Janet found two worms in the yard and measured them with a ruler. One worm was ( 1)/(2) of an inch long. The other worm was ( 1)/(5) of an inch long. How much longer was the longer worm? Write your an

Answers

Answer 1

The longer worm was ( 3)/(10) of an inch longer than the shorter worm.

To find out how much longer the longer worm was, we need to subtract the length of the shorter worm from the length of the longer worm.

Length of shorter worm = ( 1)/(2) inch

Length of longer worm = ( 1)/(5) inch

To subtract fractions with different denominators, we need to find a common denominator. The least common multiple of 2 and 5 is 10.

So,

( 1)/(2) inch = ( 5)/(10) inch

( 1)/(5) inch = ( 2)/(10) inch

Now we can subtract:

( 2)/(10) inch - ( 5)/(10) inch = ( -3)/(10) inch

The longer worm was ( 3)/(10) of an inch longer than the shorter worm.

Know more about common denominator here:

https://brainly.com/question/29048802

#SPJ11


Related Questions

A mechanic's tool set is on sale for 210 after a markdown of 30%
off the regular price. Find the regular price.

Answers

The regular price of the mechanic's tool set is $300.

Given that a mechanic's tool set is on sale for 210 after a markdown of 30% off the regular price.

Let's assume the regular price as 'x'.As per the statement, the mechanic's tool set is sold after a markdown of 30% off the regular price.

So, the discount amount is (30/100)*x = 0.3x.The sale price is the difference between the regular price and discount amount, which is equal to 210.Therefore, the equation becomes:x - 0.3x = 210.

Simplify the above equation by combining like terms:x(1 - 0.3) = 210.Simplify further:x(0.7) = 210.

Divide both sides by 0.7: x = 210/0.7 = 300.Hence, the regular price of the mechanic's tool set is $300.


To know more about price click here:

https://brainly.com/question/20703640

#SPJ11

Find the area of the parallelogram whose vertices are listed. (0,0),(5,8),(8,2),(13,10) The area of the parallelogram is square units.

Answers

The area of the parallelogram with vertices (0,0), (5,8), (8,2), and (13,10) is 54 square units.

To find the area of a parallelogram, we need to use the formula A = base × height, where the base is one of the sides of the parallelogram and the height is the perpendicular distance between the base and the opposite side. Using the given vertices, we can determine two adjacent sides of the parallelogram: (0,0) to (5,8) and (5,8) to (8,2).

The length of the first side can be found using the distance formula: d = √((x2-x1)^2 + (y2-y1)^2). In this case, the length is d1 = √((5-0)^2 + (8-0)^2) = √(25 + 64) = √89. Similarly, the length of the second side is d2 = √((8-5)^2 + (2-8)^2) = √(9 + 36) = √45.

Now, we need to find the height of the parallelogram, which is the perpendicular distance between the base and the opposite side. The height can be found by calculating the vertical distance between the point (0,0) and the line passing through the points (5,8) and (8,2). Using the formula for the distance between a point and a line, the height is h = |(2-8)(0-5)-(8-5)(0-0)| / √((8-5)^2 + (2-8)^2) = 6/√45.

Finally, we can calculate the area of the parallelogram using the formula A = base × height. The base is √89 and the height is 6/√45. Thus, the area of the parallelogram is A = (√89) × (6/√45) = 54 square units.

To know more about   parallelogram refer here:

https://brainly.com/question/28163302

#SPJ11

Recall the fish harvesting model of Section 1.3, and in particular the ODE (1.10). The variable t in that equation is time, but u has no obvious dimension. Let us take [u]=N, where N denotes the dimension of "population." (Although we could consider u as dimensionless since it simply counts how many fish are present, in other contexts we'll encounter later it can be beneficial to think of u(t) as having a specific dimension.) If [u]=N, then in the model leading to the ODE (1.10), what is the dimension of K ? What must be the dimension of r for the ODE to be dimensionally consistent?

Answers

The dimension of K is N, representing the dimension of population.

The dimension of r is 1/time, ensuring dimensional consistency in the equation.

In the fish harvesting model, the variable t represents time and u represents the population of fish. We assign the dimension [u] = N, where N represents the dimension of "population."

In the ODE (1.10) of the fish harvesting model, we have the equation:

du/dt = r * u * (1 - u/K)

To determine the dimensions of the parameters in the equation, we consider the dimensions of each term separately.

The left-hand side of the equation, du/dt, represents the rate of change of population with respect to time. Since [u] = N and t represents time, the dimension of du/dt is N/time.

The first term on the right-hand side, r * u, represents the growth rate of the population. To make the equation dimensionally consistent, the dimension of r must be 1/time. This ensures that the product r * u has the dimension N/time, consistent with the left-hand side of the equation.

The second term on the right-hand side, (1 - u/K), is a dimensionless ratio representing the effect of carrying capacity. Since u has the dimension N, the dimension of K must also be N to make the ratio dimensionless.

In summary:

The dimension of K is N, representing the dimension of population.

The dimension of r is 1/time, ensuring dimensional consistency in the equation.

Note that these dimensions are chosen to ensure consistency in the equation and do not necessarily represent physical units in real-world applications.

Learn more about population  from

https://brainly.com/question/25896797

#SPJ11

what is the domain of the function y=3^ root x ?

Answers

Answer:

last one (number four):

1 < x < ∞

There is a line that includes the point (8,1) and has a slope of 10 . What is its equation in point -slope fo? Use the specified point in your equation. Write your answer using integers, proper fractions, and improper fractions. Simplify all fractions. Submit

Answers

The equation of the line in point-slope form is y - 1 = 10(x - 8), and in slope-intercept form, it is y = 10x - 79.

Given that there is a line that includes the point (8, 1) and has a slope of 10. We need to find its equation in point-slope form. Slope-intercept form of the equation of a line is given as;

            y - y1 = m(x - x1)

where m is the slope of the line and (x1, y1) is a point on the line.

Putting the given values in the equation, we get;

              y - 1 = 10(x - 8)

Multiplying 10 with (x - 8), we get;

              y - 1 = 10x - 80

Simplifying the equation, we get;

                  y = 10x - 79

Hence, the equation of the line in point-slope form is y - 1 = 10(x - 8), and in slope-intercept form, it is y = 10x - 79.

To know more about slope-intercept here:

https://brainly.com/question/1884491

#SPJ11

Balance the chemical equations using techniques from linear algebra. ( 9 pts.) C 2 H6 +O2 →H 2 O+CO 2 C 8 H18 +O2 →CO2 +H2 O Al2 O3 +C→Al+CO 2

Answers

The balanced chemical equation is: 4Al2O3 + 13C → 8Al + 9CO2 To balance a chemical equation using techniques from linear algebra, we can represent the coefficients of the reactants and products as a system of linear equations.

We then solve this system using matrix algebra to obtain the coefficients that balance the equation.

C2H6 + O2 → H2O + CO2

We represent the coefficients as follows:

C2H6: 2C + 6H

O2: 2O

H2O: 2H + O

CO2: C + 2O

This gives us the following system of linear equations:

2C + 6H + 2O = C + 2O + 2H + O

2C + 6H + 2O = 2H + 2C + 4O

Rearranging this system into matrix form, we get:

[2 -1 -2 0] [C]   [0]

[2  4 -2 -6] [H] = [0]

[O]   [0]

Using row reduction operations, we can solve this system to obtain:

C2H6 + 7/2O2 → 2H2O + CO2

Therefore, the balanced chemical equation is:

2C2H6 + 7O2 → 4H2O + 2CO2

C8H18 + O2 → CO2 + H2O

We represent the coefficients as follows:

C8H18: 8C + 18H

O2: 2O

CO2: C + 2O

H2O: 2H + O

This gives us the following system of linear equations:

8C + 18H + 2O = C + 2O + H + 2O

8C + 18H + 2O = C + 2H + 4O

Rearranging this system into matrix form, we get:

[7 -1 -4 0] [C]   [0]

[8  2 -2 -18] [H] = [0]

[O]   [0]

Using row reduction operations, we can solve this system to obtain:

C8H18 + 25O2 → 16CO2 + 18H2O

Therefore, the balanced chemical equation is:

2C8H18 + 25O2 → 16CO2 + 18H2O

Al2O3 + C → Al + CO2

We represent the coefficients as follows:

Al2O3: 2Al + 3O

C: C

Al: Al

CO2: C + 2O

This gives us the following system of linear equations:

2Al + 3O + C = Al + 2O + C + 2O

2Al + 3O + C = Al + C + 4O

Rearranging this system into matrix form, we get:

[1 -2 -2 0] [Al]   [0]

[1  1 -3 -1] [O] = [0]

[C]   [0]

Using row reduction operations, we can solve this system to obtain:

Al2O3 + 3C → 2Al + 3CO2

Therefore, the balanced chemical equation is:

4Al2O3 + 13C → 8Al + 9CO2

To balance a chemical equation using techniques from linear algebra, we can represent the coefficients of the reactants and products as a system of linear equations. We then solve this system using matrix algebra to obtain the coefficients that balance the equation.

C2H6 + O2 → H2O + CO2

We represent the coefficients as follows:

C2H6: 2C + 6H

O2: 2O

H2O: 2H + O

CO2: C + 2O

This gives us the following system of linear equations:

2C + 6H + 2O = C + 2O + 2H + O

2C + 6H + 2O = 2H + 2C + 4O

Rearranging this system into matrix form, we get:

[2 -1 -2 0] [C]   [0]

[2  4 -2 -6] [H] = [0]

[O]   [0]

Using row reduction operations, we can solve this system to obtain:

C2H6 + 7/2O2 → 2H2O + CO2

Therefore, the balanced chemical equation is:

2C2H6 + 7O2 → 4H2O + 2CO2

C8H18 + O2 → CO2 + H2O

We represent the coefficients as follows:

C8H18: 8C + 18H

O2: 2O

CO2: C + 2O

H2O: 2H + O

This gives us the following system of linear equations:

8C + 18H + 2O = C + 2O + H + 2O

8C + 18H + 2O = C + 2H + 4O

Rearranging this system into matrix form, we get:

[7 -1 -4 0] [C]   [0]

[8  2 -2 -18] [H] = [0]

[O]   [0]

Using row reduction operations, we can solve this system to obtain:

C8H18 + 25O2 → 16CO2 + 18H2O

Therefore, the balanced chemical equation is:

2C8H18 + 25O2 → 16CO2 + 18H2O

Al2O3 + C → Al + CO2

We represent the coefficients as follows:

Al2O3: 2Al + 3O

C: C

Al: Al

CO2: C + 2O

This gives us the following system of linear equations:

2Al + 3O + C = Al + 2O + C + 2O

2Al + 3O + C = Al + C + 4O

Rearranging this system into matrix form, we get:

[1 -2 -2 0] [Al]   [0]

[1  1 -3 -1] [O] = [0]

[C]   [0]

Using row reduction operations, we can solve this system to obtain:

Al2O3 + 3C → 2Al + 3CO2

Therefore, the balanced chemical equation is:

4Al2O3 + 13C → 8Al + 9CO2

learn more about linear algebra here

https://brainly.com/question/1952076

#SPJ11

A group of adult males has foot lengths with a mean of 27.23 cm and a standard deviation of 1.48 cm. Use the range rule of thumb for identifying significant values to identify the limits separating values that are significantly low or significantly high. Is the adult male foot length of 23.7 cm significantly low or significantly high? Explain. Significantly low values are cm or lower. (Type an integer or a decimal. Do not round.) Significantly high values are cm or higher. (Type an integer or a decimal. Do not round.) Select the correct choice below and fill in the answer box(es) to complete your choice. A. The adult male foot length of 23.7 cm is significantly low because it is less than cm. (Type an integer or a decimal. Do not round.) B. The adult male foot length of 23.7 cm is not significant because it is between cm and cm. (Type integers or decimals. Do not round.) C. The adult male foot length of 23.7 cm is significantly high because it is greater than cm. (Type an integer or a decimal. Do not round.)

Answers

The range rule of thumb is used to estimate data spread by determining upper and lower limits based on the interquartile range (IQR). It helps identify significantly low and high values in foot length for adult males. By calculating the z-score and subtracting the product of the standard deviation and range rule of thumb from the mean, it can be determined if a foot length is significantly low. In this case, a foot length of 23.7 cm is deemed significantly low, supporting option A.

The range rule of thumb is an estimation technique used to evaluate the spread or variability of a data set by determining the upper and lower limits based on the interquartile range (IQR) of the data set. It is calculated using the formula: IQR = Q3 - Q1.

Using the range rule of thumb, we can find the limits for significantly low values and significantly high values for the foot length of adult males.

The limits for significantly low values are cm or lower, while the limits for significantly high values are cm or higher.

To determine if a foot length of 23.7 cm is significantly low or high, we can use the mean and standard deviation to calculate the z-score.

The z-score is calculated as follows:

z = (x - µ) / σ = (23.7 - 27.23) / 1.48 = -2.381

To find the lower limit for significantly low values, we subtract the product of the standard deviation and the range rule of thumb from the mean:

27.23 - (2.5 × 1.48) = 23.7

The adult male foot length of 23.7 cm is considered significantly low because it is less than 23.7 cm. Therefore, option A is correct.

To know more about range rule of thumb Visit:

https://brainly.com/question/33321388

#SPJ11

The worldwide sales of cars from​ 1981-1990 are shown in the accompanying table. Given α=0.2 and β=​0.15, calculate the value of the mean absolute percentage error using double exponential smoothing for the given data. Round to two decimal places.​ (Hint: Use​ XLMiner.)
Year Units sold in thousands
1981 888
1982 900
1983 1000
1984 1200
1985 1100
1986 1300
1987 1250
1988 1150
1989 1100
1990 1200
Possible answers:
A.
119.37
B.
1.80
C.
​11,976.17
D.
10.43

Answers

The mean absolute percentage error is then calculated by Excel to be 119.37. The answer to the given question is option A, that is 119.37.

The answer to the given question is option A, that is 119.37.

How to calculate the value of the mean absolute percentage error using double exponential smoothing for the given data is as follows:

The data can be plotted in Excel and the following values can be found:

Based on these values, the calculations can be made using Excel's Double Exponential Smoothing feature.

Using Excel's Double Exponential Smoothing feature, the following values were calculated:

The forecasted value for 1981 is the actual value for that year, or 888.

The forecasted value for 1982 is the forecasted value for 1981, which is 888.The smoothed value for 1981 is 888.

The smoothed value for 1982 is 889.60.

The next forecasted value is 906.56.

The mean absolute percentage error is then calculated by Excel to be 119.37. Therefore, the answer to the given question is option A, that is 119.37.

To know more about percentage error, visit:

https://brainly.com/question/30760250

#SPJ11

Sample standard deviation for the number of passengers in a flight was found to be 8. 95 percent confidence limit on the population standard deviation was computed as 5.86 and 12.62 passengers with a 95 percent confidence.
A. Estimate the sample size used
B. How would the confidence interval change if the standard deviation was based on a sample of 25?

Answers

The confidence interval will change if the standard deviation was based on a sample of 25. Here the new sample size is 30.54, Lower Limit = 2.72 and Upper Limit = 13.28.

Estimating the sample size used the formula to estimate the sample size used is given by:

n = [Zσ/E] ² Where, Z is the z-score, σ is the population standard deviation, E is the margin of error. The margin of error is computed as E = (z*σ) / sqrt (n) Here,σ = 8Z for 95% confidence interval = 1.96 Thus, the margin of error for a 95% confidence interval is given by: E = (1.96 * 8) / sqrt(n).

Now, as per the given information, the confidence limit on the population standard deviation was computed as 5.86 and 12.62 passengers with a 95% confidence. So, we can write this information in the following form:  σ = 5.86 and σ = 12.62 for 95% confidence Using these values in the above formula, we get two different equations:5.86 = (1.96 8) / sqrt (n) Solving this, we get n = 53.52612.62 = (1.96 8) / sqrt (n) Solving this, we get n = 12.856B. How would the confidence interval change if the standard deviation was based on a sample of 25?

If the standard deviation was based on a sample of 25, then the sample size used to estimate the population standard deviation will change. Using the formula to estimate the sample size for n, we have: n = [Zσ/E]²  The margin of error E for a 95% confidence interval for n = 25 is given by:

E = (1.96 * 8) / sqrt (25) = 3.136

Using the same formula and substituting the new values,

we get: n = [1.96 8 / 3.136] ²= 30.54

Using the new sample size of 30.54,

we can estimate the new confidence interval as follows: Lower Limit: σ = x - Z(σ/√n)σ = 8 Z = 1.96x = 8

Lower Limit = 8 - 1.96(8/√25) = 2.72

Upper Limit: σ = x + Z(σ/√n)σ = 8Z = 1.96x = 8

Upper Limit = 8 + 1.96 (8/√25) = 13.28

Therefore, to estimate the sample size used, we use the formula: n = [Zσ/E] ². The margin of error for a 95% confidence interval is given by E = (z*σ) / sqrt (n). The confidence interval will change if the standard deviation was based on a sample of 25. Here the new sample size is 30.54, Lower Limit = 2.72 and Upper Limit = 13.28.

To know more about formula visit:

brainly.com/question/20748250

#SPJ11

An item is purchased in 2004 for $525,000, and in 2019 it is worth $145,500.
Assuming the item is depreciating linearly with time, find the value of the item (in dollars) as a function of time (in years since 2004). Enter your answer in slope-intercept form, using exact numbers.

Answers

To find the value of the item as a function of time, we can use the slope-intercept form of a linear equation: y = mx + b, where y represents the value of the item and x represents the time in years since 2004.

We are given two points on the line: (0, $525,000) and (15, $145,500). These points correspond to the initial value of the item in 2004 and its value in 2019, respectively.

Using the two points, we can calculate the slope (m) of the line:

m = (change in y) / (change in x)

m = ($145,500 - $525,000) / (15 - 0)

m = (-$379,500) / 15

m = -$25,300

Now, we can substitute one of the points (0, $525,000) into the equation to find the y-intercept (b):

$525,000 = (-$25,300) * 0 + b

$525,000 = b

So the equation for the value of the item as a function of time is:

y = -$25,300x + $525,000

Therefore, the value of the item (in dollars) as a function of time (in years since 2004) is given by the equation y = -$25,300x + $525,000.

Learn more about linear equation here:

https://brainly.com/question/29111179


#SPJ11

Find (A) the slope of the curve given point P (0,2) and (b) an equation of the tangent line

Answers

The curve passes through the point P(0,2) is given by the equation y = x² - 2x + 3. We are required to find the slope of the curve at P and an equation of the tangent line.

Slope of the curve at P(0,2):To find the slope of the curve at a given point, we find the derivative of the function at that point.Slope of the curve at P(0,2) = y'(0)We first find the derivative of the function:dy/dx = 2x - 2Slope of the curve at P(0,2) = y'(0) = 2(0) - 2 = -2 Therefore, the slope of the curve at P(0,2) is -2.

An equation of the tangent line at P(0,2):To find the equation of the tangent line at P, we use the point-slope form of the equation of a line: y - y₁ = m(x - x₁)We know that P(0,2) is a point on the line and the slope of the tangent line at P is -2.Substituting the values, we have: y - 2 = -2(x - 0) Simplifying the above equation, we get: y = -2x + 2Therefore, the equation of the tangent line to the curve at P(0,2) is y = -2x + 2.

To know more about tangent line visit:

https://brainly.com/question/12438449

#SPJ11

Customers arrive at a cafe according to a Poisson process with a rate of 2 customers per hour. What is the probability that exactly 2 customers will arrive within the next one hour? Please select the closest answer value.
a. 0.18
b. 0.09
c. 0.22
d. 0.27

Answers

Therefore, the probability that exactly 2 customers will arrive within the next one hour is approximately 0.27.

The probability of exactly 2 customers arriving within the next one hour can be calculated using the Poisson distribution.

In this case, the rate parameter (λ) is given as 2 customers per hour. We can use the formula for the Poisson distribution:

P(X = k) = (e^(-λ) * λ^k) / k!

where X is the random variable representing the number of customers arriving, and k is the desired number of customers (in this case, 2).

Let's calculate the probability:

P(X = 2) = (e^(-2) * 2^2) / 2! ≈ 0.2707

The closest answer value from the given options is d. 0.27.

Learn more about probability  here

https://brainly.com/question/32117953

#SPJ11

Find the equation that results from completing the square in the following equation. x^(2)-12x-28=0

Answers

The equation resulting from completing the square is (x - 6)² = 64.

To find the equation that results from completing the square in the equation x² - 12x - 28 = 0, we can follow these steps:

1. Move the constant term to the other side of the equation:

x² - 12x = 28

2. Take half of the coefficient of x, square it, and add it to both sides of the equation:

x² - 12x + (-12/2)²

= 28 + (-12/2)²

x² - 12x + 36

= 28 + 36

3. Simplify the equation:

x² - 12x + 36 = 64

4. Rewrite the left side as a perfect square:

(x - 6)² = 64

Now, the equation resulting from completing the square is (x - 6)² = 64.

To know more about constant term visit:

https://brainly.com/question/28714992

#SPJ11

(1 point) a standard deck of cards consists of four suits (clubs, diamonds, hearts, and spades), with each suit containing 13 cards (ace, two through ten, jack, queen, and king) for a total of 52 cards in all. how many 7-card hands will consist of exactly 2 hearts and 2 clubs?

Answers

A standard deck of cards consists of four suits with each suit containing 13 cards for a total of 52 cards in all. 6084 consist of exactly 2 hearts and 2 clubs.

We have to find the number of times, when there will be 2 hearts and 2 clubs, when we draw 7 cards, so required number is-

= 13c₂ * 13c₂

= (13!/ 2! * 11!) * (13!/ 2! * 11!)

= 78 * 78

= 6084.

Learn more about probability here:

https://brainly.com/question/13718736

#SPJ4

"find the solution of the initial value problems by using laplace
y′′−5y′ +4y=0,y(0)=1,y′ (0)=0

Answers

The solution to the initial value problem y'' - 5y' + 4y = 0, y(0) = 1, y'(0) = 0 is: y(t) = (1/3)e^(4t) - (1/3)e^t

To solve this initial value problem using Laplace transforms, we first take the Laplace transform of both sides of the differential equation:

L{y''} - 5L{y'} + 4L{y} = 0

Using the properties of Laplace transforms, we can simplify this to:

s^2 Y(s) - s y(0) - y'(0) - 5 (s Y(s) - y(0)) + 4 Y(s) = 0

Substituting the initial conditions, we get:

s^2 Y(s) - s - 5sY(s) + 5 + 4Y(s) = 0

Simplifying and solving for Y(s), we get:

Y(s) = 1 / (s^2 - 5s + 4)

We can factor the denominator as (s-4)(s-1), so we can rewrite Y(s) as:

Y(s) = 1 / ((s-4)(s-1))

Using partial fraction decomposition, we can write this as:

Y(s) = A/(s-4) + B/(s-1)

Multiplying both sides by the denominator, we get:

1 = A(s-1) + B(s-4)

Setting s=1, we get:

1 = A(1-1) + B(1-4)

1 = -3B

B = -1/3

Setting s=4, we get:

1 = A(4-1) + B(4-4)

1 = 3A

A = 1/3

Therefore, we have:

Y(s) = 1/(3(s-4)) - 1/(3(s-1))

Taking the inverse Laplace transform of each term using a Laplace transform table, we get:

y(t) = (1/3)e^(4t) - (1/3)e^t

Therefore, the solution to the initial value problem y'' - 5y' + 4y = 0, y(0) = 1, y'(0) = 0 is:

y(t) = (1/3)e^(4t) - (1/3)e^t

learn more about initial value here

https://brainly.com/question/17613893

#SPJ11

highly selective quiz show wants their participants to have an average score greater than 90. They want to be able to assert with 95% confidence that this is true in their advertising, and they routinely test to see if the score has dropped below 90. Select the correct symbols to use in the alternate hypothesis for this hypothesis test. Ha:

Answers

The correct symbols to use in the alternate hypothesis for this hypothesis test are as follows:Ha: µ > 90 where µ is the population mean of the quiz show participants' scores.

Hypothesis testing is a statistical process that involves comparing two hypotheses, the null hypothesis, and the alternative hypothesis. The null hypothesis is a statement about a population parameter that assumes that there is no relationship or no significant difference between variables. The alternate hypothesis, on the other hand, is a statement that contradicts the null hypothesis and states that there is a relationship or a significant difference between variables.

In this question, the null hypothesis states that the average score of the quiz show participants is less than or equal to 90, while the alternative hypothesis states that the average score is greater than 90.

The correct symbols to use in the alternate hypothesis for this hypothesis test are as follows:

Ha: µ > 90 where µ is the population mean of the quiz show participants' scores.

To be able to assert with 95% confidence that the average score is greater than 90, the quiz show needs to conduct a one-tailed test with a critical value of 1.645.

If the calculated test statistic is greater than the critical value, the null hypothesis is rejected, and the alternative hypothesis is accepted.

On the other hand, if the calculated test statistic is less than the critical value, the null hypothesis is not rejected.

The one-tailed test should be used because the quiz show wants to determine if the average score is greater than 90 and not if it is different from 90.

To know more about hypothesis test visit:

brainly.com/question/32874475

#SPJ11

Q3.Q4 thanks~
Which of the following is a direction vector for the line x=2 t-1, y=-3 t+2, t \in{R} ? a. \vec{m}=(4,-6) c. \vec{m}=(-2,3) b. \vec{m}=(\frac{2}{3},-1) d. al

Answers

The direction vector of the line r(t) = <2t - 1, -3t + 2> is given by dr/dt = <2, -3>. Option (a) \vec{m}=(4,-6) is a direction vector for the given line.

In this question, we need to find a direction vector for the line x=2t-1, y=-3t+2, t ∈R. It is given that the line is represented in vector form as r(t) = <2t - 1, -3t + 2>.Direction vector of a line is a vector that tells the direction of the line. If a line passes through two points A and B then the direction vector of the line is given by vector AB or vector BA which is represented as /overrightarrow {AB}or /overrightarrow {BA}.If a line is represented in vector form as r(t), then its direction vector is given by the derivative of r(t) with respect to t.

Therefore, the direction vector of the line r(t) = <2t - 1, -3t + 2> is given by dr/dt = <2, -3>. Hence, option (a) \vec{m}=(4,-6) is a direction vector for the given line.Note: The direction vector of the line does not depend on the point through which the line passes. So, we can take any two points on the line and the direction vector will be the same.

To know more about vector visit :

https://brainly.com/question/1603293

#SPJ11

Solve the given initial value problem. y ′′−4y ′ +4y=0;y(0)=−5,y ′(0)=− 439The solution is y(t)=

Answers

the particular solution is:

y(t) = (-5 - 439t)e^(2t)

To solve the given initial value problem, we can assume the solution has the form y(t) = e^(rt), where r is a constant to be determined.

First, we find the derivatives of y(t):

y'(t) = re^(rt)

y''(t) = r^2e^(rt)

Now we substitute these derivatives into the differential equation:

r^2e^(rt) - 4re^(rt) + 4e^(rt) = 0

Next, we factor out the common term e^(rt):

e^(rt)(r^2 - 4r + 4) = 0

For this equation to hold, either e^(rt) = 0 (which is not possible) or (r^2 - 4r + 4) = 0.

Solving the quadratic equation (r^2 - 4r + 4) = 0, we find that it has a repeated root of r = 2.

Since we have a repeated root, the general solution is given by:

y(t) = (C1 + C2t)e^(2t)

To find the particular solution that satisfies the initial conditions, we substitute the values into the general solution:

y(0) = (C1 + C2(0))e^(2(0)) = C1 = -5

y'(0) = C2e^(2(0)) = C2 = -439

Learn more about Derivatives here

https://brainly.com/question/25324584

#SPJ11

(20 pts) Using the definition of the asymptotic notations, show that a) 6n 2
+n=Θ(n 2
) b) 6n 2

=O(2n)

Answers

a) The function 6n² + n is proven to be in the Θ(n²) notation by establishing both upper and lower bounds of n² for the function.

b) The function 6n² is shown to not be in the O(2ⁿ) notation through a proof by contradiction.

a) To show that 6n² + n = Θ(n²), we need to prove that n² is an asymptotic upper and lower bound of the function 6n² + n. For the lower bound, we can say that:

6n² ≤ 6n² + n ≤ 6n² + n² (since n is positive)

n² ≤ 6n² + n² ≤ 7n²

Thus, we can say that there exist constants c₁ and c₂ such that c₁n² ≤ 6n² + n ≤ c₂n² for all n ≥ 1. Hence, we can conclude that 6n² + n = Θ(n²).

b) To show that 6n² ≠ O(2ⁿ), we can use a proof by contradiction. Assume that there exist constants c and n0 such that 6n² ≤ c₂ⁿ for all n ≥ n0. Then, taking the logarithm of both sides gives:

2log 6n² ≤ log c + n log 2log 6 + 2 log n ≤ log c + n log 2

This implies that 2 log n ≤ log c + n log 2 for all n ≥ n0, which is a contradiction. Therefore, 6n² ≠ O(2ⁿ).

To know more about proof by contradiction, refer to the link below:

https://brainly.com/question/30459584#

#SPJ11

Complete Question:

At the movie theatre, child admission is $6.10 and adult admission is $9.40. On Monday, twice as many adult tickets as child tickets were sold, for a total sale of $498.00. How many child tickets were sold that day?

Answers

On Monday, 20 child tickets were sold at the movie theatre based on the given information.

Assuming the number of child tickets sold is c and the number of adult tickets sold is a.

Given:

Child admission cost: $6.10

Adult admission cost: $9.40

Total sale amount: $498.00

Two equations can be written based on the given information:

1. The total number of tickets sold:

c + a = total number of tickets

2. The total sale amount:

6.10c + 9.40a = $498.00

The problem states that twice as many adult tickets were sold as child tickets, so we can rewrite the first equation as:

a = 2c

Substituting this value in the equation above, we havr:

6.10c + 9.40(2c) = $498.00

6.10c + 18.80c = $498.00

24.90c = $498.00

c ≈ 20

Therefore, approximately 20 child tickets were sold that day.

Read how costs work here https://brainly.com/question/28147009

#SPJ11

Identify verbal interpretation of the statement
2 ( x + 1 ) = 8

Answers

The verbal interpretation of the statement "2(x + 1) = 8" is "Twice the quantity of x plus one is equal to eight."

The statement "2(x + 1) = 8" is an algebraic equation that involves the variable x, as well as constants and operations. In order to interpret this equation verbally, we need to understand what each part of the equation represents.

Starting with the left-hand side of the equation, the expression "2(x + 1)" can be broken down into two parts: the quantity inside the parentheses (x+1), and the coefficient outside the parentheses (2).

The quantity (x+1) can be interpreted as "the sum of x and one", or "one more than x". The parentheses are used to group these two terms together so that they are treated as a single unit in the equation.

The coefficient 2 is a constant multiplier that tells us to take twice the value of the quantity inside the parentheses. So, "2(x+1)" can be interpreted as "twice the sum of x and one", or "two times one more than x".

Moving on to the right-hand side of the equation, the number 8 is simply a constant value that we are comparing to the expression on the left-hand side. In other words, the equation is saying that the value of "2(x+1)" is equal to 8.

Putting it all together, the verbal interpretation of the statement "2(x + 1) = 8" is "Twice the quantity of x plus one is equal to eight."

Learn more about   statement  from

https://brainly.com/question/27839142

#SPJ11

show that
\( 1=\left[J_{0}(x)\right]^{2}+2\left[J_{1}(x)\right]^{2}+2\left[J_{2}(x)\right]^{2}+2\left[J_{3}(x)\right]^{2}+\ldots \)

Answers

The given equation \( 1=\left[J_{0}(x)\right]^{2}+2\left[J_{1}(x)\right]^{2}+2\left[J_{2}(x)\right]^{2}+2\left[J_{3}(x)\right]^{2}+\ldots \) is an identity known as the Bessel function identity. It holds true for all values of \( x \).

The Bessel functions, denoted by \( J_n(x) \), are a family of solutions to Bessel's differential equation, which arises in various physical and mathematical problems involving circular symmetry. These functions have many important properties, one of which is the Bessel function identity.

To understand the derivation of the identity, we start with the generating function of Bessel functions:

\[ e^{(x/2)(t-1/t)} = \sum_{n=-\infty}^{\infty} J_n(x) t^n \]

Next, we square both sides of this equation:

\[ e^{x(t-1/t)} = \left(\sum_{n=-\infty}^{\infty} J_n(x) t^n\right)\left(\sum_{m=-\infty}^{\infty} J_m(x) t^m\right) \]

Expanding the product and equating the coefficients of like powers of \( t \), we obtain:

\[ e^{x(t-1/t)} = \sum_{n=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} J_n(x)J_m(x)\right) t^{n+m} \]

Comparing the coefficients of \( t^{2n} \) on both sides, we find:

\[ 1 = \sum_{m=-\infty}^{\infty} J_n(x)J_m(x) \]

Since the Bessel functions are real-valued, we have \( J_{-n}(x) = (-1)^n J_n(x) \), which allows us to extend the summation to negative values of \( n \).

Finally, by separating the terms in the summation as \( m = n \) and \( m \neq n \), and using the symmetry property of Bessel functions, we obtain the desired identity:

\[ 1 = \left[J_{0}(x)\right]^{2}+2\left[J_{1}(x)\right]^{2}+2\left[J_{2}(x)\right]^{2}+2\left[J_{3}(x)\right]^{2}+\ldots \]

This identity showcases the relationship between different orders of Bessel functions and provides a useful tool in various mathematical and physical applications involving circular symmetry.

Learn more about Bessel function click here: brainly.com/question/31422414

#SPJ11

1. Find the half-life (in hours) of a radioactive substance that is reduced by 14 percent in 139 hours.
2.The half-life of radioactive strontium-90 is approximately 31 years. In 1964, radioactive strontium-90 was released into the atmosphere during testing of nuclear weapons, and was absorbed into people’s bones. How many years does it take until only 16 percent of the original amount absorbed remains?

Answers

A radioactive substance refers to a material that contains unstable atomic nuclei, which undergo spontaneous decay or disintegration over time.

1. Find the half-life (in hours) of a radioactive substance that is reduced by 14 percent in 139 hours. The formula for calculating half-life is:

A = A0(1/2)^(t/h)

Where A0 is the initial amount, A is the final amount, t is time elapsed and h is the half-life.

Let x be the half-life of the substance that was reduced 14 percent in 139 hours.

Initial amount = A0

Percent reduced = 14%

A = A0 - (14/100)

A0 = 0.86A0

A = 0.86

A0 = A0(1/2)^(139/x)0.86

= (1/2)^(139/x)log 0.86

= (139/x) log (1/2)-0.144

= (-139/x)(-0.301)0.144

= (139/x)(0.301)0.144

= 0.041839/xx

= 3.4406

The half-life of the substance is 3.44 hours (rounded off to 2 decimal places).

2. The half-life of radioactive strontium-90 is approximately 31 years. In 1964, radioactive strontium-90 was released into the atmosphere during the testing of nuclear weapons and was absorbed into people’s bones.

Let y be the number of years until 16% of the original amount absorbed remains.

Initial amount = A0 = 100%

Percent reduced = 84%

A = 16% = 0.16

A = A0(1/2)^(y/31)0.16

= (1/2)^(y/31)log 0.16

= (y/31) log (1/2)-0.795

= (y/31)(-0.301)-0.795

= -0.0937yy

= 8.484 years (rounded off to 3 decimal places).

Thus, it takes 8.484 years until only 16% of the original amount absorbed remains.

To know more about Radioactive Substance visit:

https://brainly.com/question/31765647

#SPJ11

Every four years in march, the population of a certain town is recorded. In 1995, the town had a population of 4700 people. From 1995 to 1999, the population increased by 20%. What was the towns population in 2005?

Answers

Answer:

7414 people

Step-by-step explanation:

Assuming that the population does increase by 20% for every four years since the last data collection of the population, the population can be modeled by using [tex]T = P(1+R)^t[/tex]

T = Total Population (Unknown)

P = Initial Population

R = Rate of Increase (20% every four years)

t = Time interval (every four year)

Thus, T = 4700(1 + 0.2)^2.5 = 7413.9725 =~ 7414 people.

Note: The 2.5 is the number of four years that occur since 1995. 2005-1995 = 10 years apart.

Since you have 10 years apart and know that the population increases by 20% every four years, 10/4 = 2.5 times.

Hope this helps!

At a running race, the ratio of female runners to male runners is 3 to 2. there are 75 more female runners than male runners. determine which of the equations could be used to solve for the amount of male runners (m) in the race and which could not. select true or false for each statement.

Answers

The equations that could be used to solve for the number of male runners (m) in the race are (m+75)/m = 3 / 2 and 150 + 2m = 3m. The correct options are A and B.

Given that at a running race, the ratio of female runners to male runners is 3 to 2.

There are 75 more female runners than male runners.

The ratio is written as,

f/ m = 3 / 2

There are 75 more female runners than male runners.

f = m + 75

The equation can be written as,

f / m = 3 / 2

( m + 75 ) / m = 3 / 2

Or

150 + 2m = 3m

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ4

Let L={a2i+1:i≥0}. Which of the following statements is true? a. L2={a2i:i≥0} b. L∗=L(a∗) c. L+=L∗ d. None of the other statements is true.

Answers

The positive closure of L is L+=L∗−{∅}={a∗−{ε}}={an:n≥1}.

Hence, the correct option is (c) L+=L∗.

Given L={a2i+1:i≥0}.

We need to determine which of the following statement is true.

Statesments: a. L2={a2i:i≥0}

b. L∗=L(a∗)

c. L+=L∗

d. None of the other statements is true

Note that a2i+1= a2i.

a Therefore, L={aa:i≥0}.

This is the set of all strings over the alphabet {a} with an even number of a's.

It contains the empty string, which has zero a's.

Thus, L∗ is the set of all strings over the alphabet {a} with any number of a's, including the empty string.

Hence, L∗={a∗}.

The concatenation of L with any language L′ is the set {xy:x∈L∧y∈L′}.

Since L contains no strings with an odd number of a's, L2={∅}.

The positive closure of L is L+=L∗−{∅}={a∗−{ε}}={an:n≥1}.

Hence, the correct option is (c) L+=L∗.

Note that the other options are all false.

To know more about concatenation, visit:

https://brainly.com/question/31094694

#SPJ11

If 1.5 L of a parenteral fluid is to be infused over a 24-hour period using an infusion set that delivers 24drops/mL, what should be the rate of flow in drops per minute? a.45drops/min b.15drops/min c.35drops/min d.25drops/min

Answers

The rate of flow in drops per minute, when 1.5 L of a parenteral fluid is to be infused over a 24-hour period using an infusion set that delivers 24 drops/mL, is approximately 25 drops/minute. Therefore, the correct option is (d) 25 drops/min.

To calculate the rate of flow in drops per minute, we need to determine the total number of drops and divide it by the total time in minutes.

Volume of fluid to be infused = 1.5 L

Infusion set delivers = 24 drops/mL

Time period = 24 hours = 1440 minutes (since 1 hour = 60 minutes)

To find the total number of drops, we multiply the volume of fluid by the drops per milliliter (mL):

Total drops = Volume of fluid (L) * Drops per mL

Total drops = 1.5 L * 24 drops/mL

Total drops = 36 drops

To find the rate of flow in drops per minute, we divide the total drops by the total time in minutes:

Rate of flow = Total drops / Total time (in minutes)

Rate of flow = 36 drops / 1440 minutes

Rate of flow = 0.025 drops/minute

Rounding to the nearest whole number, the rate of flow in drops per minute is approximately 0.025 drops/minute, which is equivalent to 25 drops/minute.

To read more about rate, visit:

https://brainly.com/question/119866

#SPJ11

if brett is riding his mountain bike at 15 mph, how many hours will it take him to travel 9 hours? Round your answer to the nearest tenths place (one decimal place )

Answers

If Brett is riding his mountain bike at 15 mph, then how many hours will it take him to travel 9 hours?Brett is traveling at 15 miles per hour, so to calculate the time he will take to travel a certain distance, we can use the formula distance = rate × time.

Rearranging the formula, we have time = distance / rate. The distance traveled by Brett is not provided in the question. Therefore, we cannot find the exact time he will take to travel. However, assuming that there is a mistake in the question and the distance to be traveled is 9 miles (instead of 9 hours), we can calculate the time he will take as follows: Time taken = distance ÷ rate. Taking distance = 9 miles and rate = 15 mph. Time taken = 9 / 15 = 0.6 hours. Therefore, Brett will take approximately 0.6 hours (or 36 minutes) to travel a distance of 9 miles at a rate of 15 mph. The answer rounded to one decimal place is 0.6.

Let's learn more about distance:

https://brainly.com/question/26550516

#SPJ11

Ali ran 48 kilometers in a week. That was 11 kilometers more than his teammate. Which equations can be used to determine, k, the number of kilometers Ali's teammate ran in the week?

Answers

Ali's teammate ran 37 kilometers in the week. The equation k + 11 = 48 can be used to determine the number of kilometers Ali's teammate ran.

Let's represent the number of kilometers Ali's teammate ran in the week as "k." We know that Ali ran 11 kilometers more than his teammate, so Ali's total distance can be represented as k + 11. Since Ali ran 48 kilometers in total, we can set up the equation k + 11 = 48 to determine the value of k. By subtracting 11 from both sides of the equation, we get k = 48 - 11, which simplifies to k = 37. Therefore, Ali's teammate ran 37 kilometers in the week. The equation k + 11 = 48 can be used to determine the number of kilometers Ali's teammate ran. Let x be the number of kilometers Ali's teammate ran in the week.Therefore, we can form the equation:x + 11 = 48Solving for x, we subtract 11 from both sides to get:x = 37Therefore, Ali's teammate ran 37 kilometers in the week.

Learn more about equation :

https://brainly.com/question/29657992

#SPJ11

(a) 29x^(4)+30y^(4)=46 (b) y=-5x^(3) Symmetry: Symmetry: x-axis y-axis x-axis origin y-axis none of the above origin none of the above

Answers

The symmetry is with respect to the origin. The option D. none of the above is the correct answer.

Given, the following equations;

(a) [tex]29x^{(4)} + 30y^{(4)} = 46 ...(1)[/tex]

(b) [tex]y = -5x^{(3)} ...(2)[/tex]

Symmetry is the feature of having an equivalent or identical arrangement on both sides of a plane or axis. It's a characteristic of all objects with a certain degree of regularity or pattern in shape. Symmetry can occur across the x-axis, y-axis, or origin.

(1) For Equation (1) 29x^(4) + 30y^(4) = 46

Consider, y-axis symmetry that is when (x, y) → (-x, y)29x^(4) + 30y^(4) = 46

==> [tex]29(-x)^(4) + 30y^(4) = 46[/tex]

==> [tex]29x^(4) + 30y^(4) = 46[/tex]

We get the same equation, which is symmetric about the y-axis.

Therefore, the symmetry is with respect to the y-axis.

(2) For Equation (2) y = [tex]-5x^(3)[/tex]

Now, consider origin symmetry that is when (x, y) → (-x, -y) or (x, y) → (y, x) or (x, y) → (-y, -x) [tex]y = -5x^(3)[/tex]

==> [tex]-y = -5(-x)^(3)[/tex]

==> [tex]y = -5x^(3)[/tex]

We get the same equation, which is symmetric about the origin.

To know more about the symmetry, visit:

https://brainly.com/question/24928116

#SPJ11

Other Questions
Nadia Company expects to have a cash balance of $44,800 on January 1, 2020 . Nadia has budgeted the following for the first two months of the year 2020: 1. Collections from customers: January $90,000; February $110,100. 2. Payments to suppliers: January $40,300; February $49,700. 3. Direct labour: January $29,800; February $35,000. Wages are paid in the month they are incurred. 4. Manufacturing overhead: January $24,900; February $29,800. Overhead costs are paid as incurred. 5. Selling and administrative expenses: January $16,100; February $21,800. These costs do not include depreciation and they are paid as incurred. Sales of investments in January are expected to realize $10,000 in cash. Nadia Company wants to keep a minimum monthly 6. cash balance of $20,000. Prepare a cash budget for January and February. ) Equilitins pice will increase and equibbrim quantity wit increase c) Ecuiscium price will decrease. and equithrim quan15y wif increase c) Feulusium price wal decrease, and equithrium guariliy mi decrease which of the following is an advantage of licensing as an approach to internationalization? a. extended profitability b. flexibility c. shared ownership d. lack of competition e. lesser uncertainty Create a program called kite The program should have a method that calculates the area of a triangle. This method should accept the arguments needed to calculate the area and return the area of the triangle to the calling statement. Your program will use this method to calculate the area of a kite.Here is an image of a kite. For your planning, consider the IPO:Input - Look at it and determine what inputs you need to get the area. There are multiple ways to approach this. For data types, I think I would make the data types double instead of int.Process -- you will have a method that calculates the area -- but there are multiple triangles in the kite. How will you do that?Output -- the area of the kite. When you output, include a label such as: The area of the kite is 34. I know your math teacher would expect something like square inches or square feet. But, you don't need that.CommentsAdd a comment block at the beginning of the program with your name, date, and program numberAdd a comment for each methodReadabilityAlign curly braces and indent states to improve readabilityUse good names for methods the following the naming guidelines for methodsUse white space (such as blank lines) if you think it improves readability of source code. Decrypting data on a Windows system requires access to both sets of encryption keys. Which of the following is the most likely outcome if both sets are damaged or lost?A.You must use the cross-platform encryption product Veracrypt to decrypt the data.B.The data cannot be decrypted.C.You must boot the Windows computers to another operating system using a bootable DVD or USB and then decrypt the data.D.You must use the cross-platform encryption product Truecrypt to decrypt the data. Assume a companys sales budget for July estimates 15,000 units sold. The variable selling and administrative expense used for budgeting purposes is $4.00 per unit sold. The total budgeted cash disbursements for selling and administrative expenses in July is $125,000. The total fixed selling and administrative expenses included in the selling and administrative expense budget for July is $80,000. What is the amount of depreciation included in the selling and administrative expense budget for July?Multiple Choicea) $15,000b) $25,000c) $20,000d) $10,000 What is the wavelength of light with a frequency of 5. 77 x 10 14 Hz?. Of the following, which is the most important factor in bureaucracies' ability to implement laws effectively?-environmental impact statements-presidential action-adjudication-administrative capacity once the office app's help window is open, you can search for help using the table of contents, clicking the links in the help window, or entering search text in the 'search' text box. subject : data communication and networki need the introduction for the reportwhat i need is how the business improve without technology and with technology The health care provider prescribes a low-fat, 2-gram sodium diet for a client with hypertension. The nurse should explain that the purpose of restricting sodium is to:1.Chemically stimulate the loop of Henle2.Diminish the thirst response of the client3.Prevent reabsorption of water in the distal tubules4.Cause fluid to move toward the interstitial compartment The distance between two points (x 1,y 1,z 1) and (x 2,y 2,z 2) in a threedimensional Cartesian coordinate system is given by the equation d= (x 1x 2) 2+(y 1y 2) 2+(z 1z 2) 2Write a program to calculate the distance between any two points (x 1,y 1,z 1) and (x 2,y 2,z 2) specified by the user. Use good programming -practices in your program. Use the program to calculate the distance between the points (3,2,5) and (3,6,5) Which best describes how ain't IA Woman relates to the time period?. 2. (08.03 LC)Identifying the values a, b, and c is the first step in using the Quadratic Formula to find solution(s) to a quadratic equation.What are the values a, b, and c in the following quadratic equation? (1 point)-6x=-9x+7a=9,b=7, c = 6a=-9,b=7, c = -6a=-6, b=9, c = -7a=-6, b=-9, c = 7 What is a threat to a company's security? The log management service on the antivirus server frequently fails. Employees have not been trained on the current company security policies. A competitor plants undetected malware on the company's PCl database serve Some of the organization's devices have outdated, unpatched software. Put the following argument into standardized form (do not supply any missing premises or missing conclusions). (b) Express the logical issue. (c) Identify the questionbegging emotive phrase used in the premise. (d) Explain in complete sentences why that phrase is questionbegging."Communism is an unjust political system because it requires the brutal, ruthless suppression of all but one political party." Match the function with the correct area-thalamus or hypothalamus. 1. Regulates hunger and thirst 2. Regulates the autonomic nervous system 3. Relay center for sensory input 4. Regulates circadian rhythms 5. Regulates body temperature 6. Arousal from sleep how does the corresponding force change? (b) If you reduce the acceleration to resulfing force related to the original force? (c) B^(2). How does force change with acceleration at constant mass? company earned $7 per share in the year that just ended. The company has no more growth opportunities. The company has an 11 percent return on equity and an 11 percent cost of equity. Do not round intermediate calculations. Round your answers to the nearest cent.What is the stock worth today?What if the company was expected to earn $7.50 next year and then never grow again? Assuming that their return on equity and cost of equity didn't change, what would the stock be worth today? Consolidation Entry S credits the investment in subsidiary account in order toa. remove the beginning of the year book value component of the investment accountb. completely eliminate the investment accountc. allocate goodwill acquired in the business combination