UL=M+t \cdot s_M = 83.33+9.97=93.30[/tex]
The 95% confidence interval for the mean travel tax is (73.36, 93.30).
We can be 95% confident that the true mean travel tax is within this interval.
3.. If we have no access to additional data, we can not decrease the standard deviation or increase the sample size.
The only way to have a narrower confidence interval is decreasing its level of confidence. With the same sample information, the lower the confidence, the narrower is the interval.
Of 380 randomly selected medical students, 21 said that they planned to work in a rural community. Find a 95% confidence interval for the true proportion of all medical students who plan to work in a rural community.
Answer:
[tex]0.0553 - 1.96\sqrt{\frac{0.0553(1-0.0553)}{380}}=0.0323[/tex]
[tex]0.0553 + 1.96\sqrt{\frac{0.0553(1-0.0553)}{380}}=0.0783[/tex]
Step-by-step explanation:
The info given is:
[tex] X= 21[/tex] number of students who said that they planned to work in a rural community
[tex] n= 380[/tex] represent the sample size selected
[tex]\hat p =\frac{21}{380}= 0.0553[/tex] the estimated proportion of students who said that they planned to work in a rural community
In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 95% of confidence, our significance level would be given by [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2 =0.025[/tex]. And the critical value would be given by:
[tex]z_{\alpha/2}=-1.96, z_{1-\alpha/2}=1.96[/tex]
The confidence interval for the mean is given by the following formula:
[tex]\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
Replpacing we got:
[tex]0.0553 - 1.96\sqrt{\frac{0.0553(1-0.0553)}{380}}=0.0323[/tex]
[tex]0.0553 + 1.96\sqrt{\frac{0.0553(1-0.0553)}{380}}=0.0783[/tex]
A mean for estimation is the minimum-maximum variation estimate's C.I. The % of pupils planning to work in a rural community alters between 0.0323 and 0.0783.
Confidence interval:
Let's [tex]p^{}[/tex] represent the sampling fraction of the people who promised to work in a rural area.
Sample size:
[tex]n = 380[/tex]
x: the large number the pupils expected to work in a rural setting
[tex]p^{} = \frac{x}{n} \\\\p^{} = \frac{21}{ 380} = 0.0553\\\\(1- \alpha)\ \ 100\%[/tex]confidence for true proportion:
[tex]( p^{}\ \pm Z_{\frac{\alpha}{2}} \times \sqrt{p^{} \times \frac{(1-p^{})}{n}} ) \\\\[/tex]
For [tex]95\%[/tex]confidence interval:
[tex]\to 1 - \alpha = 0.95[/tex]
When:
[tex]\to \alpha = 0.05[/tex]
Calculating the value of Z by using the table:
[tex]\to Z_{0.025} = 1.96[/tex]
When the [tex]95\%[/tex] of the confidence interval:
[tex]\to (0.0553 \pm Z_{0.025} \times \sqrt{(0.0553 \times \frac{(1- 0.0553)}{380}})\\\\\to (0.0553 - Z_{0.025} \times \sqrt{(0.0553 \times \frac{(1- 0.0553)}{380})},0.0553 + Z_{0.025} \times \sqrt{(0.0553 \times \frac{(1- 0.0553)}{380}))}\\\\[/tex]
by solving the value we get:
[tex]\to ( 0.0323 , 0.0783 )[/tex]
We are [tex]95\%[/tex] sure that the true proportion of students planning to work in a rural community is between [tex]0.0323[/tex] and [tex]0.0783[/tex]. That is we are [tex]95\%[/tex] sure that the percentage of students planning to work in a rural community is between [tex]3.23\%[/tex] and [tex]7.83\%[/tex].Find out more about the Confidence interval here:
brainly.com/question/2396419
solve the system of equations y=3x+2 y=x^2-4+2 A. (0,2) and (7,23) B. (-7,-23) and (0,2) C. (-7,23) and (0,-2) D. (0,-2) and (-7,-23)
Answer:
A. (0,2) and (7,23)
Step-by-step explanation:
To solve, we set both equations equal to each other (because both equations equal y).
3x + 2 = x^2 -4x + 2
x^2 - 7x = 0
x(x-7)
so the x values are 7 and 0.
Plugging x back into the linear equation (because it’s easier)
3(7) + 2 = 23
3(0) + 2 = 2
so the answers are (7, 23) and (0,2)
What is the equation of the line in slope-intercept form that is perpendicular to the line y=3/4x-2 and passes
through the point (-12, 10)?
Oy=-4/3-6
O y=-4/3x + 6
O y = 4/3x + 26
O y = 4/3x +10
Answer: y=-(4/3)*x-6
Step-by-step explanation:
The equation of any straight line is y=a*x+b (1).
So we have to find the coefficients a and b and substitute them to the equation (1).
If the required line is perpendicular to y= (3/4)*x-2 it means that
a= -(4/3) (we have to inverse the fraction 3/4 and put the opposite sign after that. 3/4 has the sign + in front of it so we have to put sign -)
So the equation of required line is y= -(4/3) *x+b .
Now we have to find b. To do that pls remember that the point (-12;10) belongs to the required line y= -(4/3) *x+b . That means:
10=-(4/3)*(-12)+b => 10=16+b => b=-6
So substitute b in equation (1) and get:
y=-(4/3)*x-6
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.
The table gives the boiling point of water at different altitudes.
Altitude (1,000 feet) Boiling Point of Water (°F)
0 212.0
0.5 211.1
1.0 210.2
2.0 208.4
2.5 207.5
3.0 206.6
4.0 204.8
4.5 203.9
Based on the table, the linear equation that represents the change in water’s boiling point for every 1,000-foot change in altitude has a slope of
units.
Answer:
[tex]\large \boxed{\text{-1.8$^{\circ}$F/1000 ft}}[/tex]
Step-by-step explanation:
Identify the changes (Δ) in each consecutive pair of x-values and y-values, then calculate the corresponding values of Δy/Δx
Your working table should look like the one below.
[tex]\begin{array}{cccc}\textbf{Alt/1000 ft} & \textbf{B.p.$/^{\circ}$F} & \Delta\textbf{B. p}& \Delta\textbf{B.p/1000 ft}\\0 & 212.0 & & \\& &-0.9 & -1.8\\0.5 & 211.1 & & \\& &-0.9 & -1.8\\1.0 & 210.2 & & \\& &-1.8 & -1.8\\2.0 & 208.4 & & \\& &-1.8 & -1.8\\3.0 & 206.6 & & \\& &-1.8 & -1.8\\4.0 & 204.8 & & \\& &-0.9 & -1.8\\4.5 & 203.9 & & \\\end{array}[/tex]
[tex]\text{ The change in boiling point per thousand feet of altitude is $\large \boxed{\textbf{-1.8$^{\circ}$F/1000 ft}}$}[/tex]
Answer:
Answer:
Step-by-step explanation:
Identify the changes (Δ) in each consecutive pair of x-values and y-values, then calculate the corresponding values of Δy/Δx
Your working table should look like the one below.
Step-by-step explanation:
Ok, so. I know It’s -27 + 23x and X = 7 right?? Or am I doing something wrong.
Answer:
134 degrees
Step-by-step explanation:
Right so far. To find the numerical measure of the angle, you need to use x=7 in your expression for the angle measure:
m∠STU = -27 +23(7) = 134 . . . degrees
You were hired as a geotechnical engineer in the XYZ Construction company. Your boss has asked you to estimate the settlement of a new building project that your firm just won the bid. Based on your extensive knowledge on geotechnical engineering and statistical analysis, you estimate that the settlement of the building will not exceed 2 inches with 95% probability. From a record of performance of many similar structures built on similar soil conditions, you also find that the coefficient of variation of the settlement is 20%. After showing the calculation to your boss, she still has few concerns about the settlement.
Requried:
Assuming a normal distribution is used to model the settlement of this project, your boss asks you to give her the probability that this building will settle more than 2.5 inches
Answer:
Probability = 0.10565
Step-by-step explanation:
Given:
Mean, u = 2
x = 2.5
CV = 20% = 0.2
To find standard deviation [tex] \sigma[/tex] use the formula:
[tex] CV = \frac{\sigma}{u} [/tex]
[tex] 0.2 = \frac{\sigma}{2} [/tex]
[tex] \sigma = 0.2 * 2 [/tex]
[tex] \sigma = 0.4 [/tex]
Find Z, using the formula:
[tex] Z = \frac{x - u}{\sigma} [/tex]
[tex] Z = \frac{2.5 - 2}{0.4} [/tex]
[tex] Z = \frac{0.5}{0.4} [/tex]
[tex] Z = 1.25 [/tex]
Using the p value table,
P(x > 1.25) = 0.10565
Therefore, The probability that this building will settle more than 2.5 inches is 0.10565
How do you find the surface area of a triangle? A square?
Answer:
The area formula of a triangle is (base * height) / 2 and the area of a square is s² where s is the length of one side.
Maya Buy a desk on sale for 432 the price was 36% less than the original price what was the original price
Answer:
[tex]\boxed{Costing Price = $675}[/tex][tex]\boxed{Costing Price = $675}[/tex]Costing Price = $675
Step-by-step explanation:
Selling Price = $432
Discount = 36% of the costing price (36/100 * CP)
Then, Costing Price:
Let costing price be x
=> x - 0.36 x = 432
=> 0.64 x = 432
Dividing both sides by 0.64
=> x = $675
So, the costing Price is $675
246,000 in scientific notation
Answer:
246000 in scientific notation is 2.46e5, or 2.46 x 10^5
Step-by-step explanation:
246000, move the decimal place 5 places to the left.
2.4x10^5
Answer:
2.46 × 10⁵
Step-by-step explanation:
The decimal point is after the first non-zero digit.
⇒ 2.46
Multiply the number with base 10 and an exponent which will equal to 246,000.
⇒ 10⁵
Applying the Segment Addition Postulate
Point B lies between points A and C on AC. Let x
represent the length of segment AB in inches.
A
B
3x
Use the segment to complete the statements.
The value of x is v.
The length of AR in inches is
✓x
C
The length of BC in inches is
20 inches
Intro
Answer:
x = 5, AB=5, BC = 15
Step-by-step explanation:
AC = AB + BC (Segment Addition)
AC= 20, AB =x Bc = 3x,
20= x+3x 20=4x
x=5
AB=x, AB =5
BC=3x BC= 15
The segment addition postulate states gives the value of x as 5, given
that the sum of x and 3·x is 20.
Responses:
The value of x is 5The length of [tex]\overline{AB}[/tex] is 5 inchesThe length of [tex]\overline{BC}[/tex] is 15 inchesHow does segment addition postulate give the value of x?From the given diagram, we have;
[tex]\overline{AB}[/tex] = x
[tex]\overline{BC}[/tex] = 3·x
According to segment addition postulate we have;
[tex]\overline{AB}[/tex] + [tex]\overline{BC}[/tex] = [tex]\overline{AC}[/tex] = 20 inches
Which gives;
x + 3·x = 20
Therefore;
4·x = 20
[tex]x = \dfrac{20}{4} = 5[/tex]
The value of x is 5The length of [tex]\overline{AB}[/tex] is 5 inches[tex]\mathbf{\overline{BC}}[/tex] = 3·x
[tex]\mathbf{\overline{BC}}[/tex] = 3 × 5 = 15
The length of [tex]\overline{BC}[/tex] is 15 inchesLearn more about segment addition postulate here:
https://brainly.com/question/1397818
Tublu buys a cylindrical water tank of height 1.4m and diameter 1.1m to catch rainwater off his roof. He has a full 2 liter tin of paint in his store and decides to paint the tank (not the base). If he uses 250ml to cover 1m^2, will he have enough paint to cover the tank with one layer of paint? ( Take π = 3.142)
Answer:
There is enough paint to cover the tank with one layer of paint.
Step-by-step explanation:
Given the cilindrical configuration of the tank and supposing that only external face must be painted, the surface area of the section (lateral wall + lid) can be calculated by the following expression:
[tex]A_{s} = 2\pi\cdot r\cdot h + \pi\cdot r^{2}[/tex]
Where [tex]r[/tex] and [tex]h[/tex] represent the radius and the height of the cube, respectively.
If [tex]r = 0.55\,m[/tex] (a diameter is two times the length of radius) and [tex]h = 1.4\,m[/tex], the intended surface area is:
[tex]A_{s} = 2\pi\cdot (0.55\,m)\cdot (1.1\,m)+\pi\cdot (0.55\,m)^{2}[/tex]
[tex]A_{s} \approx 4.751\,m^{2}[/tex]
It is known that 250 mL of paint are needed to cover a square meter of the surface area, the needed amount of paint to cover the required area is estimated by simple rule of three:
[tex]Q = \frac{4.751\,m^{2}}{1\,m^{2}}\times (250\,mL)[/tex]
[tex]Q = 1187.75\,mL\,(1.188\,L)[/tex]
In consequence, there is enough paint to cover the tank with one layer of paint.
An earthquake was felt throughout a circular area of 1,808.64 square miles. What was the radius of the circular area?
Answer:
24 miles
Step-by-step explanation:
The area of a circle is given by: A = (pi)(r^2)
The problem gives the area as: 1,808.64 sq. mi.
So, (pi)(r^2) = 1,808.64 Solve for r. Divide both sides by pi (3.14)
r^2 = 1.808.64/3.14
r^2 = 576 Take the square root of both sides.
r = 24 Miles.
Answer:
23.99 miles
Step-by-step explanation:
The area of a circle is denoted by A = πr², where r is the radius.
Here, we know the circular area is A = 1808.64 square miles, so plug this into the formula to find r:
A = πr²
1808.64 = πr²
r² = 1808.64 / π ≈ 575.71
r = √575.71 ≈ 23.99 miles
The answer is thus 23.99 miles.
~ an aesthetics lover
Find the slope of the line on the graph. Write your answer as a fraction or a whole number, not a mixed number or decimal.
Answer:
-4/8
Step-by-step explanation:
Using rise over run would give you -4/8. Since the rise is going downward four times the number would be negative. Since the run is going to the right 8 times it would be positive.
Answer: the slope is -1/2
Step-by-step explanation: The rise is -4. Easy to see from the y-intercept, 4 below the origin. The run is 8, again easy to see from the distance between the x-intercept at -8, 8 unite away from the origin.
So slope = rise/run -4/8 simplify (by LCM, 4) So you get slope = -1/2
Compute the determinants using a cofactor expansion across the first row. Also compute the determinant by a cofactor expansion down the second column.
[ 0 4 1
5 −3 0
2 3 1 ]
Answer:
The determinant is 1Step-by-step explanation:
Given the 3* 3 matrices [tex]\left[\begin{array}{ccc}0&4&1\\5&-3&0\\2&3&1\end{array}\right][/tex], to compute the determinant using the first row means using the row values [0 4 1 ] to compute the determinant. Note that the signs on the values on the first row are +0, -4 and +1
Calculating the determinant;
[tex]= +0\left[\begin{array}{cc}-3&0\\3&1\\\end{array}\right] -4\left[\begin{array}{cc}5&0\\2&1\\\end{array}\right] +1\left[\begin{array}{cc}5&-3\\2&3\\\end{array}\right] \\\\= 0 - 4[5(1)-2(0)] +1[5(3)-2(-3)]\\= 0 -4[5-0]+1[15+6]\\= 0-20+21\\= 1[/tex]
The determinant is 1 using the first row as co-factor
Similarly, using the second column [tex]\left[\begin{array}{c}4\\-3\\3\end{array}\right][/tex] as the cofactor, the determinant will be expressed as shown;
Note that the signs on the values are -4, +(-3) and -3.
Calculating the determinant;
[tex]= -4\left[\begin{array}{cc}5&0\\2&1\\\end{array}\right] -3\left[\begin{array}{cc}0&1\\2&1\\\end{array}\right] -3\left[\begin{array}{cc}0&1\\5&0\\\end{array}\right] \\\\= -4[5(1)-2(0)] - 3[0(1)-2(1)] -3[(0)-5(1)]\\= -4[5-0] -3[0-2]-3[0-5]\\= -20+6+15\\= -20+21\\= 1[/tex]
The determinant is also 1 using the second column as co factor.
It can be concluded that the same value of the determinant will be arrived at no matter the cofactor we choose to use.
PLEASE HELP!! Find the missing side and round answer to the nearest tenth.
Answer:
Step-by-step explanation:
opp=x,hyp=16
sin 51°=[tex]\frac{x}{16}[/tex]
cross multiply
sin 51° x 16 =x
0.7771 x 16=x
12.4=x
Solve the system of equations: [tex]3x-4y=-23\\2y-x=-19[/tex]
Answer:
Step-by-step explanation:
3x - 4y = -23
-x + 2y = -19
3x - 4y = -23
-3x - 6y = -57
-10y = -80
y = 8
-x + 2(8) = -19
-x + 16 = -19
-x = -35
x = 35
(35, 8)
━━━━━━━☆☆━━━━━━━
▹ Answer
(-61, -40)
▹ Step-by-Step Explanation
3x - 4y = -23
2y - x = -19
3x - 4y = -23
x = 19 + 2y
3(19 + 2y) - 4y = -23
y = -40
x = 19 + 2 * (-40)
x = -61
(x, y) = (-61, -40)
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
find the sum (12p +9) +(4p-3)
Hey there! :)
Answer:
16p + 6.
Step-by-step explanation:
Add the two binomials together by combining like terms:
12p + 9 + 4p - 3
12p + 4p + 9 - 3
16p + 6.
Answer:
16p+6
Step-by-step explanation:
You combine like terms you do not multiply.
A human resources representative claims that the proportion of employees earning more than $50,000 is less than 40%. To test this claim, a random sample of 700 employees is taken and 305 employees are determined to earn more than $50,000.The following is the setup for this hypothesis test:{H0:p=0.40Ha:p<0.40Find the test statistic for this hypothesis test for a proportion. Round your answer to 2 decimal places.
Answer:
The statistic for this case would be:
[tex] z=\frac{\hat p -p_o}{\sqrt{\frac{\hat p(1-\hat p)}{n}}}[/tex]
And replacing we got:
[tex] z= \frac{0.436-0.4}{\sqrt{\frac{0.436*(1-0.436)}{700}}}= 1.92[/tex]
Step-by-step explanation:
For this case we have the following info:
[tex] n =700[/tex] represent the sample size
[tex] X= 305[/tex] represent the number of employees that earn more than 50000
[tex]\hat p=\frac{305}{700}= 0.436[/tex]
We want to test the following hypothesis:
Nul hyp. [tex] p \leq 0.4[/tex]
Alternative hyp : [tex] p>0.4[/tex]
The statistic for this case would be:
[tex] z=\frac{\hat p -p_o}{\sqrt{\frac{\hat p(1-\hat p)}{n}}}[/tex]
And replacing we got:
[tex] z= \frac{0.436-0.4}{\sqrt{\frac{0.436*(1-0.436)}{700}}}= 1.92[/tex]
And the p value would be given by:
[tex] p_v = P(z>1.922)= 0.0274[/tex]
What is the value of x?
45
m
(2x-5)
Answer:
if m is supposed to be the equals (=) sign then x = 25
Step-by-step explanation:
45 = (2x-5)
+5 +5
50 = (2x)
÷2 ÷2
25 = x
Answer: 70
Step-by-step explanation:
Click on the graphic below until RA TU at point Q is displayed. Plzzzzz help
Answer:
I think its
T
R--------Q----------A
U
Step-by-step explanation:
Because RA as a line bisects TU
Kimberly is a program director for the channel KID. She tracked the cartoons shown on the channel for a week. The probability that the show had animals in it was 0.7. The probability that the show aired more than 10 times was 0.4. The probability that the show had animals in it and aired more than 10 times was 0.2. Which equation shows the correct use of the addition rule to determine the probability that a randomly selected show had animals in it or aired more than 10 times?
Options
0.7+0.2−0.4=0.5 0.7+0.2=0.9 0.7+0.4=1.1 0.4+0.2=0.6 0.7+0.4−0.2=0.9Answer:
[tex](E)0.7+0.4-0.2=0.9[/tex]
Step-by-step explanation:
In probability theory
[tex]P$(A or B)=P(A)+P(B)$-$P(A and B)[/tex]
Let the event that the show had animals in it = A
P(A)=0.7
Let the event that the show aired more than 10 times =B
P(B)=0.4
P(A and B)= 0.2
[tex]P$(A or B)$=0.7+0.4-0.2=0.9[/tex]
Therefore, the equation which shows the correct use of the addition rule to determine the probability that a randomly selected show had animals in it or aired more than 10 times is:
[tex]0.7+0.4-0.2=0.9[/tex]
The correct option is E.
Will give brainliest, someone please help
━━━━━━━☆☆━━━━━━━
▹ Answer
Area = 9
▹ Step-by-Step Explanation
A = b * h ÷ 2
A = 9 * 2 ÷ 2
A = 9
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
PLSS I NEED HELP I NEED HELP SOMEONE SAVE ME
Answer:
sorry but are you dyin why do u need help why do you need someone to save you just say i need answers to this equation pls